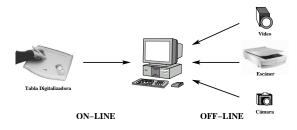
OnLine Handwriting Recognition (Master Course of HTR)

Alejandro H. Toselli

Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia


February 26, 2008

Outline

- Introduction
- Peature Extraction for On-Line HTR
- 3 DFT Data Global Modelling
- OFT Data Local Modelling
- Experimental Results

On-Line Handwriting Recognition Context

Acquisition types:

Usual applications:

- Sign recognition and verification.
- Recognition of postal codes.
- Recognition of courtesy amount in bank checks.
- Transcription of ancient documents.

Motivations

- Time-based Feature Extraction adequate for using with HMM.
- Because of the similarity existing between the nature of on-Line HTR and Speech recognition.
- Tamil HCR Competition.

Tamil HCR Competition - Motivation

- Isolated character samples of 156 Tamil characters.
- Written by native Tamil writers.
- Off-Line and On-Line corpus version.

Some examples of Tamil's symbols:

User 54	21	2	69	5	Fa f
User 111	21	88	9		Jose
	2h	000	3	ST	Dog 2)

- Evaluation criterion is the highest top-choice accuracy at zero reject rate.
- 50683 labelled samples available for training purposes.
- 26926 unlabelled samples available for testing purposes.

On-Line Recognition Representation

On-Line handwriting is represented by a points sequence in \mathbb{R}^2 space ordered in time. Parametric curve.

A isolated handwritten character/word:

- A series of consecutive pen-downs and pen-up strokes.
- Each stroke is a sequence of coordinates (x_t, y_t) t = 0..N-1.
- Some on-line devices included the pressure made on each point.

Our Traditional Feature Extraction

Seven Feature Extractions in function of the time:

- x_t and y_t coordinates normalized between 0 and 100.
- x'_t and y'_t first derivatives normalized between 0 and 1.
- x_t'' and y_t'' second derivatives.

All derivatives are calculated using:

$$f_t = rac{\sum_{c=1}^{C} (r_{t+c} - r_{t-c})}{2\sum_{c=1}^{C} c^2} \quad r_t \in \{x_t', y_t', x_t'', y_t''\}$$

curvature:

$$k_t = rac{x_t' \cdot y_t'' - x_t'' \cdot y_t'}{\left(x_t'^2 + y_t'^2\right)^{3/2}}$$

DFT representation

On-Line handwriting can be represented

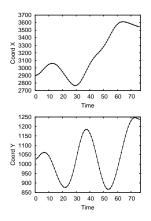
- by a sequence of coordinates (x_t, y_t) t = 0..N-1.
- also as a function $f_t: t \to (x_t + iy_t) \in \mathbb{C}$, or $f_t: t \to (x_t, y_t) \in \mathbb{R}^2$.

Pair of Discrete Fourier Transforms:

- Direct Transform $F_n = \sum_{t=0}^{N-1} f_t e^{-2\pi i \frac{tn}{N}}$
- Inverse Transform $f_t = \frac{1}{N} \sum_{n=0}^{N-1} F_n e^{2\pi i \frac{m}{N}}$

Global/Local Data Modelling

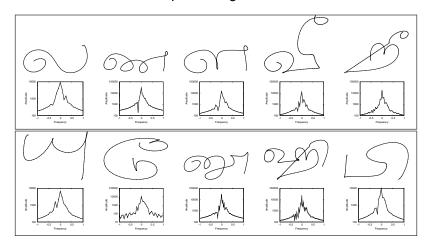
DFT Feature Extraction can be applied to:


- the whole character stroke Global Data Modelling
- local stroke segments Local Data Modelling

We use two different classifiers:

- K-NN classifier for global data modelling.
- Continuous density HMMs for local data modelling.

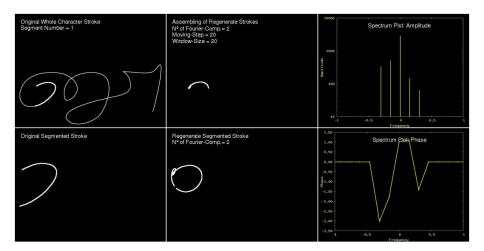
Introduction - DFT Modelling Example

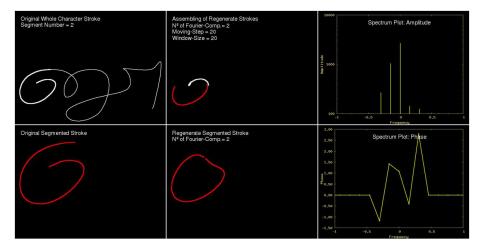


Data Global Modelling - Direct DFT

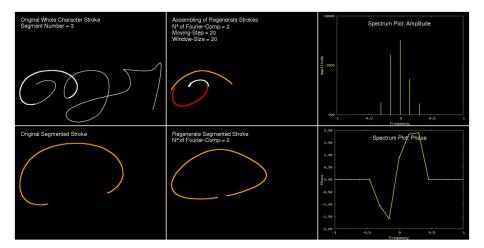
DFT feature extraction examples using the first 40 coefficients:

Data Global Modelling - Inverse DFT

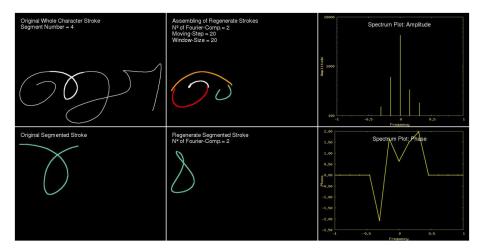

Examples of reconstructed samples considering different number of Fourier-Coefficients.

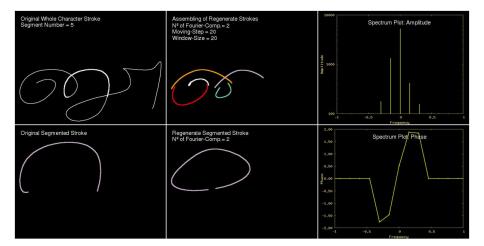

Original	2 FC	4 FC	6 FC	12 FC	20 FC	30 FC	60 FC
6001		\sim	A	(DX)	DOS	DH	ON C
6	0	$\langle \rangle$	00	37	00	9J	60
$\overline{\mathbb{M}}$			0	M	AJ	A	M
029)		<i>></i>		H	020	0299)	02.00)

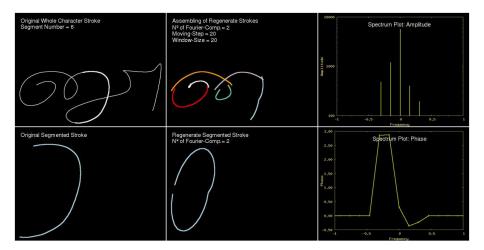
Local Data Modelling

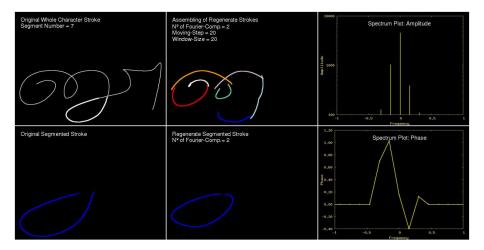

Local DFT Features Extraction:

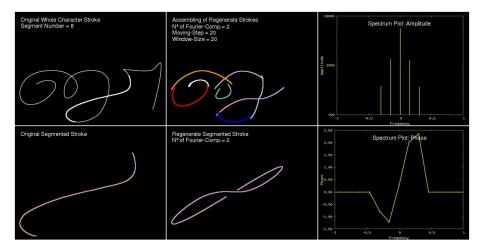
- Sliding-Window running through the whole stroke.
- Window size: 40 points.
- Moving step: 1 points.
- Hamming windows.

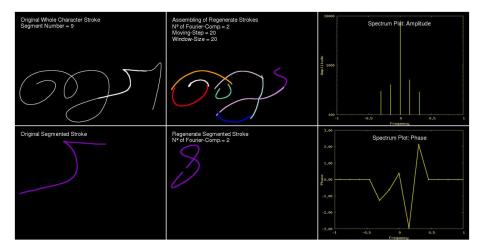


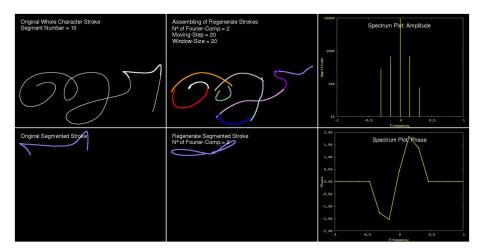


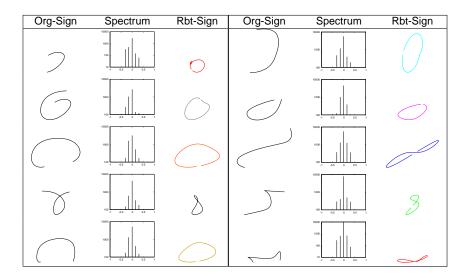












Sliding-Window Segments

Assembling of Regenerated Stroke Segments

Original Signal

Reconstructed from 4 Fourier-Coefficients Sliding-Window, 40 points windows-size and 20 points moving-step.

Tamil Corpus Partition

- Isolated character samples of 156 Tamil characters.
- Written by native Tamil writers.
- Experiments carried out with 2 different versions of the corpus.

Full version:

	Training	Test	Total
#Writers	90	27	117
#Samples	39618	11065	50683

Reduced version:

	Training	Test	Total
#Writers	89	26	115
#Samples	6240	1560	7800

Classification Results with K-NN - Global Modelling

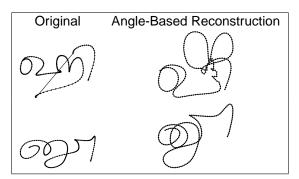
Used feature extraction:

- First 20 Fourier coefficients.
- Coefficient are represented by real and imaginary parts.
- Experiments carried our with the full version of the corpus.

K-NN	WER(%)
1	22.7
3	21.4
5	21.0
8	20.9
10	21.0

HMM Classifier - Local Modelling

HMM classifier specification:


- Left-to-Right topology.
- Number of states as a function of average class length.
- Mixture of Gaussian densities as probability emission per HMM state.
- Baum-Welch re-estimation algorithm for training process.
- Viterbi algorithm for test recognition for process.

DFT Application Problems

Inconvenient: DFT applied to a complex function modulated by a Hamming filter.

As alternatives, DFT was applied:

- on the angle function, defined as: $a_t = \arctan \frac{y'_t}{x'_t}$.
- on x_t and on y_t in an independent way.

Results with Different DFT Application Schemes

Experiments carried out with the reduced version of the corpus and using only DFT coefficients as features.

#Gauss	DFT-Complex	DFT-Ang	DFT-XYind
1	23.91	30.77	19.68
2	20.19	25.77	16.41
4	19.29	23.46	16.60
8	20.71	25.00	18.01
16	22.24	29.17	19.42
32	25.64	37.69	21.92
64	28.78	47.12	23.21
128	30.45	46.41	25.77

Experimental Validation of the Hamming Filter

Experiments carried out with the reduced version of the corpus and using only DFT coefficients as features.

#Gauss	Hamming	Rectangular
1	23.91	24.55
2	20.19	21.73
4	19.29	21.15
8	20.71	22.88
16	22.24	25.64
32	25.64	30.64
64	28.78	33.53
128	30.45	36.86

Classification Results with HMMs - Full Version

Feature extraction:

TFE: x and y normalized coordinates, their first and second derivatives, and curvature.

FFC: First 4 Fourier transform coefficients (real and imaginary parts).

#Gauss	TFE	FFC	TFE+FFC
1	12.7	19.6	12.4
2	12.2	15.4	11.1
4	12.1	14.2	10.5
8	12.0	13.6	10.3
16	11.6	13.1	10.0
32	11.6	13.5	10.2
64	11.7	13.9	10.4

Tamil HCR Competition - Ranked List of Results

Rank	Recognition Accuracy	Data-Entry
1	93.53	on
2	91.2	on
3	90.72	on
4	90.63	on
5	90.15	on
6	90.07	on
7	89.9	on
8	88.91	on
9	87.66	off
10	87.22	off
11	85.81	off
12	77.61	on
13	76.51	off
14	74.99	off
15	73.4	off
16	67.6	on
17	66.33	on

Conclusions and Future Work

- DFT feature extraction complements time-based feature extraction.
- Experiments applying DFT on x_t and on y_t in an independent way.
- Test the feature extraction with the On-Line UNIPEN corpus.