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Abstract. Receiver Operating Characteristic (ROC) analysis has been success-
fully applied to classifier problems with two classes. The Area Under the ROC 
Curve (AUC) has been elected as a better way to evaluate classifiers than pre-
dictive accuracy or error and has also recently used for evaluating probability 
estimators. However, the extension of the Area Under the ROC Curve for more 
than two classes has not been addressed to date, because of the complexity and 
elusiveness of its precise definition. Some approximations to the real AUC are 
used without an exact appraisal of their quality. In this paper, we present the 
real extension to the Area Under the ROC Curve in the form of the Volume 
Under the ROC Surface (VUS), showing how to compute the polytope that cor-
responds to the absence of classifiers (given only by the trivial classifiers), to 
the best classifier and to whatever set of classifiers. We compare the real VUS 
with “approximations” or “extensions” of the AUC for more than two classes. 

1  Introduction 
In general, classifiers are used to make predictions for decision support. Since predic-
tions can be wrong, it is important to know what the effect is when the predictions are 
incorrect. In many situations not every error has the same consequences. Some errors 
have greater cost than others, especially in diagnosis. For instance, a wrong diagnosis 
or treatment can have different cost and dangers depending on which kind of mistake 
has been done. In fact, it is usually the case that misclassifications of minority classes 
into majority classes (e.g. predicting that a system is safe when it is not) have greater 
costs than misclassifications of majority classes into minority classes (e.g. predicting 
that a system is not safe when it actually is). Obviously, the costs of each misclassifi-
cation are problem dependent, but it is almost never the case that they would be uni-
form for a single problem. Consequently, accuracy is not generally the best way to 
evaluate the quality of a classifier or a learning algorithm. 

Cost-sensitive learning [14] is a more realistic generalisation of predictive learning, 
and cost-sensitive models allow for a better and wiser decision making. The quality of 
a model is measured in terms of cost minimisation rather than error minimisation. 
When cost matrices are provided a priori, i.e. before learning takes place, the matrices 
have to be fully exploited to obtain models that minimise cost. 

However, in many circumstances, costs are not known a priori or the models are 
just there to be evaluated or chosen. Receiver Operating Characteristic (ROC) analysis 
[5][9][13] has been proven to be very useful for evaluating given classifiers in these 
cases, when the cost matrix was not known at the moment the classifiers were con-



structed. ROC analysis provides tools to select a set of classifiers that will behave 
optimally and reject some other useless classifiers. In order to do this, the convex hull 
of all the classifiers is constructed, giving a “curve” (a convex polygon). 

In the simplest case, a single 2-class classifier forms a 4-segment ROC curve (a 
polygon in a strict sense) with the point given by the classifier, two trivial classifiers 
(the classifier that always predicts class 0 and the classifier that always predicts class 
1) and the origin, whose area can be computed. This area is called the Area Under the 
ROC Curve (AUC) and has become a better alternative than accuracy (or error), for 
evaluating classifiers. AUC is also used for probabilistic estimators, where these esti-
mations are used where ranking prediction is important [10]. 

ROC analysis and the AUC measure have been extensively used in the area of 
medical decision making [7][15], in the field of knowledge discovery, data mining, 
pattern recognition [1] and science in general [13]. However, the applicability of ROC 
analysis and the AUC has only been shown for problems with two classes. Although 
ROC analysis can be extended in theory for multi-dimensional problems [12], practi-
cal issues (computational complexity and representational comprehensibility, espe-
cially) preclude its use in practice. The major hindrance is the high dimensionality. A 
confusion matrix obtained from a problem of c classes has c2 positions, and (c·(c-1)) 
dimensions (d), i.e. all possible misclassification combinations are needed.  

Nonetheless, although difficult, it is possible to perform ROC analysis for more 
than two classes and to compute the AUC (more precisely, the Volume Under the 
ROC Surface, VUS). However, the trivial classifiers for more than two classes, the 
minimum and maximum volume have not been identified to date in the literature. 

In this paper, we present the trivial classifiers, the equations, the maximum and 
minimum VUS, for classifiers of more than 2 classes. We use this to compute the real 
VUS for any classifier by the use of a Hyperpolyhedron Search Algorithm (HSA) 
[11]. We then compare experimentally the real VUS with several other (and new) 
approximations, showing which approximation is best. 

2   ROC Analysis 
The Receiver Operating Characteristic (ROC) analysis [5][9][13] allows the evalua-
tion of classifier performance in a more independent and complete way than just using 
accuracy. ROC analysis has usually been presented for two classes, because it is easy 
to define, to interpret and it is computationally feasible. 

ROC analysis for two classes is based on plotting the true-positive rate (TPR) on 
the y-axis and the false-positive rate (FPR) on the x-axis, giving a point for each clas-
sifier. A “curve” is obtained because we can obtain infinitely many derived classifiers 
along the segment that connects two classifiers just by voting them with different 
weights. Hence, any point below that segment will have greater cost for any class 
distribution and cost matrix, because it has lower TPR and/or higher FPR. According 
to this, given several classifiers, one can discard the classifiers that fall under the con-
vex hull formed by the points representing the classifiers and the points (0,0) and 
(1,1), which represent the default classifiers always predicting negative and positive, 
respectively. A detailed description of ROC analysis can be found in [5][9]. 



The usual way to represent the ROC space is not, in our opinion, a very coherent 
way, since the true class is represented incrementally for correct predictions and the 
false class is represented incrementally for incorrect predictions. Moreover this choice 
is not easily extensible for more than two classes. Instead, we propose to represent the 
false-negative-rate (FNR) and the FPR. Now, the points (0,1) and (1,0) represent, 
respectively, the classifier that classifies anything as negative and the classifier that 
classifies anything as positive.  The curve is now computed with points (0,1), (1,0) 
and (1,1). 

Obviously, with this new diagram, instead of looking for the maximisation of the 
Area Under the ROC Curve (AUC) we have to look for its minimisation. A better 
option is to compute the Area Above the ROC Curve (AAC). In order to maintain 
accordance with classical terminology, we will refer to the AAC also as AUC.  

3  Multi-class ROC Analysis  
Srinivasan has shown in [12] that, theoretically, the ROC analysis extends to more 
than two classes “directly”. For c classes, and assuming a normalised cost matrix, we 
have to construct a vector of d = c(c-1) dimensions for each classifier. In general the 
cost of a classifier for c classes is: 
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where R is the confusion ratio matrix (each column normalised to sum 1), C is the cost 
matrix, and p(i) is the absolute frequency of class i. From the previous formula, two 
classifiers 1 and 2 will have the same cost when they are on the same iso-performance 
hyperplane. However, the d-1 values of the hyperplane are not so straightforward and 
easy to obtain and understand as the slope value of the bi-dimensional case. 

In the same way as the bi-dimensional case, the convex hull can be constructed, 
forming a polytope. To know whether a classifier can be rejected, it has to be seen 
whether the intersection of the current polytope with the polytope of the new classifier 
gives the new polytope, i.e., the new polytope is included in the first polytope [8].  

Provided this direct theoretical extension, there are some problems. 
− In two dimensions, doubling the probability of one class has a direct counterpart in 

costs. This is not so for d > 2, because there are many more degrees of freedom.  
− The best algorithm for the convex hull of N points is O(N log N + Nd/2) [8][3]. 
− In the 2-d case, it is relatively straightforward how to detect the trivial classifiers 

and the points for the minimum and maximum cases. 
However, not only there are computational limitations but also representational ones. 
ROC analysis in two dimensions has a very nice and understandable representation, 
but it cannot be directly extended to more than two classes, because even for 3 classes 
we have a 6D space, quite difficult to be represented. In what follows, we illustrate the 
extension for 3 classes, although the expressions can be generalised easily. 

3.1  Extending ROC Analysis for 3 classes 

In this part we consider the extension of ROC analysis for 3-class problems. In this 
context we consider the following cost ratio matrix for three-class classifiers: 



  Actual 
  a b c 

a ha x1 x2 
b x3 hb x4 Predicted 
c x5 x6 hc 

This gives a 6-dimensional point (x1, x2, x3, x4, x5, x6). The values ha, hb and hc are 
dependent and do not need to be represented, because: 

ha + x3 + x5 = 1,   hb + x1 + x6 = 1,   hc + x2 + x4 = 1 

3.1.1  Maximum VUS for 3 classes 
Let us begin by considering the maximum volume. The maximum volume should 
represent the volume containing all the possible classifiers. A point in the 1-long hy-
percube is a classifier if and only if: 

x3 + x5 ≤ 1,  x1 + x6 ≤ 1, x2 + x4 ≤ 1 
It is easy to obtain the volume of the space determined by these equations, just by 
using the probability that 6 random numbers under a uniform distribution U(0,1) 
would follow the previous conditions. More precisely: 

VUS3
max = P(U(0,1) + U(0,1) ≤ 1) · P(U(0,1) + U(0,1) ≤ 1) · P(U(0,1) + U(0,1) ≤ 1)  

= [P(U(0,1) + U(0,1) ≤ 1)]3. 
It is easy to see that the probability that the sum of two random numbers under the 
distribution U(0,1) is less than 1 is exactly ½ , i.e: 

P(U(0,1) + U(0,1) ≤ 1) = ½, consequently  VUS3
max = (½)3 = 1/8 

We have also considered the maximum VUS for c classes. It is easy to see that the 
volume of the space determined by valid equations for c classes is: 

VUSmax = ∏c [ P(∑c-1 U(0,1) ≤ 1) ] = [P(∑c-1 U(0,1) ≤ 1)] c . 
However, the probability that the sum of c−1 random numbers under the distribution 
U(0,1) is less than 1 is difficult to be obtained. In particular, the probability density 
function of the sum of n uniform variables on the interval [0,1] can be obtained using 
the characteristic function of the uniform distribution. 
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Using the cumulative distribution function Dn(x), we have that the probability that the 
sum of n random numbers with U(0,1) is less than 1 is: 
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For n=1 we have D1(1)= 1, for n=2 we have D2(1)= ½, for n=3, D3(1)= 1/6 and: 
( )c
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And hence we have, VUS2
max= 1, VUS3

max= 1/8 and VUS4
max= 1/1296. However, for 

n>3, Dn is complex. For such cases, we can approximate the sum of n random numbers 
under the distribution U(0,1) with a single variable (Y) under the normal distribution 
with µ=n/2 and σ= n/12 using the central limit theorem. Then: 
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Where Z is a standard normal distribution variable. Therefore, when c>3: 
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3.1.2  Minimum VUS for 3 classes 

Now let us try to derive the minimum VUS. Without any knowledge we can construct 
trivial classifiers by giving more or less probability to each class, as follows: 

  Actual 
  a B c 

a ha ha ha 
b hb hb hb Predicted 
c hc hc hc 

where ha + hb + hc = 1. These obviously include the three extreme trivial classifiers 
“everything is a”, “everything is b” and “everything is c”. Given a classifier: 

  Actual 
  A B c 

a vaa vba vca 
b vab vbb vcb Predicted 
c vac vbc vcc 

we can discard this classifier if and only if it is above a trivial classifier, formally: 

∃ha,hb,hc ∈R+ where (ha + hb + hc = 1) such that: 
vba ≥ ha, vca ≥ ha, vab ≥ hb, vcb ≥ hb, vac ≥ hc, vbc ≥ hc  

From here, we can derive the following theorem (see [4] for the proof): 
 

Theorem 1:Without any knowledge, a classifier (x1, x2, x3, x4, x5, x6) can be discarded 
iff:  r1 + r2 + r3 ≥ 1 where r1 = min(x1, x2), r2 = min(x3, x4) and r3 = min(x5, x6). 

 

Given the previous property, we only have to compute the space of classifiers that 
follow the condition that r1 + r2 + r3 ≥ 1 where r1 = min(x1, x2), r2 = min(x3, x4) and r3 
= min(x5, x6) to obtain the minimum volume corresponding to total absence of infor-
mation. More precisely, we have to compute the volume formed by this condition 
jointly with the valid classifier conditions, i.e.: 

x3 + x5 ≤ 1,  x1 + x6 ≤ 1,  x2 + x4 ≤ 1 and r1 + r2 + r3 ≥ 1  
where r1 = min(x1, x2), r2 = min(x3, x4)  and r3 = min(x5, x6) 

This volume is more difficult to be obtained by a probability estimation, due to the 
min function and especially because the first conditions and the last one are depend-
ent. Let us compute this volume using a Monte Carlo method. 



3.1.3  Monte Carlo Method for obtaining Max and Min VUS 
Monte Carlo methods are used to randomly generate a subset of cases from a problem 
space and estimate the probability that a random case follows a set of conditions. 
These methods are particularly interesting to approximate volumes, such as the vol-
ume under the ROC curve we are dealing with. 

For this purpose, we generate an increasing number of points in the 6D hypercube 
of length 1 (i.e., we generate six variables x1, x2, x3, x4, x5, x6 using a uniform distribu-
tion between 0 and 1) and then check whether or not they follow the previous maxi-
mum or minimum conditions. Since we are working with a 1-length hypercube, the 
proportion of cases following the conditions is exactly the volume we are looking for. 

In particular, we have obtained the following results: 
− Maximum: 0.12483 for 1,000,000 cases, matching our theoretical VUS3

max = 1/8. 
− Minimum: 0.00555523 for 1,000,000 cases, which is approximately 1/180. 
However, although we have obtained the exact maximum, we have not obtained the 
exact minimum (although 1/180 is conjectured).  In the next section we introduce a 
method to compute the real VUSmin, and, more importantly, to obtain the ROC poly-
topes that form these volumes. 

4  A Constraint Satisfaction Algorithm for the ROC Polytopes 
In the previous section we have developed the conditions for the maximum and mini-
mum VUS, given, respectively, when the best classifier is known (0, 0, 0, 0, 0, 0) and 
when no classifier is given (absence of information). However, we are interested in a 
way to obtain the border points of each space, i.e., the polytopes that represent both 
cases. What we need is a way to compute these polytopes given the set of conditions. 
A general system able to do this is HSA. 

4.1  Hyperpolyhedron Search Algorithm (HSA) 

In the constraint satisfaction literature, researchers have focussed on discrete and 
binary Constraint Satisfaction Problems (CSPs). However, many real problems (as the 
ROC surface problem) can be naturally modelled using non-binary constraints over 
continuous variables. Hyperpolyhedron Search Algorithm (HSA) [11] is a CSP solver 
that manages non-binary and continuous problems. HSA carries out the search through 
a hyperpolyhedron that maintains in its vertices those solutions that satisfy all non-
binary constraints. The handling of the non-binary constraints (linear inequations) can 
be seen as the handling of global hyperpolyhedron constraints. Initially, the hyper-
polyhedron is created by the Cartesian product of the variable domain bounds. For 
each constraint, HSA checks the consistency, updating the hyperpolyhedron through 
linear programming techniques. Each constraint is a hyperplane that is intersected to 
obtain the new hyperpolyhedron vertices. The resulting hyperpolyhedron is a convex 
set of solutions to the CSP. A solution is an assignment of a value from its domain to 
every variable where all constraints are satisfied. HSA can determine: whether a solu-
tion exists (consistency), several solutions or the extreme solutions. 

In the ROC surface problem, we will use HSA to determine the extreme solutions 
in order to calculate the convex hull of the resulting hyperpolyhedron. HSA does not 



compute the volume of the hyperpolyhedron. For this purpose, we are using QHull 
[2]. QHull is, among other things, an algorithm that implements a quick method for 
computing the convex hull of a set of points and the volume of the hull. 

4.2  Maximum VUS points for 3 classes 

Let us recover the equations for the maximum volume (valid classifier conditions): 
x3 + x5 ≤ 1, x1 + x6 ≤ 1, x2 + x4 ≤ 1 

We introduce these equations to HSA and look for solutions for these six variables. 
We obtain 41 points (which can be simplified into just 27 points, see [4]) whose vol-
ume is, as expected, 0.125 (1/8). 

4.3  Minimum VUS for 3 classes 

From Theorem 1, in order to compute the minimum VUS, we only have to compute 
the space of classifiers following that r1 + r2 + r3 ≥ 1 where r1 = min(x1, x2), r2 = 
min(x3, x4) and r3 = min(x5, x6) to obtain the minimum volume corresponding to total 
absence of information. Using this condition and the hyper-cube conditions, we have: 

    x3 + x5 ≤ 1,  x1 + x6 ≤ 1, x2 + x4 ≤ 1,  r1 + r2 + r3 ≥ 1 
where r1 = min(x1, x2), r2 = min(x3, x4) and r3 = min(x5, x6). Since the min function is 
not handled by HSA, we convert the last condition into eight equivalent inequations: 

x1 + x3 + x5 ≥ 1, x1 + x3 + x6 ≥ 1, x1 + x4 + x5 ≥ 1, x1 + x4 + x6 ≥ 1,  
x2 + x3 + x5 ≥ 1, x2 + x3 + x6 ≥ 1, x2 + x4 + x5 ≥ 1, x2 + x4 + x6 ≥ 1 

and now we obtain a set of 25 points whose volume is 0.0055, which is approximately 
1/180 and matches the volume obtained by the Monte Carlo method.  

Some of these points are exactly on the surface of the volume and can be removed 
without modifying the volume in a simplified set of 9 points (see [4]). 

4.4  Computing the VUS of Any Classifier 

Now it seems that we can obtain the VUS of any classifier just be adding the coordi-
nates of the point it represents and adding them as a new point to the minimum and 
then computing the convex hull. However, this would be a hasty step. The surprise 
would come up if we take the minimum (9 points, 1/180) and add the origin (the best 
classifier with no error at all). In this case, we obtain 10 points and 1/120 volume, 
which is a greater volume but it is not the maximum. This seems contradictory, be-
cause if we have the best classifier, we should obtain the maximum volume. The rea-
son is the following. When we have the perfect classifier, represented by the point (0, 
0, 0, 0, 0, 0), any classifier that has a value equal or greater than 0 in any coordinate is 
discardable and, logically, this should give 1/8, not 1/120. The issue is that whenever 
we add a new classifier we have to consider the conditions it produces, which are 
polytopes, not just points. 

In other words, the perfect classifier generates the following discard equations: 
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥ 0  

These inequations are null, because all the values should be positive, and, hence, we 
only have the valid classifier conditions, and then we have the maximum volume 1/8. 



Now let us consider the same thing for any arbitrary classifier C1: 
  Actual 

  a b c 
a zaa zba zca 
b zab zbb zcb Predicted 
c zac zbc zcc 

What can be discarded? The answer is that any classifier such that is worse than the 
classifier C1 (combined with the trivial classifiers), i.e., any classifier that would have 
greater values for the 6 dimensions. Consequently, given a new classifier C2: 

  Actual 
  a b c 

a vaa vba vca 
b vab vbb vcb Predicted 
c vac vbc vcc 

We have to look at all the classifiers constructed as a linear combination of the three 
trivial classifiers and the classifier C1, and see whether C2 is worse than any of the 
constructed classifiers. Formally, the linear combination is defined as: 
ha · (1, 1, 0, 0, 0, 0) + hb · (0, 0, 1, 1, 0, 0) + hc · (0, 0, 0, 0, 1, 1) + hd · (zba, zca, zab, zcb, zac, zbc) 
And we can discard C2 when 

∃ha,hb,hc,hd ∈R+ where (ha + hb + hc + hd = 1) such that: 
vba ≥ ha + 0 + 0 + hd · zba, vca ≥ ha + 0 + 0 + hd · zca, vab ≥ 0 + hb + 0 + hd · zab, 
vcb ≥ 0 + hb + 0 + hd · zcb, vac ≥ 0 + 0 + hc + hd · zac, vbc ≥ 0 + 0 + hc  + hd · zbc 

This gives a system of inequations with 10 variables (zij are constants given by C1), 
that can be input to HSA, and then we obtain the edge six dimensions points from vij. 

4.5  Real VUS for More than One Classifier 
In the same way as before, given a set of classifiers, we can compute the true VUS of 
the set, just generalising the previous formula. Let us illustrate it for 4 classifiers Z, W, 
Y and X. In fact, what we have to do is to consider the linear combination of the three 
trivial classifiers with the four given classifiers, i.e.: 

ha · (1, 1, 0, 0, 0, 0) + hb · (0, 0, 1, 1, 0, 0) + hc · (0, 0, 0, 0, 1, 1)+ h1 · (zba, zca, zab, zcb, zac, zbc) 
+ h2 · (wba, wca, wab, wcb, wac, wbc)+ h3 · (xba, xca, xab, xcb, xac, xbc)+ h4 · (yba, yca, yab, ycb, yac, ybc) 

And now we can discard when: 
∃ha,hb,hc,hd ∈R+ where (ha + hb + hc + h1 + h2 + h3 + h4 = 1) such that: 

vba ≥ ha + 0 + 0 + h1 · zba + h2 · wba + h3 · xba  + h4 · yba,  
vca ≥ ha + 0 + 0 + h1 · zca + h2 · wca+ h3 · xca + h4 · yca, 
vab ≥ 0 + hb + 0 + h1 · zab + h2 · wab+ h3 · xab + h4 · yab, 
 vcb ≥ 0 + hb + 0 + h1 · zcb + h2 · wcb+ h3 · xcb + h4 · ycb,  
vac ≥ 0 + 0 + hc + h1 · zac + h2 · wac+ h3 · xac + h4 · yac, 
vbc ≥ 0 + 0 + hc  + h1 · zbc + h2 · wbc+ h3 · xbc + h4 · ybc 

This gives a system with 9+4 variables that can be solved by HSA, from which we 
again retain just 6 (vij) variables to obtain the polytope. 



5  Evaluation of Multi-class Approximations to the VUS 
In the previous section we have developed a method (conditions + HSA) to obtain the 
real VUS of any classifier for an arbitrary number of classes (the extension for more 
than 3 classes is trivial). However, this exact computation, although quite efficient for 
3 and 4 classes, must be impractical for a higher number of classes or classifiers. 

In the literature, there have been several approximations for the extension of the 
AUC measure for multi-class problems, either based on the interpretation of the AUC 
as distribution separability [6] or the meaning of the equivalent (for two classes) Wil-
coxon statistic or GINI coefficient. However, there is no appraisal or estimation, either 
theoretical or practical, of how good they are. 

In this section we gather and remind the approximations for the AUC for more than 
two classes known to date: macro-average, 1-point trivial AUC extension and some 
Hand & Till [6] variants. We are going to make a comparison with the real measure 
we have presented in this work: the exact VUS (through the HSA method). 

We will give the definitions for three classes, although this can be easily extended 
to more classes. For the following definitions consider a classifier C2 as before. 

5.1  Macro-average 

The macro-average is just defined as the average of the class accuracies, i.e.: 
MAVG3= (vaa + vbb + vcc) / 3 

This measure has been used as a very simple way to handle more appropriately unbal-
anced datasets (without using ROC analysis). 

5.2  Macro-average Modified 

We modify the original definition of macro-average because this does not consider the 
standard deviation between the points. For instance, using two classes, the point (0.2, 
0.2) has greater AUC than the point (0.1, 0.3) although both points have identical 
macro-average. Thereby, we will employ the generalised mean instead of average: 
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The best value for t between the arithmetic mean (t=1) and the geometric mean (t→0) 
has been estimated experimentally. The value t=0.76 obtains the best performance. 

5.4  1-point Trivial AUC Extension 

Going back to two classes, the area for one point (vba, vab) (in our representation) is: 
AUC2 = max(1/2, 1 – vba /2 – vab /2) 

Extending trivially the previous formula, we have this extension for 1-point: 
AUC-1PT3 = max(1/3, 1 – (vba + vca + vab + vcb  + vac + vbc) /3 

This extension turns to be equal to the macro-average since the columns of the matrix 
sum to 1. The only difference is that the 1PT3 measure is never lower than 1/3. 



5.5  1-point Hand and Till Extension 

Hand and Till have presented a generalisation of the AUC measure [6] for soft classi-
fiers, i.e., classifiers that assign a different score, reliability or probability with each 
prediction. Although we will deal with soft classifiers later, let us adapt Hand and 
Till’s formulation for crisp classifiers, i.e., classifiers that predict one of the possible 
classes, without giving any additional information about the reliability or probability 
of the predicted class, or the other classes. 

Hand and Till’s extension for more than two classes is based on the idea that if we 
can compute the AUC for two classes i,j (let us denote this by A(i,j)), then we can 
compute an extension of AUC for any arbitrary number of classes by choosing all the 
possible pairs (1 vs. 1). Since A(i,j) = A(j,i), this can be simplified as shown in the 
following Hand and Till’s M function: 
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Pursuing this idea we are going to introduce three variants. The first variant is given if 
we consider the macro-average extension. Then we have: 

HT1a = (max(1/2, (vaa + vbb)/2) + max (1/2, (vaa + vcc)/2) + max(1/2, (vbb + vcc)/2) ) / 3 
This is equal to the 1PT. But if we take failures into account instead of hits, we have: 
     HT1b= (max(1/2 ,  1–(vba+vab)/2) + max(1/2,  1–(vca+vac) /2) + max(1/2,  1–(vcb +vbc) /2)) / 3 

This measure is slightly different from the previous ones and we will use this one. 
Another different way is normalisation, e.g., if we normalise only for classes a and b: 

  Actual 
  a b 

a vaa / (vaa + vab) x= vba / (vba + vbb) Predicted b y= vab / (vaa + vab) vbb / (vba + vbb) 
We have max(1/2, (x+y)/2) and the same for the rest of combinations. Namely: 

HT2= (max(1/2 ,  1 – (vba / (vba + vbb) + vab / (vaa + vab))/2)  + max(1/2,  1 – (vca / (vca + vcc) 
+ vac / (vaa + vac)) /2) + max(1/2,  1 – (vcb / (vcb + vcc) + vbc / (vbb + vbc)) /2))  / 3 

Finally, we can define a third variant that instead of computing partial AUCs of pairs 
of classes, computes the AUC of each class against the rest (1 vs. rest) and then aver-
age the results. For instance, the AUC of class a and the rest (b and c joined) will be 
obtained from a condensed 2x2 matrix: 
  Actual 

  a rest 
a vaa / (vaa + vab+ vac) (vba + vca) / (vba + vca +  vbb + vbc + vcb + vcc) Predicted rest (vab+ vac) / (vaa + vab+ vac) (vbb + vbc + vcb + vcc) / (vba + vca + vbb + vbc + vcb + vcc) 

Using cells (a,rest) and (rest,a) we have: 
AUCa,rest = max(1/2, 1 - [(vab+ vac) / (vaa + vab+ vac)]/2 - [ (vba + vca) / (vba + vca +  vbb + vbc + vcb + vcc)]/2 

In the same way we can obtain AUCa,rest  and AUCa,rest. This allows us to define HT3: 
HT3= (AUCa,rest + AUCa,rest  + AUCa,rest )/ 3 

5.6 Experimental Evaluation 

Once the previous approximations are presented, we are ready to evaluate them in 
comparison to the exact computation given by the HSA method. 



We are interested in how well the approximations “rank” the classifiers. To evalu-
ate which approximation is best, we generate a set of 100 random classifiers (more 
precisely, we randomly generate 100 normalised confusion matrices). 

Then, we compute the value of each classifier for each approximation a (exact 
VUS, accuracy, macro-avg, mod-avb, 1-p trivial, HT1B, HT2, HT3). Next, we make a 
one-to-one comparison (a ranking) for each approximation a and fill a matrix Ma, 
which tells whether i is ranked above j. Done all this (for a detailed description of the 
methodology of this process, see [4]), we are ready to compare approximations. 

For instance, given the matrices M1 and M2 of two different methods, we compare 
the discrepancy of the matrices in the following way: 
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With this formula we can evaluate the discrepancy of the methods for 3 class problems 
with respect the real VUS computed with the HAS method. The results are: 

Accuracy Macro-avg Mod-avg (0.76) 1-p trivial HT1B HT2 HT3 
0.08707 0,087071 0.0587879 0.09131 0.10404 0.14081 0.09677 

According to these results, the best approximation is the modified macro-average 
(generalised mean). Note that this is the only one that is better than accuracy. Note 
also that for 2 classes, AUC = geomean(TPR, TNR), while for 3 classes, the best 
result is obtained somehow in the middle between the arithmetic mean and the geo-
metric mean. This modified mean obtains the lower discrepancy among the studied 
approximations and hence could be used as an alternative to accuracy and macro-avg. 

6  Conclusions 
In this paper we have addressed the extension of ROC analysis for multi-class prob-
lems. We have identified the trivial classifiers and then derived the discard conditions, 
identified the maximum and minimum VUS and their polytopes, as well as the VUS 
for any arbitrary set of crisp classifiers. This is computed through the HSA algorithm. 
We have then compared experimentally the real VUS with several other approxima-
tions for crisp classifiers, showing which approximation is best. The best approxima-
tion seems to be a modification of the macro-average for one classifier.  

For soft classifiers (i.e., classifiers that accompany each prediction with the reliabil-
ity or, even better, with the estimated probabilities of each class), we have performed 
some preliminary experiments (see [4]) which show that the best approximation for 
soft classifiers is HT3. It is precisely for soft classifiers where the results can be more 
directly applicable to real-world problems. 

For the moment, the results of this work dissuade the use of Hand and Till’s and re-
lated measures as an extension of AUC for more than two classes for one crisp classi-
fier. We propose an alternative approximation (mod-average). Nonetheless, for the 
case of soft classifiers the preliminary results in [4] are good for Hand and Till’s ex-
tension (1 vs. 1, i.e. HT2) but especially for Fawcett’s extension (1 vs. rest, i.e. HT3) 
already used in [9][10] for sets of classifiers or soft classifiers. Pursuing the work 
initiated here will bring a more justified use of AUC extensions as evaluation measure 



for classifiers. As future work, we would like to work further on soft classifiers, deriv-
ing accurate approximations of the real VUS in a reasonable time. 
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