DFS-Tree Based Heuristic Search*

Montserrat Abril, Miguel A. Salido, Federico Barber

Dpt. of Information Systems and Computation, Technical University of Valencia
Camino de Vera s/n, 46022, Valencia, Spain
{mabril, msalido, fbarber}@dsic.upv.es

Abstract. In constraint satisfaction, local search is an incomplete me-
thod for finding a solution to a problem. Solving a general constraint
satisfaction problem (CSP) is known to be NP-complete; so that heuris-
tic techniques are usually used. The main contribution of this work is
twofold: (i) a technique for de-composing a CSP into a DFS-tree CSP
structure; (ii) an heuristic search technique for solving DFS-tree CSP
structures. This heuristic search technique has been empirically evalu-
ated with random CSPs. The evaluation results show that the behavior
of our heuristic outperforms than the behavior of a centralized algorithm.

keywords: Constraint Satisfaction Problems, CSP Decomposition, heuristic
search, DFS-tree.

1 Introduction

One of the research areas in computer science that has gained increasing inter-
est during last years is constraint satisfaction, mainly because many problems
like planning, reasoning, diagnosis, decision support, scheduling, etc., can be for-
mulated as constraint satisfaction problems (CSPs) and can be solved by using
constraint programming techniques in an efficient way.

Many techniques to solve CSPs have been developed; some originate from
solving other types of problems and some are specifically for solving CSPs. Ba-
sic CSP solving techniques include: search algorithms, problem reduction, and
heuristic strategies.

The more basic sound and complete search technique is Chronological Back-
tracking. It systematically traverses the entire search space in a depth-first man-
ner. It instantiates one variable at a time until it either finds a solution or proves
no solutions exist. However, it can be inefficient because of thrashing. To improve
efficiency during search, some basic stochastic algorithms have been developed.
Random guessing algorithm is the most naive stochastic search. Like blindly

* This work has been partially supported by the research projects TIN2004-06354-
C02- 01 (Min. de Educacion y Ciencia, Spain-FEDER), FOM- 70022/T05 (Min. de
Fomento, Spain), GV/2007/274 (Generalidad Valenciana) and by the Future and
Emerging Technologies Unit of EC (IST priority - 6th FP), under contract no. FP6-
021235-2 (project ARRIVAL).

throwing darts, it repeatedly 'guesses’ a complete assignment and checks if the
assignment satisfies the constraints until it finds a solution or reaches timeout
(or some maximum number of iterations). Since the algorithm assigns variables
in a non-systematic way, it neither avoids checking for the same assignment re-
peatedly, nor guarantees to verify all possible assignments. Because it does not
guarantee to check all possible assignments, the algorithm is incomplete and so
it cannot guarantee a solution or prove no solution exists.

However, searching for solutions can be very time consuming, especially if the
search space is large and the solutions are distributed in a haphazard way. To
improve the efficiency, one can sometimes trim the size of the search space and
simplify the original problem. Problem reduction [11] is such a method that can
be used at the beginning of a search or during search. Once a problem becomes
smaller and simpler, search algorithms can go through the space faster. In some
cases, problem reduction can solve CSPs without searching [11].

Because neither basic search nor consistency checks alone can always solve
CSPs in a timely manner, adding heuristics and using hybrid algorithms are
often used to improve efficiency. For instance, a common strategy is to vary
the order in which variables, domain values and constraint are searched. Some
algorithms incorporate features such as ordering heuristics, (variable ordering
and value ordering [7], and constraint ordering [12], [8]). Furthermore, some
stochastic local search techniques have also been developed for solving CSPs
(tabu search, iterated local search, ant colony, etc. [10],]9]).

Furthermore, many researchers are working on graph partitioning [4], [6]. The
main objective of graph partitioning is to divide the graph into a set of regions
such that each region has roughly the same number of nodes and the sum of
all edges connecting different regions is minimized. Achieving this objective is a
hard problem, although many heuristic may solve this problem efficiently. For
instance, graphs with over 14000 nodes and 410000 edges can be partitioned in
under 2 seconds [5]. Therefore, we can apply graph partitioning techniques to
decompose a binary CSP into semi-independent sub-CSPs.

In this paper, we present a method for structuring and solving binary CSPs.
To this end, first, the binary CSP is decomposed into a DFS-tree CSP structure,
where each node represents a subproblem. Then, we introduce a heuristic search
algorithm which carries out the search in each node according to the partial
solution of parent node and the pruning information of children nodes.

In the following section, we present some definitions about CSPs and clas-
sify them in three categories. A method of decomposition into a DFS-tree CSP
structure is presented in section 3. A heuristic search technique for solving the
DFS-tree CSP structure is presented in section 4. An evaluation of our heuristic
search technique is carried out in section 5. Finally, we summarize the conclu-
sions in section 6.

2 Centralized, Distributed and Decomposed CSPs

In this section, we present some basic definitions related to CSPs.

A CSP consists of: a set of variables X = {x1, ..., 2, }; each variable z; € X
has a set D; of possible values (its domain); a finite collection of constraints
C ={c, ..., cp} restricting the values that the variables can simultaneously take.

A solution to a CSP is an assignment of values to all the variables so that
all constraints are satisfied; a problem with a solution is termed satisfiable or
consistent.

A binary constraint network is one in which every constraint subset in-
volves at most two variables. In this case the network can be associated with a
constraint graph, where each node represents a variable, and the arcs connect
nodes whose variables are explicitly constrained [1].

A DFS-tree CSP structure is a tree whose nodes are composed by sub-
problems, where each subproblem is a CSP (sub-CSPs). Each node of the DFS-
tree CSP structure is a DFS-node and each individual and atomic node of
each sub-CSP is a single-node; each single-node represents a variable, and each
DFS-node is made up of one or several single-nodes. Each constraint between two
single-nodes of different DFS-nodes is called inter-constraint. Each constraint
between two single-nodes of the same DFS-node is called intra-constraint.

Partition : A partition of a set C' is a set of disjoint subsets of C' whose
union is C. The subsets are called the blocks of the partition.

Distributed CSP: A distributed CSP (DCSP) is a CSP in which the vari-
ables and constraints are distributed among automated agents [13].

Each agent has a set of variables; it knows the domains of its variables and a
set of intra-constraints, ant it attempts to determine the values of its variables.
However, there are inter-constraints and the value assignment must also satisfy
these inter-constraints.

2.1 Decomposition of CSPs

There exist many ways for solving a CSP. However, we can classified these prob-
lems into three categories: Centralized problems, Distributed problems and De-
composable problems.

— A CSP is a centralized CSP when there is no privacy/security rules between
parts of the problem and all knowledge about the problem can be gathered
into one process. It is commonly recognized that centralized CSPs must be
solved by centralized CSP solvers. Many problems are represented as typical
examples to be modelled as a centralized CSP and solved using constraint
programming techniques. Some examples are: sudoku, n-queens, map color-
ing, etc.

— A CSP is a distributed CSP when the variables, domains and constraints
of the underlying network are inherently distributed among agents. This
distribution is due entities are identified into the problem (which group a
set of variables and constraints among them), constraints may be strategic
information that should not be revealed to competitors, or even to a central
authority; a failure of one agent can be less critical and other agents might
be able to find a solution without the failed agent. Examples of such systems
are sensor networks, meeting scheduling, web-based applications, etc.

— A CSP is a decomposable CSP when the problem can be divided into smaller
problems (subproblems) and a coordinating (master-) entity. For example,
the search space of a CSP can be decomposed into several regions and a
solution could be found by using parallel computing.

Note that centralized and distributed problems are inherent features of prob-
lems. Therefore, a distributed CSP can not be solved by a centralized technique.
However, can be solved an inherently centralized CSP by a distributed tech-
nique? The answer is 'yes’ if we previously decompose the CSP.

Usually, real problems imply models with a great number of variables and
constraints, causing dense network of inter-relations. This kind of problems can
be handled as a whole only at overwhelming computational cost. Thus, it could
be an advantage to decompose this kind of problems to several simpler intercon-
nected sub-problems which can be more easily solved.

In the following example we show that a centralized CSP could be decom-
posed into several subproblems in order to obtain simpler sub-CSPs. In this way,
we can apply a distributed technique to solve the decomposed CSP.

The map coloring problem is a typically centralized problem. The goal of
a map coloring problem is to color a map so that regions sharing a common
border have different colors. Let’s suppose that we must to color each country
of Europe. In Figure 1 (1) shows a colored portion of Europe. This problem can
be solved by a centralized CSP solver. However, if the problem is to color each
region of each country (Spain, Figure 1(3); France, Figure 1(4)) of Europe, it is
easy to think that the problem can be decomposed into a set of subproblems,
grouped by clusters). This problem can be solved as a distributed problem, even
when the problem is not inherently distributed.

A map coloring problem can be solved by first converting the map into a
graph where each region is a vertex, and an edge connects two vertices if and
only if the corresponding regions share a border. In our problem of coloring the
regions of each country of Europe, it can be observed that the corresponding
graph maintains clusters (Spain, Figure 1(3); France, Figure 1(4)) representing
each country. Thus, the problems can be solved in a distributed way.

Following, we present a technique for i) decomposing a binary CSP into
several sub-CSPs and ii) structuring the obtained sub-CSPs into a DFS-tree
CSP structure. Then, in section 4, we propose a heuristic search technique for
solving DFS-tree CSP structures.

3 How to Decompose a binary CSP into a DFS-Tree CSP
structure

Given any binary CSP, it can be translated into a DFS-tree CSP structure. How-
ever, there exist many ways to decompose a graph into a DFS-tree. Depending
on the user requirements, it may be desirable to obtain balanced DFS-nodes,
that is, each DFS-node maintains roughly the same number of single-nodes; or
it may be desirable to obtains DFS-nodes in such a way that the number of
edges connecting two single-trees is minimized.

(1)

Portugal

Fig. 1. Map coloring of Europe.

We present a proposal which is focused on decomposing the problem by
using graph partitioning techniques. Specifically, the problem decomposition is
carried out by means of a graph partitioning software called METIS [5]. METIS
provides two programs pmetis and kmetis for partitioning an unstructured graph
into k roughly equal partitions, such that the number of edges connecting nodes
in different partitions is minimized. We use METIS to decompose a CSP into
several sub-CSPs so that inter-constraints among variables of each sub-CSP are
minimized. Each DFS-node will be composed by a sub-CSP.

The next step is to build the DFS-tree CSP structure with & DFS-nodes in
order to be studied by agents. This DFS-tree CSP structure is used as a hierar-
chy to communicate messages between DF'S-nodes. The DFS-tree CSP structure
is built using Algorithm 1. The nodes and edges of graph G are respectively the
DFS-nodes and inter-constraints obtained after the CSP decomposition. The
root DFS-node is obtained by selecting the most constrained DFS-node. DF-
SStructure algorithm then simply put DFS-node v into DFS-tree CSP structure
(process(v)), initializes a set of markers so we can tell which vertices are visited,

chooses a new DFS-node i, and calls recursively DFSStructure(4). If a DFS-node
has several adjacent DFS-nodes, it would be equally correct to choose them in
any order, but it is very important to delay the test for whether a DFS-nodes is
visited until the recursive calls for previous DFS-nodes are finished.

Algorithm DFSStructure(G,v)

Input: Graph G, originally all nodes are unvisited. Start DFS-node v of G
Output: DFS-Tree CSP structure

process(v);
mark v as visisted;
forall DFS-node i adjacent® to v not visited do

DFSStructure(i);

end

/* (1) DFS-node i is adjacent to DFS-node v if at least one
inter—-constraint exists between ¢ and v. x/

Algorithm 1: DFSStructure Algorithm.

3.1 Example of DFS-Tree CSP structure

Figure 2 shows two different representation of an example of CSP generated by
a random generator module generater(C,n, k,p,q)', where C is the constraint
network; n is the number of variables in network; k is the number of values in
each of the domains; p is the probability of a non-trivial edge; ¢ is the probability
of an allowable pair in a constraint. This figure represents the constraint network
< C,20,50,0.1,0.1 >. This problem is very hard to solved with well-known CSP
solver methods: Forward-Checking (FC) and Backjumping (BJ). We can see
that this problem can be divided into several cluster (see Figure 3) and it can be
converted into a DFS-tree CSP structure (see Figure 3). By using our DFS-tree
heuristic, it is solved in less than one seconds, and by using FC, this problem
has not been solved in several minutes.

In Figure 4 we can see a specific sequence of nodes (a numeric order). Fol-
lowing this sequence, FC algorithm has a great drawback due to the variables
without in-links (link with a previous variable): 1, 2, 3, 6, 7, 8, 9, 10, 11 and
16 (see Figure 4). Theses variables have not bounded domains, thus provoking
the exploration of all their domains when the algorithm backtracks. This kind of
variables is an extreme case of variables with their domain weakly bounded. An
example of this situation can be seen in Figure 4, where the variable 12 has its
domain bounded by the variable 6. When the bounded domain of the variable 12
has not a valid assignment, FC algorithm backtracks to change the values of the
bounded domain, but it will need examine completely the domain of variables
11, 10, 9, 8 and 7 before it changes the assignment of variable 6. In this example,
with domain size = 50, it involves 50° assignments in vain.

L A library of routines for experimenting with different techniques for solving binary
CSPs is available at http://ai.uwaterloo.ca/~vanbeek/software/software.html

Fig. 3. Left: Decomposed Problem. Right: DFS-Tree CSP structure.

4 DFS-Tree Based Heuristic Search (DTH)

In section 3 we have presented a method for structuring a binary CSP into
a DFS-Tree CSP structure. In this section we propose a new heuristic search
technique for solving DFS-Tree CSP structures.

Our Heuristic called DFS-Tree Based Heuristic Search (DTH) can be consid-
ered as a distributed and asynchronous technique. In the specialized literature,
there are many works about distributed CSPs. In [13], Yokoo et al. present a

Fig. 4. Sequence of nodes for Forward-Checking Algorithm.

formalization and algorithms for solving distributed CSPs. These algorithms can
be classified as either centralized methods, synchronous or asynchronous back-
tracking [13].

DTH is committed to solve the DFS-tree CSP structure in a Depth-First
Search Tree (DFS Tree) where the root DFS-node is composed by the most
constrained sub-CSP, in the sense that this sub-CSP maintains a higher number
of single-nodes. DFS trees have already been investigated as a means to boost
search [2]. Due to the relative independence of nodes lying in different branches
of the DFS tree, it is possible to perform search in parallel on these independent
branches.

Once the variables are divided and arranged, the problem can be considered
as a distributed CSP, where a group of agents manages each sub-CSP with its
variables (single-nodes) and its constraints (edges). Each agent is in charge of
solving its own sub-CSP by means of a search. Each subproblem is composed by
its CSP subject to the variable assignment generated by the ancestor agents in
the DFS-tree CSP structure.

Thus, the root agent works on its subproblem (root meta-node). If the root
agent finds a solution then it sends the consistent partial state to its children
agents in the DFS-tree, and all children work concurrently to solve their specific
subproblems knowing consistent partial states assigned by the root agent. When
a child agent finds a consistent partial state it sends again this partial state
to its children and so on. Finally, leaf agents try to find a solution to its own
subproblems. If each leaf agent finds a consistent partial state, it sends an OK
message to its parent agent. When all leaf agents answer with OK messages to

METIS-
Decomposition, G

—F o S(1): Blookl] ,,,\/{
! o(2):block2 Constraint (==
D | ¢(3):block3 Partition @&a / ?9"
o(4)blockd PN g 3
M’ DFS-Tree CSP
o a3 structure

Time steps
Agents

@ e o 0

Sn S12

[2)
~
[N
Z

Y

S11+S21 S12t822 S12+823

Sto

[Solutidn],

z

FT—""1>

N

[Proplem Soliftion |
L]
L]
L]

22%83... [B12+823%831

Nogpdd]

Soluti

]

|s11+521+53... I S12

Solutidn]|

Noghdd],

S12+ S84

J L J L JV L
H Problem Solutions H

3] 3s[5o

Fig. 5. Decomposing Technique and DFS-Tree Based Heuristic Search.

their parents, a solution to the entire problem is found. When a child agent does
not find a solution, it sends a Nogood message to the parent agent. The Nogood
message contains the variables which empty the variable domains of the child
agent. When the parent agent receives a Nogood message, it stops the search of
the children and it tries to find a new solution taking into account the Nogood
information and so on. Depending on the management of this information, the
search space is differently pruned. If a parent agent finds a new solution, it will
start the same process again sending this new solution to its children. Each agent
works in the same way with its children in the DFS-tree. However, if the root
agent does not find solution, then DTH returns no solution found.

The heuristic technique is based on Nogood information, which allows us to
prune search space. First, DTH uses Nogood information to prune the search
space jumping to the variable involved in the Nogood within the lowest level in
the search sequence. Furthermore, DTH does not backtracks in the inverse order
of the search, but it jumps directly to other variable involved in the Nogood.
Therefore, the search space is pruned in this level of the search sequence and
solutions can be deleted. This heuristic technique is not complete. Its level of
completeness depend on how Nogood information is used.

Figure 5 shows our technique for de-composing a CSP into a DFS-tree CSP
structure. Then, DTH is carried out. The root agent (ay) starts the search
process finding a partial solution. Then, it sends this partial solution to its

children. The agents, which are brothers, are committed to concurrently finding
the partial solutions of their subproblem. Each agent sends the partial problem
solutions to its children agents. A problem solution is found when all leaf agents
find their partial solution. For example, (state s12+ s41) + (state s12+ Sa3+ 831)
is a problem solution. The concurrence can be seen in Figure 5 in Time step 4
in which agents as and a4 are concurrently working. Agent a4 sends a Nogood
message to its parent (agent a;) in step 9 because it does not find a partial
solution. Then, agent a; stops the search process of all its children, and it finds
a new partial solution which is again sent to its children. Now, agent a4 finds
its partial solution, and agent as works with its child, agent as, to find their
partial problem solution. When agent ag finds its partial solution, a solution of
the global problem will be found. It happens in Time step 25.

Let’s see an example to analyze the behavior of DTH (Figure 6). First the
constraint network of Figure 6(1) is partitioned in 3 sub-CSPs and the DFS tree
CSP structure is built (Figure 6(2)). Agent o finds its first partial solution (X; =
1,Xo = 1) and sends it to its children: agent b and agent ¢ (see Figure 6(3)).
This is a good partial solution for agent ¢ (Figure 6(4)), but this partial solution
empties the X3 variable domain, thus agent b sends a Nogood message to its
father (Nogood (X; = 1)) (Figure 6(5)). Then, agent a processes the Nogood
message, prunes its search space, finds a new partial solution (X; = 2, X5 = 2)
and sends it to its children (Figure 6(6)). At this point in the process, agent ¢
sends a Nogood message to its father (Nogood (X7 = 2)) because X5 variable
domain is empty (Figure 6(7)). Agent a stops the search of agent b (Figure 6(8))
and then it processes the Nogood message, prunes its search space, finds a new
partial solution (X; = 3, X2 = 3) and sends it to its children (Figure 6(9)). This
last partial solution is good for both children, thus they respond with a OK
message and the search finishes (Figure 6(10)).

4.1 DTH: soundness

If no solution is found, this algorithm terminates. For instance, in Figure 6(10),
if agent b and agent ¢ send Nogood messages, then the root agent empties its
domain and terminates with "no solution found”.

For the agents to reach a consistent state, all their assigned variable values
must satisfy all constraints (inter-constraints and intra-constraints). Thus, the
soundness of DTH is clear.

What remains is that we need to show that DTH must reach one of these
conclusions in finite time. The only way that DTH might not reach a conclusion
is at least one agent is cycling among its possible values in an infinite processing
loop. Given DTH, we can prove by induction that this cannot happen as follows.

In the base case, assume that root agent is in an infinite loop. Because it is
the root agent, it only receives Nogood messages. When it proposes a possible
partial state, it either receives a Nogood message back, or else gets no message
back. If it receives Nogood messages for all possible values of its variables, then
it will generate an empty domain (any choice leads to a constraint violation)
and DTH will terminate. If it does not receive a Nogood message for a proposed

2),
3),
2,
{23
\3,3))

ESOI(X1=1 X2=1)

@ \ (gg),
Sol(X1=2, xz:z)i \ 3

! Sol(X1=2, X2=2)

Sol(X1=3,X2=3,
X3=1,X4=3,X5=3)

ol(X1=3, X2=3)

Fig. 6. Example of DTH.

partial state, then it will not change that partial state. Either way, it cannot be
in an infinite loop. Now, assume that from root agent to agent in level k — 1
in the tree (k > 2) maintain a consistent partial state, and agent in level k
is in an infinite processing loop. In this case, the only messages that agent in
level k receives are Nogood messages from its children. Agent in level k will
change instantiation of its variables with different values. Because its variable’s
domain is finite, this agent in level k will exhaust the possible values in a finite
number of steps and sends a Nogood message to its parent (which contradicts
the assumption that agent in level k is in a infinite loop). Thus, by contradiction,
agent in level k cannot be in an infinite processing loop.

5 Evaluation

In this section, we carry out an evaluation between DTH and a complete CSP
solver. To this end, we have used a well-known centralized CSP solver called
Forward Checking (FC)2.

Experiments were conducted on random distributed networks of binary con-
straints defined by the 8-tuple < a,n, k, t,pl, p2,ql, g2 >, where a was the num-
ber of sub-CSPs, n was the number of variables on each sub-CSP, k the values
in each domain, ¢ was the probability of connection between two sub-CSPs,
pl was the inter-constraint density for each connection between two sub-CSPs
(probability of a non-trivial edge between sub-CSPs), p2 was the intra-constraint
density on each sub-CSP (probability of a non-trivial edge on each sub-CSP),
gl was the tightness of inter-constraints (probability of a forbidden value pair
in an inter-constraint) and g2 was the tightness of intra-constraints (probability
of a forbidden value pair in an intra-constraint). These parameters are currently
used in experimental evaluations of binary Distributed CSP algorithms [3]. The
problems were randomly generated by using the generator library in [3] and by
modifying these parameters. For each 8-tuple < a,n, k,t, pl,p2, ql,q2 >, we have
tested these algorithms with 50 problem instances of random CSPs. Each prob-
lem instance execution has a limited CPU-time (TIME_OUT) of 900 seconds.

900 —100
—90

800 A
700 / » -80
/'/ dno
600
/ / —60
500
/ / 50
00 40

00
30
200 1 / / —-20
N
(10x5) (15x5) (20x5) (25x5) (30x5) (35x5) (40x5)
Variables

Time (seconds)

[AEN
I

‘—o— FC —=—DTH ‘ [% FC TIME_OUT 1% DTH TIVE_OUT]

Fig. 7. Running Times and percentage of solution over TIME_OUT = 900 seconds
with different variable number.

In Figures 7 and 8 we compare the running time of DTH with a well-known
complete algorithm: Forward Checking. In Figure 7, number of variables on
each sub-CSP was increased from 10 to 40, the rest of parameters were fixed (<
5,n,8,0.2,0.01,0.2,0.9,0.3 >). We can observe that DTH outperformed the FC
algorithm in all instances. DTH running times were lower than FC running times.
Furthermore, DTH had less TIME_OUT executions than FC. As the number of

2 FC was obtained from: http://ai.uwaterloo.ca/ vanbeek/software/software.html

—70

%
400 / —190
350 80

160

/ %0
200
/""v /./{ 40
150
» — g
100 /._,_’- —20
50

Time (seconds)

Domains

——FC —&—DTH ‘ % FC TIME_OUT [§% DTH TIME_OUT ‘

Fig. 8. Running Times and percentage of solution over TIME_OUT = 900 seconds
with different domain size.

variables increased, the number of problem instance executions which achieve
TIME_OUT was increased, that is precisely why running time increase more
slowly when number of variables increases.

In Figure 8, the domain size was increased from 5 to 40, the rest of parame-
ters were fixed (< 5,15,d,0.2,0.01,0.2,0.9,0.3 >). It can be observed that DTH
outperformed FC in all cases. As the domain remained greater, the computa-
tional cost of DTH and FC also increased. As the domain size increased, the
number of problem instance execution which achieve TIME_OUT was increased.
Again, DTH had less TIME_OUT executions than FC.

Figure 9 shows the behavior of DTH and FC by increasing ¢2 in several in-
stances of g1 with 5 sub-CSPs, 15 variables and domain size of 10 (< 5,15, 10,0.2,
0.01,0.2,¢1,¢2 >). It can be observed that:

— independently of ¢1 and ¢2, DTH maintained better behaviors than FC.

— As ¢l increased, problem complexity increased and running time also in-
creased. However, as problem complexity increased, DTH carried out a bet-
ter pruning. Thus, DTH running times were rather better than FC running
times as ¢l increased.

— Problem complexity also depend on ¢2. With regard to ¢2, the most complex
problems were those problems generated, in general, with half-values of ¢2
(¢2 = 0.3 and ¢2 = 0.5). Moreover, for high values of ¢1, problems were also
complex with low values of ¢2 (¢2 = 0.1). In all these cases, DTH had the
best behaviors.

Figure 10 shows the percentages of unsolved problems by DTH when tight-
ness of ql increased, that is, problem complexity increased. Problem instances
are the same as Figure 9 instances. When problem complexity increased, the
number of unsolved solution also increased. However the number of unsolved
solution by DTH was always smaller than the number of TIME_OUTs when we

Selgoonds q1=0,1 S?Z%onds q1=0,3

100 100
80 80
60 60
w© 10 A
20 20
o o %
0,1 03 05 07 09 01 03 05 07 09
q2 qz
=]
Seconds q1=0,5 Seconds q1=0,7
20 ’ 20 ,

100 / 100
80

DTH =il FC.

Seconds q1=0,9

; / .
0 L 4
01 03

05 07 09

7 -

64

54

4

0% DTH Lost-Solutions

3 W % FC TIME_OUTs
2

14

04

01 0,3 0,5 0,7 0,9
ql

Fig. 10. Percentage of unsolved problems by DTH and percentage of FC TIME_OUTs
with different values of ¢1.

run FC algorithm. Therefore, our heuristic search is a good option for solving
complex decomposable CSPs when we have a time limit.

6 Conclusions

We have proposed an heuristic approach for solving distributed CSP. First, we
translate the original CSP into a DFS-tree CSP structure, where each node in
the DFS-tree is a sub-CSP. Our heuristic proposal is a distributed heuristic for
solving the resultant DFS-tree CSP structure. This heuristic exploits the Nogood
information for pruning the search space. DTH is sound but not complete. The
evaluation shows a good behavior in decomposable CSPs; particularly, the results
of the heuristic search are better as problem complexity increases. Furthermore,
completeness degree of the heuristics is appropriate for solving decomposable
CSPs. Thus, this technique became suitable for solving centralized problems
that can be decomposed in smaller subproblems in order to improve solution
search.

References

1. R. Dechter, ‘Constraint networks (survey)’, Encyclopedia Artificial Intelligence,
276-285, (1992).

2. R. Dechter, Constraint Processing, Morgan Kaufmann, 2003.

3. R. Ezzahir, C. Bessiere, M. Belaissaoui, and El-H. Bouyakhf, ‘Dischoco: A plat-
form for distributed constraint programming’, In Proceedings of IJCAI-2007 Eighth
International Workshop on Distributed Constraint Reasoning (DCR’07), 16-27,
(2007).

4. B. Hendrickson and R.W. Leland, ‘A multi-level algorithm for partitioning graphs’,
in Supercomputing, (1995).

5. G. Karypis and V. Kumar, ‘Using METIS and parMETIS’, (1995).

6. G. Karypis and V. Kumar, ‘A parallel algorithm for multilevel graph partitioning
and sparse matrix ordering’, Journal of Parallel and Distributed Computing, 71-95,
(1998).

7. N. Sadeh and M.S. Fox, ‘Variable and value ordering heuristics for activity-based
jobshop scheduling’, In proc. of Fourth International Conference on Expert Systems
in Production and Operations Management, 134-144, (1990).

8. M.A. Salido and F. Barber, ‘A constraint ordering heuristic for scheduling prob-
lems’, In Proceeding of the 1st Multidisciplinary International Conference on
Scheduling : Theory and Applications, 2, 476-490, (2003).

9. C. Solnon, ‘Ants can solve constraint satisfaction problems’, IEEE Transactions
on Evalutionary Computation, 6, 347-357, (2002).

10. T. Stutzle, ‘Tabu search and iterated local search for constraint satisfaction prob-
lems’, Technischer Bericht AIDA9711, FG Intellektik, TU Darmstadt, (1997).

11. E. Tsang, Foundation of Constraint Satisfaction, Academic Press, London and San
Diego, 1993.

12. R. Wallace and E. Freuder, ‘Ordering heuristics for arc consistency algorithms’, In
Proc. of Ninth Canad. Conf. on A.IL, 163-169, (1992).

13. M. Yokoo and K. Hirayama, ‘Algorithms for distributed constraint satisfaction: A
review’, Autonomous Agents and Multi-Agent Systems, 3, 185-207, (2000).

