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Abstract

Nowadays, many real problems in artificial intelligence can be modelled as constraint satisfaction problems (CSPs). A
general CSP is known to be NP-complete. Nevertheless, distributed models may reduce the exponential complexity by par-
titioning the problem into a set of subproblems. In this paper, we present a preprocess technique to break a single large
problem into a set of smaller loosely connected ones. These semi-independent CSPs can be efficiently solved and, further-
more, they can be solved concurrently.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Many real problems in artificial intelligence (AI) as well as in other areas of computer science and engineer-
ing can be efficiently modelled as constraint satisfaction problems (CSPs) and solved using constraint pro-
gramming techniques. Some examples of such problems include: spatial and temporal planning, qualitative
and symbolic reasoning, diagnosis, decision support, scheduling, hardware design and verification, real-time
systems and robot planning.

These problems may be soluble or insoluble or they may be hard or easy. How to solve these problems have
been the subject of intensive study in recent years.

Most of the work is focused on general methods for solving CSPs. They include backtracking-based search
algorithms. While the worst-case complexity of backtracking search is exponential, several heuristics to reduce
its average-case complexity have been proposed in [1]. For instance, some algorithms incorporate features
such as ordering heuristics: variable ordering [2], value ordering [3], and constraint ordering [4,5].

Agent-based computation has been studied for several years in the field of artificial intelligence and has
been widely used in other branches of computer science. Multi-agent systems are computational systems in
which several agents interact or work together in order to achieve goals. In the specialized literature, there
are many works about distributed CSP. In [6], Yokoo et al. present a formalization and algorithms for solving
distributed CSPs.
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Many researchers are also working on graph partitioning [7, 8, 9]. The main objective of graph partitioning
is to divide the graph into a set of regions such that each region has roughly the same number of nodes and the
sum of all edges connecting different regions is minimized. Graph partitioning can be applied on telephone
network design, sparse Gaussian elimination, data mining, clustering, and physical mapping of DNA. Fortu-
nately, many heuristics can solve this problem efficiently. For instance, graphs with over 14,000 nodes and
410,000 edges can be partitioned in under 2 s [10]. Thus, graph partitioning can be useful to distribute the
problem into a set of semi-independent sub-CSPs when dealing with large CSPs. In the constraint satisfaction
literature, some works integrate partitioning techniques with constraint satisfaction problems mainly in par-
allel frameworks. They are primarily focused on partitioning the search space. The CSP is split according to
the domains of the variables, and each processor solves a part of the complete search space.

In Burg [11], the search space is partitioned into the same number of subspaces as processors are available.
In Lin and Yang [12], the search space is divided into d partitions, where d is the domain size of the first var-
iable of the CSP (only one variable is considered for the partitioning).

Our aim is to partition the CSP by means of the variables using a preprocessing technique. To this end, the
CSP is divided into a set of smaller loosely connected ones. This division is carried out by a graph partitioning
software called Metis [13]. Thus, we can take advantage of the powerful graph partitioning techniques that are
available for solving CSPs, mainly in large problems where a centralized solver is unable to manage the prob-
lem. This approach of partition is also useful in some application problems, where gathering all information
together is not desirable or impossible for security or privacy reasons.

In the following section, we formally define a CSP and summarize some other definitions. In Section 3, we
present the graph partitioning heuristic. The general system architecture is presented in Section 4. We evaluate
our proposal in Section 5 and, finally, we summarize the conclusions and future work.

2. Definitions
In this section, we review some basic definitions about CSPs.
Definition 1. A constraint satisfaction problem (CSP) consists of:

e a set of variables V' = {v,vs,...,0,}

e cach variable v; € V has a set D,, of possible values (its domain). We denote d,, the length of domain D,

¢ a finite collection of constraints C = {cj,cs,...,c;} that restricts the values that the variables can simulta-
neously take

Definition 2. A solution to a CSP is an assignment of values to all the variables so that all constraints are
satisfied.

Definition 3. A partition of a set C'is a set of disjoint subsets of C whose union is C. The subsets are called the
blocks of the partition.

Definition 4. A distributed CSP is a CSP in which the variables and constraints are distributed among auto-
mated agents [6].

Each agent has some variables and attempts to determine their values. However, there are inter-agent
constraints and the value assignment must satisfy these inter-agent constraints. In our model, there are m
agents 1,2,...,m. Each agent knows a set of constraints and the domains of variables involved in these
constraints.

Definition 5. A block agent a; is a virtual entity that essentially has the following properties: autonomy, social
ability, reactivity, and pro-activity.

Block agents are autonomous agents. They operate their subproblems without the direct intervention of any
other agent or human. Block agents interact with each other by sending messages to communicate consistent
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partial states. They perceive their environment and any changes in it (such as new partial consistent states) and
can react with more complete consistent partial states.

3. Graph partitioning heuristic

As we have pointed out in the introduction, many researchers are working on graph partitioning [7, 8, 9]
with the aim of dividing the graph into a set of regions such that each region has roughly the same number of
nodes and minimizing the sum of all edges connecting different regions. This technique has been widely used in
many areas and can be very useful in constraint satisfaction problem, mainly for large CSPs.

Metis [13]is a software package for partitioning large irregular graphs, partitioning large meshes, and com-
puting fill-reducing orderings of sparse matrices. Traditional graph partitioning algorithms compute a parti-
tion of a graph by directly operating on the original graph. These algorithms are often too slow and/or
produce poor quality partitions. Metis uses novel approaches to successively reduce the size of the graph as
well as to further refine the partition during the uncoarsening phase. During uncoarsening, Metis employs
algorithms that make it easier to find a high-quality partition in the coarsest graph. During refinement, Metis
focuses primarily on the portion of the graph that is close to the partition boundary. These highly tuned algo-
rithms allow Metis to quickly produce high-quality partitions for a large variety of graphs. Metis provides two
programs pmetis and kmetis for partitioning an unstructured graph into k equal size parts. Both of these pro-
grams are able to produce high-quality partitions. However, depending on the application, one program may
be preferable to the other. In general, kmetis is preferred when it is necessary to partition graphs into more
than eight partitions. For such cases, kmetis is considerably faster than pmetis. On the other hand, pmetis
is preferable for partitioning a graph into a small number of partitions.

Our aim is to divide a CSP into a set of sub-CSPs so that each subproblem has roughly the same number of
variables and to minimize the sum of all binary constraints connecting different subproblems. Fig. 1 shows an
example of CSP that can be partitioned into two different sub-CSPs. A graph partitioning tool would divide
the CSP that contains variables {vy,v,,vs,04,0s, Vs, U7,08,09} in two Sub-CSPs: (1) — {vy,v5,v3,04,05} and
(2) — {(vs), vs, v7, Vg, 09}

In this way, the sub-CSP1 is composed of a set of variables V1 = {vy,v,,v3,04,0s5}. The set of constraints is
composed of the binary constraints that join two variables in V1. Sub-CSP2 is composed of a set of variables
V2 = {(vs), v, U7, V8, U9}, Where vs is an instantiated variable. However, this variable must be included to satisfy
the constraint that joins the two sub-CSPs.

CSP
variables: v1,v2,v3,v4,v5,v6,v7,v8,v9
constraints: ¢12,c14,c23,c24,¢35,c45,c56,c67,c68,c79,c89

Sub-CSP1 ! Sub-CSP2

variables: v1,v2,v3,v4,v5 variables: v5,v6,v7,v8,v9
constraints: ¢12,c14,¢23,c24,c35,c45 constraints: ¢56,c67,c68,c79,c89

Fig. 1. A CSP divided into two semi-independent Sub-CSPs.
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3.1. Partition Size

The goal of Metis is to partition the original CSP, but the question is to determine how many partitions
must be generated to optimize the solving process. This number must be given by the user. It depends on sev-
eral parameters such as the number of variables, the number of constraints, and the domain size. However, it
can also depend on the constrainedness of the problem [14]. If the CSP is easy to solve (under-constrained), no
partition is necessary to achieve a solution; if the problem is hard to solve, the number of partitions must be
greater. Nevertheless, a huge number of partitions is not desirable, due to the fact that time must be spent in
the exchange of information.

As we will analyze in evaluation, the number of partitions will depend mainly on the number of variables 7,
the domain size d, and also, but less important, on the number of constraints. An appropriate threshold is
necessary to achieve optimality in the solving process. A good approach for achieving the number of partitions
is:

#partitions = |In(n) + In(d) + log(gd)], (1)

where 7 is the number of variables, d is the domain size and gd is the graph degree. For instance, a problem
with 200 variables, a domain size of 40 and a graph degree of 25, the number of partitions is
[In(200) + In(40) + log(25)] = 10. This formula gives us an estimator of an appropriate number of partitions
(see Table 3 in the evaluation section).

3.2. The block agents

Block agents are agents whose aim is to solve subproblems. Following, we present the behavior and char-
acteristics of block agents (Fig. 2):

e Each block agent a; has an identifier ;.

e There is a partition of the set of constraints C = |J;", C(i) generated by the graph partitioning heuristic, and
each block agent a; is committed to the block of constraints C(j).

e Each block agent a; has a set of variables V; involved in its block of constraints C{(;). These variables fall into
two different sets: used variables set (v;) and new variables set (v;), that is: V; = v; Uv,. Used variables cor-
respond to previously assigned variables.

e The domain D, (corresponding to variable x;) is maintained in the first block agent a, in which x; is involved,
(i.e.), x; € v,.

e Each block agent a; assigns values to variables that have not yet been assigned, that is, a; assigns values to
new variables x; € v; because variables x; € 7, have already been assigned by previous block agents.

e Each block agent a; maintains a storage of partial problem solutions generated by its neighbors and previ-
ous block agents. Therefore, the last block agent can return a solution for the global problem.

Assigment
of managed
variables

Partial
problem
solutions

Involved Constraints|

Labels

Involved Variables : vig,Vig

Domain of new variables vig |

Fig. 2. Properties and characteristics of block agents.
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The goal of these block agents is to solve CSPs that represent subproblems of the main CSP. These block
agents must cooperate with each other by sending messages with consistent partial states.

4. General system architecture

The general scheme of our system is presented in Fig. 3. As a preprocessing step, the Graph Partitioning
Heuristic is carried out to partition the problem into a set of semi-independent subproblems. To this end,
given the number of variables n, the domain size d, and the number of constraints ¢, we can use formula
(1) to obtain the estimated number of partitions (p). Thus, given the CSP and the number of partitions, Metis
selects the appropriate program (kmetis, pmetis) to partition the problem. In this way, the original problem is
divided into different subproblems. These subproblems can be concurrently solved using different techniques.

Once, each subproblem is generated, block agents concurrently manage each block of constraints (sub-
CSP). Each block agent is free to select any search algorithm to find a consistent partial state. It can select
a local search algorithm, a backtracking-based algorithm, or any other algorithm, depending on the problem
topology. In any case, each block agent must find a solution to its particular subproblem. This subproblem is
composed of its CSP, which is subject to the variable assignment generated by the previous block agents.
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Fig. 3. General system architecture.
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Table 1

Random instances (1,40,25,10): variables = n, domain size = 40, graph density = 25, and partition size = 10
Problem Distributed model run-time (s) Centralized model run-time (s)
(50,40,25,10) 12 3

(100,40,25,10) 12 14

(150,40,25,10) 13 37

(200,40,25,10) 14 75

(250,40,25,10) 17 98

(300,40,25,10) 19 140

(350,40,25,10) 23 217

(400,40,25,10) 30 327

(450,40,25,10) 32 440

(500,40,25,10) 42 532

Generally, Sub-CSPs are classified by their degree of connectivity; that is, Sub-CSP1 is connected with other
sub-CSPs besides Sub-CSP2 and, so on. Thus, block agent 1 works on its block of constraints. If block agent 1
finds a solution to its subproblem, then it sends the consistent partial state to the neighboring block agents that
are connected to block agent 1. All of them work concurrently to solve their specific subproblems: block agent
1 tries to find another solution and the neighboring block agents try to solve their subproblems knowing that
their used variables have been assigned by block agent 1. Thus, in any time step (see Fig. 3), any block agent j,
that has the instantiated variables generated by the previous block agents works concurrently with the previous
block agents, and it tries to find a consistent state using a search algorithm. Finally, the last block agent m,
which works concurrently with block agents 1, 2,...,(m — 1), tries to find a consistent state in order to find
a problem solution.

5. Evaluations

In this section, we evaluate and compare our distributed model and the centralized model. To do this, we
have used a well-known CSP solver called forward checking (FC).!

In our evaluations, each set of random binary CSPs was defined by the 4-tuple (n,d, gd, p), where n was the
number of variables, d the domain size, gd the graph density (constraints) and p the number of partitions. The
problems were randomly generated by modifying these parameters. We evaluated 100 test cases for each type
of problem and each value of the variable parameter. All random binary constraints are in the form
cw;()vjv,v; € V. We compare the run-time (in seconds) of the distributed model against the centralized model.
In the distributed model, the run-time is composed by the run-time of the preprocessing step plus the run-time
of the solving process of each sub-problem. There are three different evaluations presented in the tables.

In the first evaluation, the domain size, the graph density, and the size of the partition were fixed, and the
number of variables was increased from 50 to 500. As Table 1 shows, the run-time for small problems was
worse in the distributed model due to the fact that, in the preprocessing step, the number of partitions was
greater than the number estimated by formula (1). For example, the random instances (50,40,25,10) were
solved by the distributed model in 12 s, while the same problems with 5 partitions ({50,40,25,5)) were solved
in 7 s (see Table 2). However, as the number of variables increased, the behavior of the distributed problem
improved. For instance, in random instances (500,40, 25, 10), the centralized model maintained 500 variables,
whereas each subproblem in the distributed model maintained an average of 50 variables. Thus, our system is
appropriate for large CSPs where a centralized model is unable to manage these type of problems.

In the second evaluation, the number of variables and the graph density were fixed, and the domain size was
increased from 20 to 300. As Table 2 shows, our proposal maintained lower run-times than the centralized
model. For small domains the centralized model was better, but in more realistic problems (with large
domains), the distributed model was better. We also increased the domain size to 400 and 500, and we

! Forward Checking was obtained from CON’FLEX. It can be found in: http://www.inra.fr/bia/T/rellier/Logiciels/conflex/
welcome.html.
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Table 2

Random instances (50,d,25,p): variables = 50, domain size = d, graph density = 25, and partition size = p
Problem Distributed model run-time (s) Centralized model run-time (s)
(50,20,25,5) 7 2

(50,30,25,5) 7 3

(50,40,25,5) 7 4

(50,50,25,5) 7 5

(50,100,25,5) 10 22

(50,150,25,5) 14 49

(50,200,25,5) 29 123

(50,300,25,5) 35 287

(50,400,25,11) 34 515

(50,500,25,11) 75 933

Table 3

Random instances (200,40,25,p): variables = 200, domain size = 40, graph density = 25, and partition size = p
Problem Distributed model run-time (s) Centralized model run-time (s)
(200,40,25,2) 51 75

(200,40, 25,3) 26 75

(200,40,25,4) 20 75

(200,40,25,5) 19 75

(200,40,25,6) 16 75

(200,40,25,8) 15 75

(200,40,25,10) 14 75

(200,40,25,12) 16 75

(200,40,25,15) 18 75

(200, 40,25,20) 22 75

increased the number of partitions to 11. This table illustrates the usefulness of an appropriate number of par-
titions. For random instances (50,400, 25, p), if formula (1) is used, then p = [In(50) + In(400) + log(25)| = 11
and better results were obtained than random instances (50, 300,25, 5).

In the last evaluation, the number of variables, the domain size, and the graph density were fixed, and the
size of the partition was increased from 2 to 20. This evaluation shows the importance of selecting an appro-
priate number of partitions. Table 3 shows an empirical evaluation of the appropriate number of partitions for
binary problems with 200 variables, a domain size of 40 and a graph density of 25. The most appropriate num-
ber of partitions was 10, due to the fact that the run-time was the lowest (14 s). This number of partitions coin-
cides with the number of partitions obtained using formula (1). Furthermore, in all the random instances, the
distributed model obtained a lower run-time than the centralized model. However, it is still useful to obtain a
formula that estimates an appropriate number of partitions.

6. Conclusions and future work

Nowadays, many real problems can be modelled as constraint satisfaction problems (CSPs) and solved
using constraint programming techniques. These problems may be soluble or insoluble and they may be hard
or easy to solve. In this paper, we have presented a preprocessing technique to break a single, large problem
into a set of smaller loosely connected ones, where a set of agents are committed to solving their own subprob-
lems. Our distributed model takes advantage of advanced on graph partitioning techniques to distribute a CSP
in semi-independent sub-CSPs. Our evaluations show that our distributed model significantly improves run-
times for large CSPs.

We are currently applying our distributed model to the railway scheduling problem. This problem is very
hard to solve in a centralized way, but it can be easily distributed by means of trains and track stations.
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