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Abstract. In constraint satisfaction, a general rule is to tackle the hard-
est part of a search problem first. In this paper, we introduce a parameter
() that measures the constrainedness of a search problem. This parame-
ter represents the probability of a problem being feasible. A value of 7 = 0
corresponds to an over-constrained problem and no states are expected
to be solutions. A value of 7 = 1 corresponds to an under-constrained
problem and every state is a solution. This parameter can also be used
in heuristics to guide search. To achieve this parameter, a simple random
or systematic sampling is carried out to compute the tightnesses of each
constraint. New heuristics are developed to classify the constraints from
the tightest constraint to the loosest constraint and to remove redundant
constraints in constraint satisfaction problems. These heuristics may ac-
celerate the search due to inconsistencies can be found earlier and the
absence of such redundant constraints eliminate unnecessary checking
and save storage space.
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1 Introduction

Many real problems in Artificial Intelligence (AI) as well as in other areas of
computer science and engineering can be efficiently modeled as Constraint Sat-
isfaction Problems (CSPs) and solved using constraint programming techniques.
Some examples of such problems include: spatial and temporal planning, quali-
tative and symbolic reasoning, diagnosis, decision support, scheduling, hardware
design and verification, real-time systems and robot planning.

These problems may be soluble or insoluble, they may be hard or easy. How
to solve these problems have been the subject of intensive study in recent years.
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Some works are focused on the constrainedness of search. Heuristics of mak-
ing a choice that minimises the constrainedness can reduce search [4].The con-
strainedness ”knife-edge” measures the constrainedness of a problem during
search [12].

Furthermore, some other works try to reduce a CSP by identifying and re-
moving redundant constraints [10] since a constraint that allows all the possible
value assignments of the variables on which it is defined, none of the constraints
tuples has to be checked. Thus, the absence of such a constraint eliminates un-
necessary checking and saves storage space [7]. However, identifying redundant
constraint is hard, in general [10].

However, most of the work is focused on general methods for solving CSPs.
They include backtracking-based search algorithms. While the worst-case com-
plexity of backtrack search is exponential, several heuristics to reduce its average-
case complexity have been proposed in the literature [3]. For instance, some al-
gorithms incorporate features such as ordering heuristics. Thus, some heuristics
based on wvariable ordering and value ordering [8] have been developed, due to the
additivity of the variables and values. However, constraints are also considered
to be additive, that is, the order of imposition of constraints does not matter; all
that matters is that the conjunction of constraints be satisfied [1]. In spite of the
additivity of constraints, only some works have be done on constraint ordering
heuristic mainly for arc-consistency algorithms [11, 5].

Here, we introduce a parameter that measures the ”constrainedness” of the
problem. This parameter called 7 represents the probability of a problem being
feasible and identify the tightnesses of constraints. This parameter can also be
applied in heuristics to guide search. To achieve this parameter, we compute
the tightnesses of each constraint. Using this tightnesses, we have developed
two heuristics to accelerate the search. These heuristics perform a constraint
ordering and redundant constraints removal. They can easily be applied to any
backtracking-based search algorithm.

The first one classifies the constraints by means of the tightnesses, so that
the tightest constraints are studied first. This is based on the principle that,
in goods ordering, domain values are removed as quickly as possible. This idea
was first stated by Waltz [13] ” The base heuristic for speeding up the program is
to eliminate as many possibilities as early as possible” (p. 60). An appropriate
ordering is straightforward if the constrainedness is known in advance. However
in the general case, a good classification is suitable to tackle the hardest part of
the search problem first.

The second heuristic is based on the idea of reducing a CSP into an ”easy
problem” by removing redundant constraints [10].

In the following section, we formally define a CSP and summarize some
heuristics. In section 3, we present our parameter 7 of constrainedness of search
problems. Two heuristics using 7 are developed in section 4. In section 5, we
present an evaluation of 7 and the proposed heuristics. Section 6 summarizes
the conclusions and future work.



2 Definitions and Heuristics

In this section, we review some basic definitions as well as heuristics for constraint
ordering, constrainedness and redundant constraints removing for CSPs.

2.1 Definitions

Definition 1. A constraint satisfaction problem (CSP) consists of:

— a set of variables V' = {v1,v2, ..., 05}

— each variable v; € V has a set D,,, of possible values (its domain). We denote
d,, the length of domain D,,,.

— a finite collection of constraints C' = {c1, ¢a, ..., ¢k } restricting the values that
the variables can simultaneously take.

Definition 2. A solution to a CSP is an assignment of values to all the vari-
ables so that all constraints are satisfied.

Definition 8. A redundant constraint is a constraint that can be removed
without changing the solutions.

There is not a broadly accepted definition of constrainedness. We adopt the
following definition of constrainedness:

Definition 4. The constrainedness of a problem is a predictor of computa-
tional cost to find a solution.

2.2 Heuristics

The experiments and analyses by several researchers have shown that the or-
dering in which variables and values are assigned during the search may have
substantial impact on the complexity of the search space explored.In spite of the
additivity of constraints, only some works have be done on constraint ordering.

Wallace and Freuder initiated a systematic study to identify factors that
determine the efficiency of constraint propagation that achieve arc-consistency
[11]. Gent et al. proposed a new constraint ordering heuristic in AC3, where the
set of choices is composed by the arcs in the current set maintained by AC3 [5].
They considered the remaining subproblem to have the same set of variables as
the original problem, but with only those arcs still remaining in the set.

On the other hand, many other problems may contain redundant constraints.
Edward Tsang in [10] proposed the possibility of reducing a CSP to an ”easy
problem” by removing redundant constraints. However, redundancy is in gen-
eral difficult to detect; but some redundant constraints are easier to identify
than others. In [2], which focuses on binary CSPs, a number of concepts for
helping to identify redundant binary constraints are introduced. For example, a
constraint in a binary CSP can be removed if it is path-redundant (definition
3-19 [10]). The time complexity of path-redundant is O(nd?). However, since not



every problem can be reduced to an easier problem, one should judge the like-
lihood of succeeding in reducing the problem in order to justify the complexity
of procedures such as path-redundant.

Heuristics of making a choice that minimises the constrainedness of the re-
sulting subproblem can reduce search over standards heuristics [4]. Walsh studied
the constrainedness ”knife-edge” in which he measured the constrainedness of
a problem during search in several different domains [12]. He observed a con-
strainedness ”knife-edge” in which critically constrained problems tend to remain
critically constrained. This knife-edge is predicted by a theoretical lower-bound
calculation. Many of these algorithms focus their approximate theories on just
two factors: the size of the problems and the expected number of solutions which
is difficult to obtain.

In [4], Gent et al. present a parameter that measures the constrainedness of
an ensemble of combinatorial problems. They assume that each problem in an
ensemble has a state space S with |S| elements and a number, Sol of these states
are solutions. Any point in the state space can be represented by a N-bit binary
vector where N = loga(|S]). Let (Sol) be the expected number of solutions
averaged over the ensemble. They defined constrainedness, x, of an ensemble by,

loga({Sol))
_ QT (1)

However, this parameter defines the constrainedness of constraint satisfaction
problems in general, but not of an individual problem.

R =def 1

3 Constrainedness 7T

In this section, we introduce a parameter called T that measures the constrained-
ness of the problem. This parameter represents the probability of a problem being
feasible. This parameter lies in the range [0, 1]. A value of 7 = 0 corresponds to
an over-constrained and no state is expected to be a solution ((Sol) = 0). A value
of 7 =1 corresponds to an under-constrained and every state is expected to be
a solution ((Sol) = [], ¢y dv). This parameter can also be used in a heuristic to
guide search. To this end, we take advantage of the tightnesses of each constraint
to classifying them from the tightest constraint to the loosest constraint and to
removing some redundant constraints. Thus, a search algorithm can tackle the
hardest part of the problem first with a lower number of constraints.

As we pointed out, a simple random or systematic sampling is performed to
compute 7, where there is a target population (states), and a sampled population
is composed by s(n) random and well distributed states where s is a polynomial
function.

As in statistic, the user selects the desired precision by the size of the sample
s(n). We study how many states st; : st; < s(n) satisfy each constraint ¢; (see
Figure 1). Thus, each constraint ¢; is labeled with pc,: ¢;(pe,), where p., =
st;/s(n) represents the proportion of possible states, that is, the tightnesses of
the constraint.



Selected states by a simple random or systematic sampling s(n)
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Fig. 1. From non-ordered constraint to ordered constraint

In this way, given the set of probabilities {pc, , ..., D¢, }, the number of solutions
can be computed as:

(Sot) == (I do) x (T] e (2)

veV c,eC

This equation is equivalent to the obtained in [4]. However, our definition of
constrainedness is given by the following equation:

=[] @) (3)

c,eC

T is a parameter that measures the probability that a randomly selected state
is a solution, that is, the probability this state satisfies the first constraint (p, ),
the second constraint (p.,) and so forth, the probability this state satisfies the
last constraint (p., ). Thus, this parameter lies in the range [0, 1] that represent
the constrainedness of the problem.

We present the pseudo-code of computing 7.

Computing the constrainedness 7

Inputs: A set of n variables, v1, ..., vn;

For each v;, a set D; of possible values (the domain)

A set of constraints, ci, ..., Ck.
Outputs: The constrainedness 7.
1.- From the number of states generated by the Cartesian product of the variable
domain bounds, a random and well distributed sample with s(n) states is selected.
2.- With the selected sample of states s(n), we compute how many states st; : st; <
s(n) satiéy each constraint ¢;,7 = 1..k. Thus, ¢; is labelled with p., = st;/s(n).
3.-7:= ciEC(pCi)




4 Some heuristics using 7

To compute T, it is necessary to obtain the tightnesses of each constraint, repre-
sented by the following set of probabilities {pc,, ..., pe, }. We can take advantage
of this information to develops some heuristics to guide search or to improve
efficiency.

The first heuristic is committed to classify the constraints so that a search
algorithm can manage the hardest part of a problem first. Figure 2 shows the
constraints in the natural order and classified by tightnesses. If the tightest
constraints are very constrained (7 = 0), the problem may be over-constrained.
However, if these tightest constraints are under-constrained (7 ~ 1) then, the
problem will be under-constrained.

Non-ordered Constraints Ordered Constraints
Natural order :> Tightest Loosest
8 E ¢ 744
&) F~c | a4 8 = 2| a2
@ c | 2+ = | ¢ ° 8 L] >< HRES
& E | - R NEIEIEIEYE: 2
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0 T / 3 ]
Consistent search j> Consistent search Reducing 8
space in ¢; space in ¢; Constraints

Fig. 2. From non-ordered constraints to ordered constraints: Constrainedness.

The second heuristic is focused on constraint removing in random CSPs.
The loosest constraints are analyzed and the redundant ones are removed of the
problem.

Let’s see these two heuristics.

4.1 Constraint ordering heuristic

This easy heuristic takes advantage of 7 making use of the probabilities of
constraints pe,, Pe,, -.-» Pe, - Lhis heuristic classifies the constraints in ascend-
ing order of the labels p., so that the tightest constraints are classified first
Peorars Peoraz s+ Peorar (See Figure 2)'

Thus, a backtracking-based search algorithm can tackle the hardest part of
a search problem first and inconsistencies can be found earlier and the number
of constraint checks can significantly be reduced.

4.2 Redundant constraint removing heuristic

In many random problems, some constraints may be redundant. A redundant
constraint is a constraint that can be removed without changing the solutions.
Some redundant constraint may be easier to identify than others [10].



In global constraints, to improve consistency a symbolic reasoning based on
rewriting and redundant constraint introduction may help CSP solvers to find
the result more directly [6].

However, in general, redundant constraints do not always save search effort
[7]. For example, if a constraint allows all the possible value assignments of the
variables on which it is defined, none of the constraints tuples has to be checked.
The absence of such a constraint, in fact, eliminates unnecessary checking and
saves storage space [7].

We will focus on this line, where our main goal is to identify redundant
constraints in order to significantly reduce the number of constraint checks.
Anyway, in case of global constraint, this heuristic may help to identify the set
of redundant constraints.

We can identify two different types of redundant constraints:

— Constraints that are made redundant by any other single constraints (e.g.,
x4y < 10 is made redundant by x 4+ y < 5).

— Constraints that due to their topology satisfy all possible assignments (e.g.,
x +y < b with domains = : {1,2} and y : {1,2}).

The first type of constraints is not directly related to 7 since the tightnesses
pe; of each constraint ¢; is not so relevant to identify redundancy.

The second type of constraints may be identified by the tightnesses of con-
straints. Constraint with p. = 1 may be redundant due to all the random selected
states in the sample satisfy this constraint. The coincidence can be given that all
the selected states are consistent and however not to be a redundant constraint.
So, we identify some types of constraints that can be removed if p. = 1 and they
satisfy a simple formula.

The main type of constraints is arithmetic constraints of the form:

n
ZO(Z”UZ' < Yy (4)
i=1

Each constraint ¢; in the form (4) with p., = 1 can be eliminated if:

n BZ:D:— a; >0
Z%ﬂiﬁ% Bi =0 a; =0 (5)
i=1 Bi =D; a; <0

where D~ and D7 correspond to the lower and upper variable domain bound.

In this way, all constraints with p., = 1 satisfying the above formula can be
removed. The absence of such constraints eliminate unnecessary checking and
save storage space [7].

5 Evaluation of 7 and heuristics

In this section, we evaluate our parameter 7 and both heuristics. To estimate
the constrainedness of random problems we compare 7 with the actual con-



strainedness by obtaining all solutions of random problems. To evaluate the
constraint ordering heuristic we incorporated our heuristic to well-known CSP
solvers: Backtracking (BT), Generate&Test (GT), Forward Checking (FC) and
Real Full Look Ahead (RFLA)?, because they are the most appropriate tech-
niques for observing the number of constraint checks. Finally, we evaluated the
redundant constraint removing heuristic over random problem using BT.

5.1 Evaluating T

In our empirical evaluation, each random CSP was defined by the 3-tuple: <
n,c,d >, where n was the number of variables, ¢ the number of constraints and
d the domain size. The problems were randomly generated by modifying these
parameters. We evaluated 100 test cases for each type of problem. We present
the average actual constrainedness by obtaining all solutions, our estimator 7
choosing a sample of s(n) = 7n? states, the number of possible states, the average
number of possible solutions, the average number of estimate solutions using 7
and the error percentage.

Table 1 shows some types of random problems. For example in problems with
5 variables, each with 5 possible values and 5 constraints < 5,5,5 >, the number
of possible states is d* = 5° = 3125, the average number of solutions is 125,
so the actual constrainedness is 0.04. With a sample of Tn? = 175 states, we
obtain an average number of 6.64 solutions. Thus, our parameter 7 = 0.038 and
the number of estimate solutions of the entire problem is 118.7. In this way, the
error percentage is only 0.2%.

Table 1. Random instances < n,c,d >, n:variables, c:constraints and d:domain size

Problems || actual con- || Parameter| Number of|| Number of] Number of %
strainedness T States Solutions | Estimated Sol.|| Error

<3,5,5> 0.09 0.07 125 11.2 8.7 2%
< 3,5,10 > 0.05 0.043 1000 50 43 0.7%
< 3,10,5 > 0.024 0.013 125 3 1.6 1.12%
<5,5,5> 0.04 0.038 3125 125 118.7 0.2%
< 5,10,5 > 0.008 0.01 3125 25 31.2 0.19%
< 5,10,10 > 0.0045 0.0034 100000 453 340 0.1%

5.2 Evaluating the constraint ordering heuristic

The n-queens problem is a classical search problem to analyse the behaviour of
algorithms. Table 2 shows the amount of constraint check saving in the n-queens
problem.

3 BT, GT, FC and RFLA were obtained from CON’FLEX. It can be found in:
http://www-bia.inra.fr/T /conflex/ Logiciels/adressesConflex.html.



Table 2. Constraint check saving using GT , BT, FC and RFLA in the n-queens
problem.

GT&GT+CO | BT&BT+CO FC&FC+CO | RFLA&RFLAFCO
queens Constraint Constraint Constraint Constraint

Check Saving Check Saving Check Saving Check Saving

5 2.1 x 107 2.4 x 102 150 110

10 4.1 x 10t 3.9 x 107 1.4 x 10° 9.3 x 10%

20 1.9 x 102° 3.6 x 1018 9.6 x 104 6.03 x 101!

50 2.4 x 107° 3.6 x 10%2 3.1 x 104 1.6 x 1032

100 2.1 x 10143 2.1 x 10196 4.5 x 1093 1.8 x 106

150 5.2 x 10219 3.7 x 106! 6.8 x 1042 2.1 x 10190

200 9.4 x 10%9° 8.7 x 1021 9.9 x 10198 2.2 x 10134

We incorporated our constraint ordering (CO) to well-known CSP solver:
GT+CO, BT+CO, FC+CO and RFLA+CO. Here, the objective is to find all
solutions. The results show that the amount of constraint check saving was
significant in GT+CO and BT+CO and lower but significant in FC+CO and
RFLA+CQO. This is due to these techniques are more powerful than BT and GT.

5.3 Evaluating the redundant constraint removing heuristic

We evaluated this heuristic over random problems as presented in section 5.1. In
this case, all constraints are global constraints, that is, all constraints have arity
n. Table 3 shows for each type of constraints, the average number of redundant
constraints (red.), the amount of constraint checks for the entire problem, the
amount of constraint checks for the filtered problem (without redundant con-
straints) and the amount of constraint checks saving using backtracking (BT).
It can be observed that the amount of constraint checks for the entire prob-
lem was d"c. The constraint checks for the filtered problem was d"™(c — red.).
So, the constraint check saving was d"(red.), that corresponds a saving of 35%.
These formulas may be standardized for backtracking. If the average number of
redundant constraints is known, the constraint check saving can be obtained by

d™(red.),

Table 3. The redundant constraint removing heuristic in random instances < n,c,d >.

Problems || Redundant|Constraint checks| Constraint checks||Constraint checks

constraints| (entire problem) | (filtered problem) saving

<5,5,5 > 1.75 15625 10325 5300

< 5,10,5 > 3.5 31250 20312 10938

< 5,20,5 > 7 62500 40625 21875

<5,5,10 > 1.75 5 x 10° 3.3 x 10° 1.7 x 10°

< 5,10,10 > 3.5 1% 10° 6.5 x 10° 3.5 x 10°

< 5,20,10 > 7 2 x 10° 1.3 x 10° 7 % 10°




6 Conclusion and future work

In this paper, we introduce a parameter (7) that measures the ” constrainedness”
of a search problem. 7 represents the probability of a problem being feasible. A
value of 7 = 0 corresponds to an over-constrained problem. 7 = 1 corresponds
to an under-constrained problem. This parameter can also be used in a heuristic
to guide search. To achieve this parameter, we compute the tightnesses of each
constraint. We can take advantage of this tightnesses to classify the constraints
from the tightest constraint to the loosest constraint and to remove redundant
constraints. Using the constraint ordering heuristic and the redundant constraint
removing heuristic, the search can be accelerated due to inconsistencies can be
found earlier and the number of constraint checks can significantly be reduced.

Furthermore, these heuristic techniques are appropriate to solve problems as
a distributed CSPs [9] in which agents are committed to solve their subproblems.

For future work, we are working on integrating constraint ordering with vari-
able ordering in centralized and distributed CSPs.
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