A Polynomial Algorithm for Continuous
Non-binary Disjunctive CSPs

Miguel A. Salido, Federico Barber

Departamento de Sistemas Informéticos y Computacion,
Universidad Politécnica de Valencia,
46020 Valencia, Spain
{msalido, fbarber}@dsic.upv.es

Abstract

Nowadays, many real problems can be modelled as Constraint Satisfac-
tion Problems (CSPs). Some CSPs are considered non-binary disjunctive
CSPs. Many researchers study the problems of deciding consistency for
Disjunctive Linear Relations (DLRs). In this paper, we propose a new
class of constraints called Extended DLRs consisting of disjunctions of
linear inequalities, linear disequations and non-linear disequations. This
new class of constraints extends the class of DLRs. We propose a heuristic
algorithm called DPOLYSA that solves Extended DLRs, as a non-binary
disjunctive CSP solver. This proposal works on a polyhedron whose ver-
tices are also polyhedra that represent the non-disjunctive problems. We
also present a statistical preprocessing step which translates the disjunc-
tive problem into a non-disjunctive and ordered one in each step.

1 Introduction

Nowadays, many researchers have studied linear constraints in operational Re-
search (OR), constraint logic programming (CLP) and constraint databases
(CBD). Subclasses of linear constraints over the reals have also been studied
in temporal reasoning, [2, 7], where the main objectives are to study the con-
sistency of a set of binary temporal constraints, to perform value elimination
and to compute the minimal constraints between each pair of variables.

Many real problems can be represented as disjunctive linear relations (DLRs)
over the reals [2, 7]. The problem of deciding consistency for an arbitrary set
of DLRs is NP-complete [12]. It is very interesting to discover classes of DLRs
for which consistency can be decided in PTIME [7].

In [8], Lassez and McAloon studied the class of generalized linear con-
straints, this includes linear inequalities (e.g., z1+2x3—x4 < 4) and disjunctions
of linear disequations (e.g., 3x1 — 4xs — 203 # 4V x1 + 329 — x4 # 6). They
proved that the problem consistency for this class can be solved in polynomial
time.

Koubarakis in [7] extends the class of generalizad linear constraints to in-
clude disjunctions with an unlimited number of disequations and at most one
inequality per disjunction. (e.g., 31 — 4dwg — 223 < 4V 21 + 329 — x4 #
6V x4+ x3+ x4 #9). This class is called Horn constraints. He proved that
deciding consistency for this class can be done in polynomial time.

In [4], Jonsson and Béckstron present a new formalism called Horn Disjunc-
tive Linear Relations (Horn DLRs) that extends the class of Horn constraints
since instead of managing only one inequality per disjunction, Horn DLRs can
manage one linear relation of the form ar@ where a, 8 are linear polynomials
and r € {<,<,=,>,>} per disjunction (e.g., 3z1 — 223 =4V 21 + 22 — 224 #
6\/2.%1 — T2 + I3 #5)

In this paper, we extend DLRs to include disjunctions with an arbitrary
number of linear inequalities, linear disequations and non-linear disequations.
For example:

201 + 3w —23<6 V 21 +524 <9 V 22y —a3+a5#£3 V a3 — Yoz #2

The resulting class will be called the class of FExtended DLRs. Moreover,
our objective is not only to decide consistency, but also to obtain one or several
solutions and to obtain the minimal domain of the variables.

It is well known that these objectives only can be achieved in exponential
time. In an attempt to achieve these objectives in polynomial time, we propose
an incomplete algorithm called ”Disjunctive Polyhedron Search Algorithm”
(DPOLYSA) that manages Extended DLRs as a disjunctive non-binary CSP
solver. DPOLYSA is a polynomial heuristic algorithm that solves Extended
DLRs in most of the times. This algorithm runs a preprocessing step in which
the algorithm translates the disjunctive problem into a set of non-disjunctive
ones generated by means of a technique based on sampling from finite popu-
lations. The set of constraints of each non-disjunctive problem is ordered in
ascending order with respect to the number of vertices satisfied in a hypotheti-
cal polyhedron. Furthermore, when the problem is reduced to a non-disjunctive
one, DPOLYSA applies a non-disjunctive CSP solver called POLYSA [11].
POLYSA manages the non-disjunctive CSP creating a polyhedron by means of
the Cartesian Product of some variable domain bounds. This Cartesian Prod-
uct generates a polyhedron with n? random vertices in each polyhedron face.
Therefore, the computational complexity is O(n?). DPOLYSA efficiently man-
ages non-binary CSPs with many variables, many disjunctive constraints and
very large domains. This proposal overcomes some of the weaknesses of other
typical techniques, like Disjunctive Forward-Checking and Disjunctive Real Full
Look-ahead, since its complexity does not change when the domain size and the
number of atomic constraints increase.

2 Preliminaries

Briefly, a disjunctive constraint satisfaction problem (DCSP) that DPOLYSA
manages consists of:

o A set of variables X = {x1,...,z,}.
e A continuous domain of values D; for each variable z; € X.

o A set of disjunctive constraints C' = {c1,...,c,} restricting the values that
the variables can simultaneously take.

A solution to a DCSP is an assignment of a value from its domain to ev-
ery variable, so that at least one constraint per disjunction is satisfied. The
objective in a DCSP may be: to determine whether a solution exists; to find
one solution, many or all solutions; to find the minimal variable domains; to
find an optimal, or a good solution by means of an objective or multi-objective
function defined in terms of certain variables.

2.1 Notation and definitions

We will summarize the notation that is used in this paper.

Generic: The number of variables in a CSP will be denoted by n. The
domain of the variable x; is denoted by D;. The disjunctive constraints are
denoted by ¢ with an index, for example, c¢1, ¢;, ¢k, and the atomic constraints
from a disjunctive constraint ¢; are denoted by ¢;, : p € {1..t}. The arity of
a constraint is the number of variables that the constraint involves, so that a
non-binary constraint involves any number of variables. When referring to a
non-binary CSP, we mean a CSP where some or all of the constraints have an
arity of more than 2. Also, all disjunctive constraints have ¢ atomic constraints
and all atomic constraints have the maximum arity n.

Variables: To represent variables we use x with an index, for example,
T1,T5y Tp-

Domains: The continuous domain of the variable x; is denoted by D; =
[l;, 4], so that the domain length of the variable z; is d; = u; — ;.

Constraints: Traditionally, constraints are considered additive, that is, the
order of imposition of constraints does not matter. All that matters is that
the conjunction of constraints be satisfied [1]. Our framework internally man-
ages the constraints in an appropriate order with the objective of reducing the
temporal and spatial complexity.

Let X = z1,...,2, be a set of real-valued variables. Let «, 8 be linear
polynomials (i.e. polynomials of degree one) over X. A linear relation over X
is an expression of the form arg where r € {<, <, =,#,>,>}. Particularly,
a linear disequation over X is an expression of the form o # § and a linear
equality over X is an expression of the form a = . In accordance with previous
definitions, the constraints that we are going to manage are linear relations of
the form:

Inequalities : Zpixi <b (1)
i=1
Disequations : Zpixi #+b (2)
i=1
Non — linear Disequations : F(x) # b (3)

where z; are variables ranging over continuous intervals and F'(x) is a non-
linear function. Equalities can be written as conjunctions of two inequalities,

using the above constraints. Similarly, strict inequalities can be written as
the conjunction of an inequality and a disequation. Thus, we can manage all
possible relations in {<, <,=,#,>,>}.

These expressions are examples that DPOLYSA can manage:

(221 —3w9 — b3+ x4 < 4), (4254223 =223 #£4), (1 +4x2+ b3 +4w4 < 4),
(221 — 3w2 <4)V (23 + 24 <5) V (BYT1 + 223 — 24 #5))

The first and second constraints are managed directly by DPOLYSA, the
third constraint is transformed into two constraints:

(21 + 4y + bag + 4dag < 4) A (21 + 4xo + Bx3 + day £ 4)

The last constraint is a disjunctive constraint with 3 atomic constraints.
Thus, the solution must satisfy one of them.

The following tractable formalisms can be trivially expressed in order to be
managed by our proposal DPOLYSA.

Definition 1 A Horn constraint [7] is a disjunction ¢; = ¢;, V ¢, V, ..., V¢,
where each ¢;, ,k = 1,...,t is a weak linear inequality or a linear disequation,
and the number of inequalities among ¢;,, ..., c;, does not exceed one. If there
are no inequalities, then a Horn constraint is called negative. Otherwise it is
called positive. Horn constraints of the form c;, V---V ¢;, witht > 2 are called
disjunctive.

Example. The following are examples of Horn constraints:
T +.’E2—2£L’3 §67£L'1 —35[)3+1’4 #3,
201 —x3 — x4 <3V 21 —x9+ x4 4V a3 — 225+ 6 # 8,
T —.1‘2—$37é3\/—$1 —2$3—4l‘47é8,

The first and the third constraints are positive, while the second and the
fourth are negative. The third and fourth constraints are disjunctive.

Definition 2 Let r € {<,>,#}. A Koubarakis formula [6] is a formula of
either of the two forms: (1) (x —y)re or (2) zre.

Definition 3 A simple temporal constraint [2] is a formula of the form: ¢ <
(—y) <d

Definition 4 A simple metric constraint [5] is a formula of the form: —cri(x—
y)rod, where r1,19 € {<, <}.

Definition 5 A CPA/single interval formula [9] is a formula of one of the
following two forms: (1) cri(x — y)rad ; or (2) ary, where r € {<, <, =,#,>
, >} and r,re € {<, <}

Definition 6 A TG-II formula [3] is a formula of one of the following forms:
(1)ce<x<d, 2)c<z—y<d or (3) zry, wherer € {<,<,=,#,>,>}.

Following, we present some definitions that are applied in the paper.

Definition 7 Given two points x,y € R, a convexr combination of x and y is
any point of the form z = Az + (1 — Ny, where 0 < A < 1. A set S € R is
convez if and only if it contains all convex combinations of all pairs of points
z,y €S.

Definition 8 An Extended DLR is a disjunction ¢; = ¢;, V ¢i,V, ..., V¢;, where
each c; , k =1,...,t is a linear inequality, a linear disequation or a non-linear
disequation. A negative Extended DLR is an Extended DLR without inequali-
ties. Otherwise it is called positive. Extended DLRs of the form c¢;, V ---V ¢;,
with t > 2 are called disjunctive. Each c;, is called atomic constraint.

Example. The following are examples of Extended DLRs:
I1+I272I3 S 6,:61 731‘34’504 #3,
201 —x3 —xy < 3V2r1 —xo+ 24 §4Vx§+x5—|—\3/%7é 12,
x‘f—xg—w% #3\/—301—2962—49547&87
The first and the third constraints are positive while the second and the
fourth are negative. The third and four constraints are disjunctive.

Definition 9 A continuous CSP whose variables are ranged in non unitary
domains, that is, each domain D; = [l;,u;] : l; < u;, then the CSP is called
non-single CSP.

Theorem 1 A non-single CSP with a finite set of negative Extended DLRs is
consistent.

Proof:(Proof by Contradiction.) Suppose the CSP is not consistent, that
is, there is no point inside the polyhedron generated by the cartesian product
of the variable domain bounds:

1.- This polyhedron is a hyperplane S C R"~! of the entire space R" and
a disequation deletes this hyperplane. However this contradicts the fact that
CSP is non-single.

2.- Every point inside the polyhedron is deleted by one or more hyperplanes.
These hyperplanes represent the negative disequations. However, there exists
an infinite number of points, so an infinite number of disequations is necessary
to cover all points p C S. Again this contradicts the fact that there exists a
finite number of disequations.

corollary A non-single CSP with disjunctive constraints with at least one
disequation per disjunction is consistent.

Proof: Without loss of generality, we can select a disequation for each
disjunctive constraint. The resultant set of constraints is a set of negative
constraints. By Theorem 1, this set of constraints is consistent, so the entire
problem is consistent.

3 Specification of DPOLYSA

DPOLYSA is considered to be a CSP solver that manages Extended DLRs. A
general scheme of DPOLYSA is presented in Figure 1. Initially, DPOLYSA runs

a preprocessing step in which two algorithms are carried out: the Constraint
Selection Algorithm (CSA) that selects the non-disjunctive problem that is
more likely to be consistent and later the Constraint Ordering Algorithm (COA)
that classifies the resultant constraints in order to study the more restrictive
constraints in first place. Then, using the resultant ordered and non-disjunctive
problem, POLYSA [11] carries out the consistency study as a classic CSP solver.

3.1 Preprocessing Step

Solving disjunctive constraint problems requires considering an exponential
number of non-disjunctive problems. For example, if the problem has dis-
junctive constraints composed by two atomic constraints, the number of non-
disjunctive problems is 2¥, where k is the number of disjunctive constraints.

Here, we propose CSA that obtains the non-disjunctive problem that is
more likely to satisfy the problem. This algorithm can be compared with the
sampling from a finite population in which there is a population, and a sample
is chosen to represent this population. In this context, the population is the
convex hull of all solutions generated by means of the Cartesian Product of
variable domain bounds. This convex hull may be represented by a polyhedron
with n dimensions and 2™ vertices. However, the sample that the heuristic tech-
nique chooses is composed by n? items (vertices of the complete polyhedron)!.
These items are well distributed in order to represent the entire population.

With the selected sample of items (n?), CSA studies how many items v;; :
v; < n? satisfy each atomic constraint c¢ij - Thus, each atomic constraint is
labelled ¢;;(pi;), where p;; = v;;/ n? represents the probability that ci; satisfies
the entire problem. Thus, CSA classifies the atomic constraints in decreasing
order and selects the atomic constraint with the highest p;; for each disjunctive
constraint.

As we remarked in the preliminaries, constraints are considered additive,
that is, the order in which the constraints are studied does not make any dif-
ference [1]. However, the constraint ordering algorithm (COA) carries out an
internal ordering of the constraints. If some constraints are more restricted
than others, these constraints are studied first in order to reduce the resultant
problem. Thus, the remaining constraints are more likely to be redundant.
However, if the remaining ones are not redundant, they generate less new ver-
tices, so the temporal complexity is significantly reduced.

COA classifies the atomic constraints in ascending order with respect the
labels p;;. Therefore, the preprocessing step has translated the disjunctive non-
binary CSP into a non-disjunctive and ordered CSP in order to be studied by
the CSP solver.

Example: Let’s take a problem with three variables (n = 3), three disjunc-
tive constraints (k = 3) with two atomic constraints per disjunction (¢t = 2):

C1:C11 vV C12

IThe heuristic selects n? items if n > 3, and 2" items, otherwise

PREPROCESSING STEP

= SELECTION - ORDERING
C1=C11VCpV...vVC Cc=C C,
e "1 atcoritaM | S ALGoritEM |
C2=Cy1VCV...VCot Cr=Ca5(2) Cord2
Ck=Ck1VCK2V... VCy Cr=Cks(k) Cordk
DISJUNCTIVE NON-DISJUNCTIVE N ON%‘}SDf[}‘]\ngIVE

PROBLEM PROBLEM PROBLEM

oL s 1 ag 1

@y POLYSA
x;el|lu; Creation
S [y} = [hyte]

Redundant

Iniqualities (Step 2) (Step 3)

) Polyhedron
Consistent Updating

?

n
2% <b Y
i=1

— Step 4
No L1 (Stepd)

Not consistent
Backtracking current Problem

(kt times allowed)

Problem Consistency
with disequations

-Consstent Problem
-One or Many Solutions
-Minimal Domains
-Multiobjective Function |

Figure 1: General Scheme of the Disjunctive Polyhedron Search Algorithm

Co . C21 \Y Co2
€331V C32

The algorithm checks how many items (from a given sample: 8 items) satisfy
each atomic non-binary constraint and orders them afterwards. Let’s assume
the following results:

V11 = 2, V12 = 6, V21 = 7, Vg2 = 4, V31 = 0, V32 = 7
P11 = 2/8 = 0.25,]712 = 0.75,p21 = 087, P22 = 0.5,p31 = O,pgg = 7/8 = 0.87

[011(0.25) \Y 012(0.75) [612(0.75) \Y 011(0.25)
o : €21(0.87) V ¢22(0.50) ordering co : c21(0.87) V ¢22(0.50)
C3 ! 831(0.00) \Y 632(0.87) C3 . 632(0.87) \Y 031(0.00)

The selected constraints are: (ci2, a1, ¢32), so DPOLYSA will run the cor-
responding non-disjunctive problem. (See Figure 2)

3.2 DPOLYSA: CSP solver

When the preprocessing step has been carried out, DPOLYSA runs the CSP
solver that studies the resulting non-disjunctive and ordered problem. This

€11,22,C31 €12,€22,C31

C11,€21,C32 C12,€21,C32

Figure 2: The process of translation process into non-disjunctive problems

CSP solver is called POLYSA [11]. The main steps of POLYSA are shown
in Figure 1. POLYSA generates an initial polyhedron (step 1) with 2n® ver-
tices created by means of the Cartesian Product of the variable domain bounds
(D1 X Dy x ... x Dy), but randomly selects the vertices so that each polyhe-
dron face maintains n? vertices that have not ever been selected by any other
adjacent face. POLYSA manages the inequalities and disequations in two dif-
ferent steps. For each inequality, POLYSA carries out the consistency check
(step 2). If the inequality is non consistent, POLYSA returns 'not consistent
current problem’ and DPOLYSA backtracks to the preprocessing step in or-
der to select a new non-disjunctive problem. Otherwise, POLYSA determines
whether the inequality is not redundant, and updates the polyhedron (step 3),
(i.e.) DPOLYSA eliminates the not consistent vertices and creates the new
ones. Finally, when all inequalities have been studied, DPOLYSA studies the
consistency with the disequations (step 4). Therefore, the solutions to CSP are
the all vertices, as well as all the convex combinations between any two vertices
that satisfy all disequations.

It must be taken into account that when the current non-disjunctive problem
is not consistent, POLYSA finishes its execution and DPOLYSA backtracks to
the preprocessing step in order to select the following best set of non-disjunctive
constraints. In the worst case, DPOLYSA backtracks kt times, if the problem
is not consistent (where k is the number of disjunctive constraints and ¢ is
the number of atomic constraints per disjunction). If DPOLYSA did not run
a preprocessing step, then it would be necessary to check t* non-disjunctive
problems in order to study all possibilities. However, experimental result show
us that kt backtracking steps was enough for us to study correctly 95% of the
problems.

Finally, DPOLYSA can obtain some important results such as:
e The problem consistency: if the polyhedron is not empty.

e One or many problem solutions: solutions to CSP are all vertices and all
convex combinations between any two vertices satisfying all disequations.

e The minimal variable domains: these domains are updated (reduced)
when each inequality is studied.

e The vertex of the polyhedron that minimizes or maximizes some objective
or multi-objective function: the objective function solution is an extreme
point of the resultant polyhedron.

It must be taken into account that the DPOLYSA might fail due to the
fact that the polyhedron generated by the heuristic does not maintain all the
vertices of the complete polyhedron.

Theorem 2 POLYSA is correct Vn € N

Proof: POLYSA is correct Vn € N because the resulting polyhedron is convex
and is a subset of the resulting convex polyhedron obtained by the complete
algorithm HSA [10]. So, we can conclude that POLYSA is correct ¥n € N.

Proposition 3 Forn < 12, POLYSA is complete

Proof: POLYSA generates 2n? vertices; when n < 12, this number is greater
than 2". Hence the algorithm is complete since all vertices are covered.

4 Analysis of DPOLYSA

DPOLYSA spatial cost is determined by the number of vertices generated.
Initially, in the preprocessing step, DPOLYSA studies the consistency of the
n? items with the atomic constraints, where n is the number of variables, so
the spatial cost is O(n?). Then, DPOLYSA generates 2n® vertices. For each
inequality (step 2), DPOLYSA might generate n new vertices and eliminate
only one. Thus, the number of polyhedron vertices is 2n® + k(n — 1) where k
is the number of disjunctive constraints. Therefore, the spatial cost is O(n?).

The temporal cost can be divided into five steps: Preprocessing step, ini-
tialization, consistency check with inequalities, updating and consistency check
with disequations. In the preprocessing step, CSA checks the consistency
of the sample with each atomic constraint, so the temporal cost is O(ktn?).
The atomic constraint ordering in the disjunctive constraints is carried out in
O(ktlog(t)). COA only classifies the selected set of k atomic constraints in
decreasing order. Thus, the temporal cost of the preprocessing step is O(ktn?),
where t is the maximum number of atomic constraints in a disjunctive con-
straint. The initialization cost (step 1) is O(n?) because the algorithm only
generates 2n? vertices. For each inequality (step 2), the consistency check cost
depends linearly on the number of polyhedron vertices, but not on the vari-
able domains. Thus, the temporal cost is O(n?). Finally, at the worst case
the cost of updating (step 3) and the consistency check with disequations de-
pends, on the number of vertices, that is O(n3). Thus, the temporal cost is:
O(ktn?) + O(n?) + kkt - (O(n3) + O(n?)) + O(n®) = O(k*tn3). Note that, in
practice, this complexity is smaller because the heuristic technique statistically
obtains the most appropriate non-disjunctive problem at the preprocessing step,
so it is not necessary to try the n allowed possibilities.

5 Evaluation of DPOLYSA

In this section, we compare the performance of DPOLYSA with some of the
CSP solvers. We have selected Forward-checking (FC) and Real Full Look-
ahead (RFLA)? because they are the most appropriate techniques that can
manage this CSP typology . We have used a PIII-800 with 256 Mb. of memory
and Windows NT operating system.

The random generated problems depended on five parameters < n, c<, cx,
d,t >, where n was the number of variables, c< the number of disjunctive
inequalities, cx the number of disequations, d the length of variable domains
and ’t’ the number of atomic inequalities per disjunction. To evaluate the
behavior of the algorithms with the selected domains, we fixed the domain
length to their maximum values in Figures 4, 6 and 7. In Figures 3 and 5, we
fixed the maximum bounds of the variable domains. These random domains
could be lower. The problems were randomly generated by modifying these
parameters. We considered all constraints with non-null coefficients, that is
p; # 0 Vi = 1..n. Thus, each of the graphs shown sets four of the parameters
and varies the other one in order to evaluate the algorithm performance when
this parameter increases. We tested 100 test cases for each type of problem
and each value of the variable parameter, and we present the mean CPU time
for each of the techniques. Five graphs are shown below. (Figures 3, 4, 5, 6, 7)
which correspond to the five significant parameters. Each graph summarizes
the Mean CPU time for each technique. Here, for unsolved problems in 200
seconds, we assigned a 200-second run-time. Therefore, this graph contains a
horizontal asymptote in tiéme = 200.

Mean CPU tin e In problm s <v,6,10,200,6>
170
150 o
130 o
110 o o
207 RFLA
70
50 4 — —e—DPOLYSA
30
10 4 /

4 6 8 10 12 14
Num berofVariables

Tine (in sec.)

Figure 3: Mean CPU Time when the number of variables increases

In Figure 3, the number of disjunctive inequalities, the number of disequa-
tions, the maximum bounds of the variable domains and the number of atomic
inequalities were set < n,6,20,200,6 >, and the number of variables was in-
creased from 4 to 14. The variable domains were randomly chosen between

2Forward-checking and Real
Full Look-ahead were obtained from CON’FLEX, which is a C++ solver that can handle
constraint problems with continuous variables and disjunctive constraints. It can be found
in: http://www-bia.inra.fr/T/conflex/Logiciels/adressesConflex.html.

[—200,200], so the variables took different domains: [I,u] C [—200,200]. The
graph shows a global view of the behavior of the algorithms. The mean CPU
time in FC and RFLA increased faster than DPOLYSA, which only increased
its temporal complexity polynomially. When the unsolved problems were set
to time=200, and the others maintained their real time cost, we observed that
FC was worse than RFLA. However, DPOLYSA always had a better behavior
and was able to solve all problems satisfactorily.

Mean CPU tin e In problm s <10,c,10,200 6>

190
o 140
3 —a— FC
H g0 RFLA
; —e—DPOLYSA
T //

-10
2 4 6 8 10

Num berof hequalites

Figure 4: Mean CPU Time when the number of disjunctive inequalities in-
creases

In Figure 4, the number of variables, the number of disequations, the domain
length and the number of atomic inequalities were set < 10, ¢, 40, 200,6 >, and
the number of random disjunctive inequalities ranged from 2 to 10. In this case,
the domain length was fixed, so that all variable domains were [—200, 200].

The graph shows that the mean CPU times in FC and RFLA increased
exponentially and were near the horizontal asymptote for problems with 10
disjunctive inequalities. However, DPOLYSA only increased its temporal com-
plexity polynomially. The number of unsolved problems increased in FC and
RFLA much more than in DPOLYSA. Also, the behavior of FC and RFLA
was worse in fixed domains than in random domains. This can be seen in Fig-
ure 3 when v = 10 and Figure 4 when ¢ = 6. In both cases the problem is
< 10,6,40,200,6 > and the mean CPU time is different in both graphs.

Mean CPU tine In problm s <10,6,c 200 ,6>

115
95 1 N
/——— —h— FC
75

RFLA

—e—DPOLYSA

Tine (i sec.)

8 12 16 20 24 28

Num berofDisequations

Figure 5: Mean CPU Time when the number of disequations increases

In Figure 5, the number of variables, the number of disjunctive inequal-
ities, the domain length and the number of atomic inequalities were set <
10,6,¢,200,6 >, and the number of random disequations ranged from 6 to
26. The variable domains were randomly chosen between [—200,200]. The
graph shows that the behavior of FC and RFLA got worse when the number
of disequations increased. DPOLYSA did not increase its temporal complexity
due to the fact that it carried out the consistency check of the disequations in
low complexity. The number of unsolved problems was very high for both FC
and RFLA, while DPOLYSA had a good behavior. Note that DPOLYSA was
proved with an amount of 10° disequations and it solved them only in a few
seconds (< 3 sc.)

Mean CPU tine in problm s <10,6,10d 6>

175 | A

115 A FC
RFLA
—e—DPOLYSA

Tine (n sec.

200 400 800 1600 3200 6400

Dom ain Length

Figure 6: Mean CPU Time when the number of domain length increases

In Figure 6, the number of variables, disjunctive inequalities, disequations
and atomic inequalities were set < 10,6, 10,d,6 >, and the domain length was
increased from [—200, 200] to [—6400, 6400].

The graph shows that the behavior of FC and RFLA got worse in all domain
length. DPOLYSA had a constant temporal complexity because this complex-
ity is independent from the domain length. The number of unsolved problems
was very high for both FC and RFLA, while DPOLYSA had a good behavior.

Mean CPU tin e n problm s <10,6,10 200 t>
o5 /_—‘— — *
— 145
o
2 —— FC
H o5 RFLA
“E’ —e—DPOLYSA
B 45
-5
4 6 8 10 12 14
Num berofAtom ic Constaints

Figure 7: Mean CPU Time when the number of atomic constraints increases

In Figure 7, the number of variables, disjunctive inequalities, disequations,
and the domain length were set < 10,6, 10,200,¢ >, and the atomic inequal-

ities were increased from 4 to 14. In this case, the domain length was fixed
to [—200,200]. To study the behavior of the algorithms when the number of
atomic inequalities increased, we chose t — 1 non-consistent atomic inequalities
and only one inequality atomic constraint. That is, if the number of atomic
inequalities was 8, the random constraint generator generated 7 non-consistent
atomic inequalities and 1 consistent constraint. Thus, we could observe the be-
havior of the algorithm when the number of atomic inequalities increased. FC
and RFLA had worse behavior than DPOLYSA. DPOLYSA makes a prepro-
cessing step in which it selects the most appropriate non-disjunctive problem.
Also, this preprocessing step is made in polynomial time, so the temporal cost
is very low.

Remark 1 . These tests were stopped at 200 seconds because it is the limit in
which RFLA and FC had solved most of the problems. Between 200 and 1000
seconds, less than 3% of problems were solved by FC and RFLA.

We present a comparison between RFLA and FC using the proposed pre-
processing step (RFLA with preprocessing and FC with preprocessing) and not
using it (RFLA without Preprocessing and FC without Preprocessing) in Table
1. The random generated problems had the following properties: the number
of variables, the number of disequations, the variable domain length and the
number of atomic inequalities were set < 5, ¢, 5,10,2 > and the number of dis-
junctive inequalities were increased from 5 to 25. It can be observed that the
preprocessing step reduced the number of constraint tests in both algorithms.
The difference between FC without preprocessing and FC with preprocessing
would increase if the number of atomic constraints were higher than 2.

Number of disjunctive constraints
Algorithm 5 10 15 20 25
FC without Preprocessing 24 44 64 84 104
FC with Preprocessing 14 24 34 44 54
RFLA without Preprocessing 18.2 56.1 77.8 162.6 504.1
RFLA with Preprocessing 10.6 38.8 413 85.1 262.2

Table 1: Average number of constraint tests in problems < 5,¢,2,10,2 >.

6 Conclusions

In this paper, we have extended the class of DLRs to include disjunctions with
an arbitrary number of linear inequalities, linear disequations and non-linear
disequations. This new class of constraints called Extended DLRs subsumes
several other classes of constraints. Moreover, our objective is not only to de-
cide consistency, but also to obtain one or several solutions and to obtain the
minimal domain of the variables. To achieve this objective, we have proposed

an algorithm called DPOLYSA that solves the class of Extended DLRs as a
non-binary disjunctive CSP solver. This proposal carries out two preprocess-
ing algorithms. CSA translates the disjunctive problem into a non-disjunctive
one and COA classifies the atomic constraints in an appropriate order. Then,
POLYSA runs the resulting non-disjunctive problem.

References

[1]

2]

[12]

R. Bartk, ‘Constraint programming: In pursuit of the holy grail’, in Pro-
ceedings of WDS99 (invited lecture), Prague, June, (1999).

R. Dechter, I. Meiri, and J. Pearl, ‘Temporal constraint network’, Artificial
Intelligence, 49, 61-95, (1991).

A. Gerevini, L. Schubert, and S. Schaeffer, ‘Temporal reasoning in time
graph i-ii’, SIGART Bull 4, 3, 21-25, (1993).

P. Jonsson and Backstrom C., ‘A linear programming approach to tempo-
ral reasoning’, In Proceedings of AAAI-96, 1235-241, (1996).

H. Kautz and P. Ladkin, ‘Integrating metric and temporal qualitative tem-
poral reasoning’, In Proc. 9th National Conference Artificial Intelligence
(AAAI-91), 241-246, (1991).

M. Koubarakis, ‘Dense time and temporal constraints with j;’, In Proc.
3rd International Conference on Principles of Knowledge Representation
and Reasoning (KR-92), 24-35, (1992).

M. Koubarakis, ‘Tractable disjunction of linear constraints’, In Proc. 2nd
International Conference on Principles and Practice of Constraint Pro-
gramming (CP-96), 297-307, (1999).

J.L. Lassez and K. McAloon, ‘A canonical form for generalizad linear con-
straints’, In Advanced Seminar on Foundations of Innovative Software De-

velopment, 19-27, (1989).

I. Meiri, ‘Combining qualitative and quantitative constraints in temporal
reasoning’, Artificial Intelligence, 87, 343385, (1996).

M.A. Salido and F. Barber, ‘An incremental and non-binary CSP solver:
The Hyperpolyhedron Search Algorithm’, In Proceedings of Constraint
Programming (CP-2001), LNCS 2239, 799-780, (2001).

M.A. Salido and F. Barber, ‘POLYSA: A polinomial algorithm for non-
binary constraint satisfaction problems with <= and <>’, In Proceeding of
EPIA-2001 Worshop on Constraint Satisfaction and Operation Research
(CSOR01), 99-113, (2001).

E. Sontag, ‘Real addition and the polynomial time hierarchy’, Information
Processing Letter, 20, 115-120, (1985).

