
POLYSA: A Polynomial Algorithm for Non-binary 
Constraint Satisfaction Problems with ≤  and  ≠ 

Miguel A. Salido, Federico Barber 

Dpto. Sistemas Informáticos y Computación 
Universidad Politécnica de Valencia, Camino de Vera s/n 46071 

Valencia, Spain 
{msalido, fbarber}@dsic.upv.es 

Abstract. Nowadays, many real problems can be naturally modelled as 
Constraint Satisfaction Problems (CSPs). It is well known that any non-binary 
CSP can be transformed into an equivalent binary one, using some of the 
current techniques. However, this transformation may not be practical in 
problems with certain properties. Therefore, it is necessary to manage these 
non-binary constraints directly. In this paper, we propose a heuristic called 
"POLYSA" that solves non-binary constraint satisfaction problems in a natural 
way as an incremental and non-binary CSP solver. This non-binary CSP solver 
carries out the search through a polyhedron that maintains in its vertices those 
solutions that satisfy all non-binary constraints. 

1. Introduction 

Nowadays, many problems in the 'real world' can be efficiently modelled as 
constraint satisfaction problems and solved using constraint programming 
techniques. These include problems from fields such as artificial intelligence, 
operational research, databases, expert systems, etc. Most of these problems can be 
modelled naturally as non-binary constraint satisfaction problems. Modelling a 
problem with non-binary constraints has several advantages. It facilitates the 
expression of the problem, enables more powerful constraint propagation as more 
global information is available, etc. It is well known that any non-binary CSP can be 
solved directly by means of non-binary CSPs solvers or transformed into a binary 
one [10]. However, this transformation has several drawbacks:  
- The translation process generates new variables, so it produces a significant 

increase in the problems size, causing extra memory requirements for 
algorithms. In some cases, solving the binary formulation can be very inefficient 
[1] [3] [8]. 

- In any case, this forced binarization generates unnatural formulations, which 
cause extra difficulties for constraint solver interfaces with human users [2].  

 
In this paper, we propose an algorithm called "Polyhedron Search Algorithm " 

(POLYSA) that manages non-binary CSPs in a natural way as an incremental and 
non-binary CSP solver. This algorithm is based on HSA [11][12] which is the 



complete algorithm because it maintains all the vertices generated by the Cartesian 
Product of the variable domain bounds. Although HSA obtains good experimental 
results, its computational complexity is O(2n), so the use of heuristics is necessary to 
solve these problems in polynomial time. Therefore, we present POLYSA which 
shares the same philosophy as HSA, (i.e) the vertices are generated by the Cartesian 
Product of some variable domain bounds. However its computational complexity is 
reduced to O(n3), although POLYSA is not a complete algorithm. 

POLYSA efficiently manages non-binary CSPs with many variables, many 
constraints and very large domains. This proposal overcomes some of the 
weaknesses of other typical techniques, like Forward-Checking and Real Full Look-
Ahead, since its complexity does not change when the domain size and the number of 
disequational constraints increase. Moreover, we can manage constraints 
(inequalities ≤ ) and (disequations ≠) that can be inserted incrementally and 
dynamically into the problem without having to solve the whole problem again. 
Thus, we can manage non-binary dynamic constraints which are very frequent in 
many real applications. 

This paper is structured as follows: First, we present the preliminaries and the 
constraint typology that POLYSA can manage. Then, we present the algorithm and 
evaluate its behaviour with some of the current techniques. Finally, we present the 
conclusions and future work proposals. 

2. Preliminaries 

Briefly, a constraint satisfaction problem (CSP) that POLYSA manages consists of: 
• A set of variables . },...,{ 1 nxxX =
• For each variable  there is a domain of possible values . Xxi ∈ iD
• A set of constraints  restricting the values that the variables can 

simultaneously take.  
},...,{ 1 pccC =

 
A solution to a CSP is an assignment of a value from its domain to every variable, 

such that all constraints are satisfied.  
The objective in a CSP may be: 
- to determine whether a solution exists 
- to find one solution, (with no preference as to which one), many or all 

solutions 
- to find the variable domains 
- to find an optimal, or a good solution by means of an objective or multi-

objective function defined in terms of certain variables. 

2.1 Notation and definitions 

We will summarize the notation that we will use in this paper. 



Generic: The number of variables in a CSP will be denoted by n. The domain of the 
variable xi will be denoted by . The constraints will be noted by c, and all the 
constraints have the maximum arity n. We will always use this notation when 
analysing the complexities of algorithms. 

iD

Variables: To represent variables we will use x with an index, for example, x1, xi, xn. 

Domains: The domain of the variable xi will be denoted by [ ]iii ulD ,= , so the 
domain length of the variable xi is ii lu − . It is important to realise that the domain is 
continuous. 

Constraints: Let  be a set of real-valued variables. Let α be a 

polynomial of degree n (i.e., ) over X and b an integer. A linear relation 

over X is an expression of the form αrb where r ∈{<, ≤ , =, ≠, ≥, >}. A linear 
disequation over X is an expression of the form α ≠ b. A linear equality over X is an 
expression of the form α = b. The constraints that we are going to manage are linear 
relations and linear disequations of the form: 

},...,{ 1 nxxX =

∑=
=i

ii xp
1

α
n

Inequalities:  bxp
n

i
ii ≤∑

=1

(1) 

Disequations:  linearnonxFbxFbxp
n

i
ii −≠∧≠∑

=
 )(:)(  

1

(2) 

where  are variables ranging over continuous intervals ix [ ]iii ulx , ∈ , b is a real 

constant, and . Using the above constraints, equalities can be written as 
conjunctions of two inequalities. Similarly, strict inequalities can be written as the 
conjunction of an inequality and an disequation. Thus, we can manage all possible 
combinations: {<, ≤ , =, ≠, ≥, >}. 

1≥n

Definiton 1. 

Given two points x,y∈ℝn, a convex combination of x and y is any point of the form 
yxz )1( λλ −+=  where 0≤ λ≤ 1. A set S⊆ℝn is convex iff it contains all convex 

combinations of all pairs of points x,y∈S. 

Definition 2. 
Let r ∈{≤ , ≥, ≠}. A Koubarakis formula [7] is a formula of either of the two forms 
(1) (x-y)  r c  or (2) x r c . 



Definition 3. 
A simple temporal constraint [4] is a formula of the form c ≤  (x-y) ≤  d. 

Definition 4. 
A simple metric constraint [6] is a formula of the form -c r1 (x-y) r2 d where  
r1, r2 ∈{<, ≤ }. 

Definition 5. 
A CPA/single interval formula [9] is a formula of one of the following two forms: (1) 
c r1 (x-y) r2 d; or (2) x r y where r ∈{<, ≤ , =, ≠, ≥, >} and r1, r2 ∈{<, ≤  }. 

Definition 6. 
A TG-II formula [5] is a formula of one of the following forms: (1) c≤  x≤ d, (2) c≤  
x-y≤ d or (3) xry where r ∈{<, ≤ , =, ≠, ≥, >}. 

 
Note that the tractable formalisms defined in Definitions 2-6 can be trivially 

expressed in order to be managed by our proposal POLYSA. 

2.2 Constraints 

We now give more definitions on constraints and distinguish between binary and 
non-binary constraints. 
The arity of a constraint is the number of variables that the constraint involves. A 
unary constraint is a constraint involving one variable. A binary constraint is a 
constraint involving a pair of variables. A non-binary constraint is a constraint 
involving an arbitrary number of variables. When referring to a non-binary CSP we 
mean a CSP where some or all of the constraints have an arity of more than 2. 
POLYSA is a CSP solver that manages non-binary constraints. 

Example. 
The following are examples of non-binary constraints: 

 

( ), ( ), (49362 4321 ≤−+− xxxx 4323 5
3
431 ≠−− xxxx 442 4321 <+−− xxxx ) 

 

The first and second constraints are managed directly by POLYSA, the last 
constraint is transformed into two constraints:  

) 442(    ) 442 (    ) 442( 432143214321 ≠+−−∧≤+−−⇒<+−− xxxxxxxxxxxx
 

3. Specification of the Polyhedron Search Algorithm 

Initially, POLYSA can be considered as a classic CSP solver, where there is a 
static set of constraints that the solution must satisfy. The main steps are shown in 



Fig1. POLYSA generates an initial polyhedron (step 1) with 2n3 vertices created by 
means of the Cartesian product of the variable domain bounds ( nDDD ××× L21 ), 
but randomly selecting the vertices such that each polyhedron face maintains n2 
vertices that have not ever been selected by any other adjacent face. 

For each input (≤) constraint, POLYSA carries out the consistency check (step 2). 
If the (≤) constraint  is not consistent, POLYSA returns not consistent problem; 
otherwise, POLYSA determines whether the (≤) constraint is not redundant, and 
updates the polyhedron (step 3), (i.e.) POLYSA eliminates the not consistent vertices 
and creates the new ones. When all static (≤ ) constraints are studied, MAS checks 
the consistency with the (≠) constraints (step 4). 

Thus, solutions to CSP are all vertices and all convex combinations between any 
two vertices satisfying all disequational constraints. 

Finally, POLYSA can obtain some important results such as: (1) the problem 
consistency; (2) one or many problem solutions; (3) the new variable domains; and 
(4) the vertex of the polyhedron that minimises or maximises some objective or 
multiobjective function.  

It must be taken into account that the POLYSA might fail due to the fact that the 
polyhedron generated by the heuristic does not maintain all the vertices of the 
complete polyhedron. 
 

Furthermore, when POLYSA finishes its static behaviour (classic CSP solver), new 
constraints can be incrementally inserted into the problem, and POLYSA studies the 
consistency check as an incremental CSP solver. 

 

Polyhedron 
Creation 

No 

No 

Yes 

Yes 

(Step 1) 

(Step 2) (Step 3) 

Variable Domains 
[ ]iii ulx , ∈  

Fig. 1. General Scheme of the Polyhedron Search Algorithm. 

 

bxp
n

i
ii ≤∑

=1

For each 
constraint ≤  

Redundant 
?

 Consistent

?
(Step 4) 

Polyhedron 
Updating  

Not consistent 
Problem  

Problem Consistency  
with (≠) 

-Optimal point of Multi-
objective functions 

-Minimal Domains 
-One, many or all Solutions 
-Consistent Problem  



3.1 The Polyhedron Search Algorithm  

The main goal of POLYSA is to solve a problem as an incremental and non-binary 
CSP solver. The main specification of POLYSA is defined in Fig. 4. This 
specification includes three procedures:  

 
• Polyhedron_Creation (Dimension, domains) (Fig 2) is a module that generates 

the polyhedron vertices by means of the Cartesian Product of the variable 
domains obtaining some of the polyhedron vertices: 

),,,(,),,,,,,,(,),,,,( 21121211 nnnjjin uuuvuulllvlllv LLLLLL === +  

 

 } 
} 
Return ;   // the module returns a list with 2*DimensionListV 3 vertices. 
} 

  NewVertex ← Assigns a new unrepeated vertex in the current face 
  ∪ NewVertex; ListV

  Make(NewVertex);   // New empty vertex is generated 
 { 
 For j=0 to Dimensions*Dimensions do: 

For i=0 to 2*Dimensions do:  // For each face do the following 
 { 

Polyhedron_creation (Dimension, Domains) 
{ 

Fig. 2. Polyhedron_creation (step 1) 

• Satisfy(Ci, vi) is a module that determines whether the vertex  satisfies the 
constraint C

iv

i. Thus, this function only returns true if the result is b≤ , when the 
variables ( ) are set to values vnxxx ,,, 21 L i =( ). nvvv ,,, 21 L

 
• Polyhedron_Updation ( v′ , ) (Fig 3) is a module that updates the 

polyhedron eliminating all inconsistent vertices (  are the vertices that do not 
satisfy the constraint) and includes the new vertices generated by the intersection 
between arcs that contain a consistent extreme (vertex) and the other .  

noyes LL ,

noL

v′

 

Polyhedron_Updation ( , ) v′ noyes LL ,
{ 

For each adjacent vertex v of v′  do: 

POLYSA obtains the straight line l  that unites both vv  and ′  points. 

POLYSA intersects l  with the polyhedron obtaining the new point  v ′′
∪← yesyes LL v ′′  

return ; yesL
} 

Fig. 3. Polyhedron_Updation (step 3) 



 { 
If Satisfy(Ci, vi) then:         // checks if the vi satisfies the constraint Ci

}{ iyesyes vLL ∪← ;  // Ci  is consistent with the system 

else ; }{ inono vLL ∪←
} 

   If STOPLyes ⇒=φ ;                    // Ci is not consistent with the system  

   If ⇒=φnoL " Ci is consistent and redundant "; 
   else  

Step 3  Polyhedron_Updation (noLv ∈′∀ v′ , ; noyes LL , )
   } 
Step 4 Satisfaction(Constraints≠, , Solutions); // see section 3.2 yesL
return output;  // OFHH returns the consistency check, and some extreme solutions 
 
} 

Step 2..For each Constraints≤   do: ∈iC
   { 
   do: ListVvi ∈∀

POLYSA (Dimension, Domains, Constraints≤  ,Constraints≠ , Solutions) 
{ 
Step 1   Polyhedron_Creation (Dimension, Domains, Constraints≤ ); ListV ←

;φ←yesL ;φ←noL  

Fig. 4. Polyhedron Search Algorithm. 

 
Theorem 1: POLYSA is correct ∀n∈N.  
 

Proof: POLYSA is correct ∀n∈N because the resulting polyhedron is convex and 
is a subset of the resulting convex polyhedron obtained by the complete algorithm 
HSA[12]. So, we can conclude that POLYSA is correct ∀n∈N.  

 
 
Theorem 2: For n < 10, POLYSA is complete. 

Proof: Suppose by contradiction that POLYSA is not complete for n<10.  
The initial polyhedron which is generated by the Cartesian Product of the variable 
domain bounds, contains 2n faces and 2n vertices.  

POLYSA generates n2 unrepeated vertices in each face. Thus, POLYSA generates 

 vertices. If POLYSA is not complete for n<10, then there are some 
vertices that POLYSA does not maintain for n<10. So 2n

32 22 nnn =⋅
3 < 2n for n<10. This is a 

contradiction, because  2n < 2n3 for n<10. So, POLYSA is complete for n<10. 
 



3.2 Consistency study with constraints ≠ 

In this section, we present the behavior of POLYSA when there are some (≠) 
constraints. The consistency study of constraints of this type has a linear complexity 

with the number of (≠) constraints. Following, in Fig. 5, we present an example in ℝ2 
that summarizes the possible situations that might be reached. 
- Polyhedron (1) represents the initial polyhedron created by the Cartesian Product 

of the two variables. 
- Polyhedron (2) represents the resulting polyhedron when all the (≤ ) constraints 

have been analyzed.  
So, when POLYSA has checked the problem consistency with the constraints (≤ ) and 
it is consistent, POLYSA carries out the consistency check of the constraints (≠). 
Therefore, POLYSA maintains in a list, , all the resulting polyhedron vertices. 

The consistency check with the constraints (≠) and the list, , can generate four 

different cases: 

yesL

yesL

(a) Some vertices of the list, , are consistent with all the (≠) constraints. In 

this case, the problem is consistent. 
yesL

(b) Any vertex of the list ' ' is consistent with all the (≠) constraint. However, 

some convex combinations between two vertices are consistent with the (≠) 
constraint. In this case, the problem is consistent. 

yesL

(c) There is a (≤ ) constraint that reduces the polyhedron to a unique face, and the 
resultant vertices are not consistent with the (≠) constraints. However, some 
convex combinations between two vertices are consistent with the constraint 
(≠). In this case, the problem is consistent.  

(d) The last situation occurs when there is a (<) constraint, that is, a (≤) constraint 
that reduces the polyhedron to a unique face and a (≠) constraint  that 
eliminates this face. Thus, no vertex is consistent with the constraints and no 
convex combination is consistent. Therefore, the problem is not consistent. 

 
These constraints can be dynamically inserted or deleted from the problem due to 
the fact that the management of the (≠) constraints  has a low computational 
complexity. When a new (≠) constraint is inserted, the consistent vertices to this 
point are checked with the new one. It must be taken into account that if at least 
one vertex is consistent, the whole problem will be consistent. If a non-binary (≠) 
constraint is deleted from the problem, the algorithm looks for the vertices that 
have been eliminated by this constraint and determine whether these vertices have 
also been eliminated by other constraints. The vertices which have been 
eliminated by this constraint only are returned to the list ' '. If this list is not 

empty, the problem is consistent. Otherwise, the problem continues to be not 
consistent.  

yesL

 
 
 
 



Fig. 5. Different situations in (≠) constraints. 

3.3 Graphical Interface 

POLYSA allows the user to introduce the necessary parameters in order to randomly 
or manually run problems. The graphical interface is presented in Fig 6. The upper 
part of the screen shows the parameters that the user must configure: the number of 
variables, the number of (≤) constraints, the number of (≠) constraint, the domain 
length, the number of desired solutions if the problem is consistent, and finally, the 
number of problems if the user wants the program to generate several random 
problems. Then, when the parameters are set, the selected problems are randomly 
generated and solved by POLYSA.  

However, if the user wants to manually generate a problem, it is possible to 
introduce the variable domains and the selected constraints in the corresponding 
parameters. 

The problems generated and solved in the lower window of Fig. 6 are shown. This 
screen shows the selected parameters, the random or manual variable domains and 
constraints. Also, this screen displays some information about the execution, showing 
a partial solution and the CPU time for checking each (≤) constraint. Finally, this 
screen displays the consistency problem and the total CPU time. If the problem is 
consistent, the desired solutions are shown. 

 
 
 

Consistent ℝ2 

 

Consistent 

Consistent 

≠  

≤     

Not Consistent 

≤  

≠  

Constraint types 

  

(b) 

(c) 

(d) 

(a) 

(1) 

(2) 

Not consistent 
Consistent 
 

≤   
≠ 



Fig. 6. Graphical Interface 

4. Analysis of the Polyhedron Search Algorithm 

POLYSA spatial cost is determined by the number of vertices generated. Initially, 
POLYSA generates 2n3 vertices, where n is the number of problem variables. For 
each (≤) constraint (step 2), POLYSA might generate n new vertices and eliminate 
only one. Thus, the number of polyhedron vertices is 2n3+k(n-1) where k is the 
number of constraints. Therefore, the spatial cost is O(n3). However, HSA spatial 
cost is O(2n) due to the fact that the algorithm generates all the polyhedron vertices, 
and it would be impractical in problems with many variables. 
 

The temporal cost is divided into three steps: initialisation, consistency check and 
actualisation. The initialisation cost (step 1) is O(n3) because the algorithm only 
generates 2n vertices. For each (≤) constraint (step 2), the consistency check cost 
depends linearly on the number of polyhedron vertices, but not on the variable 
domains. Thus, the temporal cost is O(n3). Finally, the actualisation cost (step 3) 
depends on the number of variables O(n3). Thus, the temporal cost is: 

( ) )()()()( 3333 nkOnOnOknO ⋅⇒+∗+ . 



5. Evaluation of the Polyhedron Search Algorithm 

In this section, we compare the performance of POLYSA with some of the more 
current CSP solvers. We have selected Forward-checking (FC) and Real Full Look-
ahead (RFLA)1 because they are the most appropriate techniques that can manage 
this problem typology . To evaluate this performance, the computer used for the tests 
was a PIII-800 with 128 Mb. of memory and Windows NT operating system. 

 
The problems generated to evaluate the performance depended on four parameters 

<v,c≤ ,c≠ ,d>, where v was the number of variables, c≤  the number of (≤) constraints, 
c≠ the number of (≠) constraints and d the length of the variable domains. The 
problems were randomly generated by modifying the parameters and the c≤  and c≠ 
constraints were constraints of type (1) and (2), respectively, with the coefficients 
pi≠0.  

 Thus, each of the graphs shown sets three parameters and varies the other in order 
to evaluate the algorithm performance when this parameter increases.  

We tested 100 test cases for each problem and the value of the variable parameter, 
and we present the mean CPU time for each of the techniques. 

Following, four sets of graphs are shown. (Figures 7,8,9,10) corresponding to the 
four significant parameters. Each set summarises the algorithm behaviour from two 
different perspectives. 

(a) Mean CPU time for each technique. It must be taken into account that the 
unsolved problems were assigned a 200-second run-time Thus, this graph 
contains a horizontal asymptote in time=200. 

(b) Number of unsolved problems. That is, those problems that were not solved in 
200 seconds and problems that did not obtain the desired solution. 

 
In Fig.7, the number of (≤) and (≠) constraints and domain length were set 

<v,6,20,2000>, and the number of variables was increased from 3 to 13. 

 

Mean CPU time in problems <v,6,20,2000>

0
20
40
60
80

100
120
140
160
180

3 5 7 9 11 13

Number of Variables

Fig. 7. Temporal Cost in  problems <v,6,20,2000>. 

                                                           
1 Forward-checking and Real Full Look-ahead were obtained from CON'FLEX, that is a C++ 
solver that can handle constraint problems with interval variables. It can be found in: 
http://www-bia.inra.fr/T/conflex/Logiciels/adressesConflex.html. 

Number of unsolved problems 
 

 3 5 7 9 11 13 
FC FC 34 64 72 77 78 80 

RFLA 0 52 54 63 64 73 
RFLA
POLYSA

POLYSA 0 0 0 0 0 0 

  
Number of variables 

 



The graph shows a global view of the behaviour of the algorithms. The mean CPU 
time in FC and RFLA increased exponentially with the number of variables. POLYSA 
only increased its temporal complexity polynomially. When the unsolved problems 
were set to time=200, and the others maintained their real time cost, we observed that 
FC was worse than RFLA. However, as the number of variables increased, POLYSA 
had a better behaviour. The number of unsolved problems increased in FC and 
RFLA. POLYSA was able to solve all problem satisfactorily. 

 
In Fig.8 the number of variables, the number of (≠) constraints and the domain 

length were set <15, c≤  , 40, 2000>, and the number of random (≤) constraints  
ranged from 2 to 10.  

Mean CPU time in problems <15,c,40,2000>

0

50

100

150

200

2 4 6 8 10

Number of inequational constraints

 
Fig. 8. Temporal Cost in problems <15, c≤  , 40, 2000> 

 
The graph shows that the mean CPU times in FC and RFLA increased 

exponentially and were near the horizontal asymptote for problems with 10 (≤) 
constraint, however, RFLA had a better behaviour than FC. POLYSA only increased 
its temporal complexity polynomial, but when the number of constraints increased, 
the probability of failure also increased. The number of unsolved problems increased 
in FC and RFLA much more than in POLYSA, which was unable to solve only 10% 
of the problems with 10 (≤) constraints. 

 
In Fig.9, the number of variables, the number of (≤) constraints and domain length 

were set <15, 6, c≠ , 2000>, and the number of random (≠) constraints ranged from 10 
to 1000.  

 
Fig.9. Temporal Cost in problems <15, 6, c≠ , 2000> 

 Number of unsolved problems 
 

 
2 4 6 8 10 

FC
FC 14 52 80 94 96 

RFLA 
RFLA

10 69 71 77 85 

POLYSA 

POLYSA

0 0 0 5 10 
  

Number of inequational constraints 
 

Mean CPU time in problems <15,6,c,2000>

0

50

100

150

200

10 20 40 100 200 500 1000

Number of disequational constraints

 Number of unsolved problems 
 

 

10
 

20
 

40
 

10
0 

20
0 

10
00

0 

FC

FC 75 85 86 92 96 100 
RFLA
POLYSA

75 82 86 90 95 100 RFLA 
0 0 0 0 0 0 POLYSA 

  
Number of disequational constraints 



 
The graph shows that the behavior of FC and RFLA got worse when the number 

of (≠) constraints increased. POLYSA did not increase its temporal complexity due to 
the fact that it carried out the consistency check of the (≠) constraints in linear 
complexity. The number of unsolved problems was very high for both FC and RFLA, 
while POLYSA had a good behavior. 

 
In Fig.10 the number of variables and the number of random constraints were set 

<15, 6, 40, d>, and the domain length was increased from 50 to 10000.  

Mean CPU time in problems <15,6,40,d>

0

50

100

150

200

50 100 500 1000 5000 10000

Domain length

 
Fig. 10. Temporal Cost in problems <15, 6, 40, d>. 

 
The graph shows that the behavior of FC and RFLA got worse when the domain 

length  increased. POLYSA had a constant temporal complexity because this 
complexity is independent from the domain length . The number of unsolved 
problems was very high for both FC and RFLA, while POLYSA had a good behavior. 

6. Conclusions and Future Works 

In this paper, we have proposed an algorithm called POLYSA as an incremental 
and non-binary CSP solver. This proposal carries out the consistency study through a 
polyhedron that maintains in its vertices, those values that satisfy all metric temporal 
constraints. Thus, solutions to CSP are all vertices and all convex combinations 
between any two vertices that satisfy the disequational constraints. 

 
The computational cost depends polynomial on the number of variables, while 

other approaches depend exponentially on the number of variables, the number of 
constraints and the domain size. 

 
Because of the low temporal cost, an unsolved problem can be run several times to 

reduce the probability of POLYSA failing. This technique is carried out by varying 
the selected vertices that compose the polyhedron. 

 
Currently, we are working on more complete heuristics in order to decrease the 

probability of unsolved problems. We are working on disjunctive and non-binary 

 Number of unsolved problems 
 

 

50
 

10
0 

50
0 

10
00

 

50
00

 

10
00

0 

FC

FC 62 70 74 76 88 90 
RFLA
POLYSA

66 70 78 82 84 90 RFLA 
0 0 0 0 0 0 POLYSA 

  
Domain Length 



constraint satisfaction problems to be modelled as distributed and incremental CSP 
solvers. These proposals would work on a polyhedron whose vertices are also 
polyhedra, and the disjunctive and non-binary CSPs are solved by means of 
metaheuristic techniques. Also it is appropriate to generate algorithms to be 
configured dynamically depending on user inputs. This proposal will be composed of 
HSA as a complete algorithm, helped by heuristics like POLYSA and NFHH [13]. 
Thus, when the user insert the problem parameters, this proposal will study these 
parameters and will apply the most suitable algorithm. 

References 

1. Bacchus F., van Beek P.: On the conversion between non-binary and binary constraint 
satisfaction problems. In proceeding of AAAI-98, (1998) 311-318 

2. Bessière C., Meseguer P., Freuder E.C., Larrosa J.: On Forward Checking for Non-binary 
Constraint Satisfaction. In Proc. Principles and Practice of Constraint Programming (CP-
99), (1999) 88-102 

3. Bessière C.: Non-Binary Constraints. In Proc. Principles and Practice of Constraint 
Programming (CP-99), (1999) 24-27 

4. Dechter, R., Meiri, I., Pearl, J.: Temporal Constraint Network, Artificial Intelligence 49, 
(1991) 61-95  

5. Gerevini A., Schubert L., Schaeffer S.: Temporal Reasoning in Time Graph I-II, SIGART 
Bull 4 (3) (1993) 21-25 

6. Kautz H., Ladkin P.: Integrating metric and temporal qualitative temporal reasoning. In 
Proc. 9th National Conference Artificial Intelligence (AAAI-91), (1991) 241-246 

7. Koubarakis M.: Dense time and temporal constraints with ≠. In Proc. 3rd International 
Conference on Principles of Knowledge Representation and Reasoning (KR-92), (1992) 
24-35 

8. Larrosa J.: Algorithms and Heuristics for total and partial Constraint Satisfaction, Phd 
Dissertation, Barcelona, Spain, 1998 

9. Meiri I.: Combining qualitative and quantitative constraints in temporal reasoning. 
Artificial Intelligence 87 (1996) 343-385 

10. Rossi F., Petrie C., Dhar V.: On the equivalence of constraint satisfaction problems. In 
proceeding of European Conference of Artificial Intelligence, ECAI-90, (1990) 550-556 

11. Salido M. A., Giret A., Barber F.: Constraint Satisfaction by means of Dynamic 
Polyhedra. In Operations Research Proceeding (OR2001), (2001) 

12. Salido M.A., Barber F.: An Incremental and Non-binary CSP Solver: The 
Hyperpolyhedron Search Algorithm. In Proceedings of Seventh International Conference 
on Principles and Practice of Constraint Programming , (CP2001), 2001. 

13. Salido M. A., Giret A., Barber F.: A combination of AI and OR methods for solving Non-
binary Constraint Satisfaction problems. In Proceedings of Joint German/Austrian 
Conference on Artificial Intelligence (KI-2001) Workshop on New Results in Planning, 
Scheduling and Design (PUK2001). 2001 


