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Abstract. Nowadays, many real problem in Artificial Intelligence can
be modeled as constraint satisfaction problems (CSPs). A general rule
in constraint satisfaction is to tackle the hardest part of a search prob-
lem first. In this paper, we introduce a parameter (τ) that measures the
constrainedness of a search problem. This parameter represents the prob-
ability of the problem being feasible. A value of τ = 0 corresponds to an
over-constrained problem and no states are expected to be solutions. A
value of τ = 1 corresponds to an under-constrained problem which every
state is a solution. This parameter can also be used in a heuristic to guide
search. To achieve this parameter, a sample in finite population is carried
out to compute the tightnesses of each constraint. We take advantage of
this tightnesses to classify the constraints from the tightest constraint to
the loosest constraint. This heuristic may accelerate the search due to
inconsistencies can be found earlier and the number of constraint checks
can significantly be reduced.
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1 Introduction

Many real problems in Artificial Intelligence (AI) as well as in other areas of
computer science and engineering can be efficiently modeled as Constraint Sat-
isfaction Problems (CSPs) and solved using constraint programming techniques.
Some examples of such problems include: spatial and temporal planning, quali-
tative and symbolic reasoning, diagnosis, decision support, scheduling, hardware
design and verification, real-time systems and robot planning.

These problems may be soluble or insoluble, they may be hard or easy. How
to solve these problems have been the subject of intensive study in recent years.

Some works are focused on the constrainedness of search. Heuristics of mak-
ing a choice that minimises the constrainedness can reduce search [3].The con-
strainedness ”knife-edge” that measures the constrainedness of a problem during
search [10].



Most of the work are focused on general methods for solving CSPs. They
include backtracking-based search algorithms. While the worst-case complexity
of backtrack search is exponential, several heuristics to reduce its average-case
complexity have been proposed in the literature [2]. For instance, some algo-
rithms incorporate features such as variable ordering which have a substantially
better performance than a simpler algorithm without this feature [5].

Many works have investigated various ways of improving the backtracking-
based search algorithms. To avoid thrashing [6] in backtracking, consistency tech-
niques, such as arc-consistency and k-consistency, have been developed by many
researchers. Other ways of increasing the efficiency of backtracking include the
use of search order for variables and values. Thus, some heuristics based on vari-

able ordering and value ordering [7] have been developed, due to the additivity of
the variables and values. However, constraints are also considered to be additive,
that is, the order of imposition of constraints does not matter; all that matters
is that the conjunction of constraints be satisfied [1]. In spite of the additivity
of constraints, only some works have be done on constraint ordering heuristic
mainly for arc-consistency algorithms [9, 4].

Here, we introduce a parameter that measures the ”constrainedness” of the
problem. This parameter called τ represents the probability of the problem being
feasible and identify the tightnesses of constraints. This parameter can also be
applied in a heuristic to guide search. To achieve this parameter, we compute
the tightnesses of each constraint. Using this tightnesses, we have developed a
heuristic to accelerate the search. This heuristic performs a constraint ordering
and can easily be applied to any backtracking-based search algorithm. It classifies
the constraints by means of the tightnesses, so that the tightest constraints are
studied first. This is based on the principle that, in goods ordering, domain
values are removed as quickly as possible. This idea was first stated by Waltz
[11] ”The base heuristic for speeding up the program is to eliminate as many

possibilities as early as possible” (p. 60).
An appropriate ordering is straightforward if the constrainedness is known in

advance. However in the general case, an good classification is suitable to tackle
the hardest part of the search problem first.

In the following section, we formally define a CSP and summarize some or-
dering heuristics and an example of soluble and insoluble problem. In section 3,
we define a well-known definition of constrainedness of search problems. A new
parameter to measure the constrainedness of a problem is developed in section 4.
In section 5, we present our constraint ordering heuristic. Section 6 summarizes
the conclusions and future work.

2 Definitions and Algorithms

In this section, we review some basic definitions as well as basic heuristics for
CSPs.

Briefly, a constraint satisfaction problem (CSP) consists of:

– a set of variables V = {v1, v2, ..., vn}



– each variable vi ∈ V has a set Dvi
of possible values (its domain)

– a finite collection of constraints C = {c1, c2, ..., ck} restricting the values that
the variables can simultaneously take.

A solution to a CSP is an assignment of values to all the variables so that
all constraints are satisfied.

2.1 Constraint Ordering Algorithms

The experiments and analyses by several researchers have shown that the or-
dering in which variables and values are assigned during the search may have
substantial impact on the complexity of the search space explored. In spite of the
additivity of constraints, only some works have be done on constraint ordering.
Heuristics of making a choice that minimises the constrainedness of the resulting
subproblem can reduce search over standards heuristics [3].

Wallace and Freuder initiated a systematic study to identify factors that
determine the efficiency of constraint propagation that achieve arc-consistency
[9]. Gent et al. proposed a new constraint ordering heuristic in AC3, where
the set of choices is composed by the arcs in the current set maintained by
AC3 [4]. They considered the remaining subproblem to have the same set of
variables as the original problem, but with only those arcs still remaining in the
set. Walsh studied the constrainedness ”knife-edge” in which he measured the
constrainedness of a problem during search in several different domains [10]. He
observed a constrainedness ”knife-edge” in which critically constrained problems
tend to remain critically constrained. This knife-edge is predicted by a theoretical
lower-bound calculation.

Many of these algorithms focus their approximate theories on just two factors:
the size of the problems and the expected number of solutions. However, this
last factor is not easy to estimate.

2.2 Solubility & Insolubility

Will a problem be soluble or insoluble? Will it be hard or easy to solve? How
can we develop heuristics for new problem domains? All these questions have
been studied by researchers in the last decades in a large number of problems
domains. Consider the example presented in [3] of colouring a graph with a fixed
number of colours so that neighboring nodes have different colours. If the nodes
in the graph are loosely connected, then problems tend to be soluble and it is
usually easy to obtain one of the many solutions. If nodes are highly connected,
then problems tend to be insoluble and it is not easy to find a solution. At
intermediate levels of connectivity, problems can be hard to solve since they are
neither obviously soluble nor insoluble.

Figure 1 shows colouring graphs with four nodes using three colours: red, blue
and green. Nodes connected by an edge must have different colours. The connec-
tivity of a node is the number of edges connected to the node. The connectivity



of a graph is the average connectivity of its nodes. (A) is an under-constrained
and soluble problem due to 18 states are solutions. (B) is a problem which is
just soluble and 6 states are solutions but there is only an unique solution up
to symmetry. (C) is an over-constrained and insoluble problem consisting of a
clique of four nodes.
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Fig. 1. Colouring Graph with four nodes using three colours [3].

We can use connectivity to develop a simple but effective heuristic for graph
colouring that colours the most constrained nodes first. Consider colouring the
nodes in Figure 1B without such a heuristic, using instead their numerical order.
We might colour node 1 red, then node 2 green, and node 3 blue. We would
then be unable to colour node 4 without giving it the same colour as one of
its neighbors. Instead, suppose we seek to colour the most constrained nodes
first. Both informally, the constrainedness of the graph is directly related to its
connectivity. This then suggest the heuristic of colouring the nodes in decreasing
order of their connectivity. As node 2 and 4 have the highest connectivity, they
are coloured first. If we colour node 2 red and node 4 green, then nodes 1 and
3 can be coloured blue. Ordering the nodes by their connectivity focuses on the
hardest part of the problem, leaving the less constrained and easier parts till
last.

This example shows that some parts of the problem are hardest than others
and a variable ordering may accelerate the search. However many real problems
maintains thousand of variables and constraints and remains difficult to identify
which variables and constraints are tightest. So a sample in finite populations
may be useful to identify the constrainedness of the problem and perform a
constraint ordering to take advantage of the problem topology. It may be useful
to carry out domain filtering over the tightest constraints and even analyse
the loosest constraints because many of them may be redundant and therefore
removed.

3 Constrainedness κ

Given a new search problem, it is appropriate to identify parameters to measure
the constrainedness of the problem and to develop heuristics for finding a solution
more efficiently.



In [3], Gent et al. present a parameter that measures the constrainedness of
an ensemble of combinatorial problems. They assume that each problem in an
ensemble has a state space S with |S| elements and a number, Sol of these states
are solutions. Any point in the state space can be represented by a N-bit binary
vector where N = log2(|S|). Let 〈Sol〉 be the expected number of solutions
averaged over the ensemble. They defined constrainedness, κ, of an ensemble by,

κ =def 1−
log2(〈Sol〉)

N
(1)

Gent et al. proposed a straightforward way to compute 〈Sol〉 and therefore
κ [3]. Consider constraint satisfaction problems, each variable v ∈ V , has a
domain of values Dv of size dv. Each constraint ci ∈ C of arity a restricts a tuple
of variables 〈v1, ..., va〉, and rules out some proportion ṕci

of possible values from
the cartesian product Dv1

×...×Dva
. Without loss of generality we can define the

tightnesses of a constraint as ṕc or its complementary 1− ṕc. Problems may have
variables with many different domain sizes, and constraints of different arities
and tightnesses.

The state space has size
∏

v∈V dv. Each constraint ci ∈ C rules out a pro-
portion ṕci

of these states, so the number of solution is

〈Sol〉 = (
∏

v∈V

dv)× (
∏

ci∈C

(1− ṕci
)) (2)

Substituting this into (1) gives

κ =
−

∑

ci∈C
log2(1− ṕci

)
∑

v∈V log2(dv)
(3)

κ lies in the range [0,∞). A value of κ = 0 corresponds to an under-
constrained problem. A value of κ = ∞ corresponds to an over-constrained
problem.

However, this parameter defines the constrainedness of constraint satisfaction
problems in general, but not of an individual problem.

As we can observe, constrainedness in constraint satisfaction problem is
closely related to probability. Unfortunately, it is difficult to compute this prob-
ability directly [3], mainly in a particular problem.

So, the main contribution of this papers focuses on computing this probability
(or its complementary) for each constraint of the problem. These probabilities
are computed by a sampling from finite populations. This sampling may be a
simple random or systematic sampling, where there is a population, and a sample
is chosen to represent this population. That is, the population is composed of the
states lying within the convex hull of all initial states generated by means of the
Cartesian product of variable domain bounds. The sample is composed by a set
of random and well distributed states in order to represent the entire population.
In case of continuous variables, they are discretized in base on an appropriate
granularity. Each constraint is checked with the states of the sample and this
gives us the probability pci

that constraint ci satisfies the problem. Thus, we



assume pci
the tightnesses of the constraint (pci

≡ 1− ṕci
). In this way, we can

obtain the parameter κ or the parameter τ developed in the following section.

4 Computing the constrainedness τ

In this section, we introduce a parameter called τ that measures the constrained-
ness of the problem. This parameter represents the probability of the problem
being feasible. This parameter lies in the range [0, 1]. A value of τ = 0 cor-
responds to an over-constrained and no states are expected to be a solution
(〈Sol〉 = 0). A value of τ = 1 corresponds to an under-constrained and every
state is expected to be a solution (〈Sol〉 =

∏

v∈V dv). This parameter can also
be used in a heuristic to guide search. To this end, we take advantage of the
tightnesses of each constraint to classifying them from the tightest constraint to
the loosest constraint. Thus, a search algorithm can tackle the hardest part of
the problem first.

To compute τ a sample from a finite population is performed, where there
is a population (states), and a sample is chosen to represent this population.
The sample is composed by s(n) random and well distributed states where s is
a polynomial function.
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Fig. 2. From non-ordered constraint to ordered constraint

As in statistic, the user selects the size of the sample s(n). We study how
many states sti : sti ≤ s(n) satisfy each constraint ci (see Figure 2). Thus, each
constraint ci is labeled with pci

: ci(pci
), where pci

= sti/s(n) represents the
proportion of possible states, that is, the tightnesses of the constraint.

In this way, given the set of probabilities {pc1 , ..., pck
}, the number of solutions

can be computed as:

〈Sol〉 := (
∏

v∈V

dv)× (
∏

ci∈C

(pci
)) (4)



This equation is equivalent to the obtained in [3]. However, our definition of
constrainedness is given by the following equation:

τ :=
∏

ci∈C

(pci
) (5)

τ is a parameter that measures the probability that a randomly selected state
is a solution, that is, the probability this state satisfies the first constraint (pc1),
the second constraint (pc2) and so forth, the last constraint (pck

). In this way,
we guarantee that a random state satisfies all constraints. This parameter lies
in the range [0, 1] that represent the constrainedness of the problem.

We present the pseudo-code of computing τ .

Computing the constrainedness τ

Inputs: A set of n variables, v1, ..., vn;
For each vi, a set Di of possible values (the domain)
A set of constraints, c1, ..., ck.
Outputs: The constrainedness τ .
1.- From the entire number of states generated by the Cartesian product of the
variable domain bounds, a well distributed sample with s(n) states is selected.
2.- With the selected sample of states s(n), we compute how many states sti : sti ≤
s(n) satisfy each constraint ci, i = 1..k. Thus, ci is labelled with pci = sti/s(n).
3.- τ :=

∏

ci∈C
(pci)

For example, let’s see the random problem presented in Table 1. There are
three variables, each variable lies in the range [1,10], and there are three con-
straints c1, c2, c3. The first constraint satisfies 944 states, the second constraint
satisfies 960 states and the third constraint satisfies 30 constraints. Thus the
probability a random state satisfies the first constraint is pc1 = 944

1000
= 0.944.

Similarly, pc2 = 0.960 and pc3 = 0.03. So, the probability a random state satisfies
all constraints is 0.027. However, only 29 states satisfy these three constraints,
so the above probability that a random state satisfies all constraint is 0.029.

Table 1. random problem with 3 variables and 3 constraints

Z1,Z2,Z3: 1..10 Solutions pci
τ

c1 : −Z1 + Z2 + Z3 <= 13 944 0.944
c2 : −Z1 − 2 ∗ Z3 <= −6 960 0.96 0.027

c3 : Z2 + 3 ∗ Z3 = 29 30 0.03

c3&c2&c3 29 0.029 dif=0.002

4.1 A heuristic using τ

To compute τ , it is necessary to obtain the tightnesses of each constraint, rep-
resented by the following set of probabilities {pc1 , ..., pck

}. We take advantage of



this information to classifying the constraint so that a search algorithm can
manage the hardest part of a problem first. Figure 3 shows the constraints
in the natural order and classified by tightnesses. If the tightest constraints
is very constrained (τ ≈ 0), the problem will be over-constrained. However, if
this tightest constraints is under-constrained (τ ≈ 1) then, the problem will be
under-constrained.
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Fig. 3. From non-ordered constraints to ordered constraints: Constrainedness.

To achieve this objective, we classify the constraints in ascending order of the
labels pci

so that the tightest constraints are classified first pcord1
, pcord2

, ..., pcordk

(see Figure 3). Thus, a backtracking-based search algorithm can tackle the hard-
est part of a search problem first and inconsistencies can be found earlier and
the number of constraint checks can significantly be reduced.

5 Evaluation of τ and the resultant heuristic

In this section, we evaluate our parameter τ and our heuristic. To estimate the
constrainedness of random problems we compare τ with the actual constrained-
ness by obtaining all solutions of random problems. Furthermore, we study the
performance of some well-known CSP solvers that incorporate our heuristic:
Chronological Backtracking (BT), Generate&Test (GT), Forward Checking (FC)
and Real Full Look Ahead (RFLA)3, because they are the most appropriate
techniques for observing the number of constraint checks. This evaluation will
be carried out on the classical n-queen problem.

5.1 Evaluating τ

In our empirical evaluation, each random CSP was defined by the 3-tuple <
n, c, d >, where n was the number of variables, c the number of constraints and

3 Backtracking, Generate&Test, Forward Checking and Real Full Look Ahead were
obtained from CON’FLEX. It can be found in: http://www-bia.inra.fr/T/conflex/
Logiciels/adressesConflex.html.



d the domain size. The problems were randomly generated by modifying these
parameters. We evaluated 100 test cases for each type of problem. We present
the average actual constrainedness by obtaining all solutions, our estimator τ
choosing a sample of s(n) = 7n2 states, the number of possible states, the average
number of possible solutions, the average number of estimate solutions using τ
and the error percentage.

Table 2 shows some types of random problems. For example in problems with
5 variables, each with 5 possible values and 5 constraints < 5, 5, 5 >, the number
of possible states is dn = 55 = 3125, the average number of solutions is 125,
so the actual constrainedness is 0.04. With a sample of 7n2 = 175 states, we
obtain an average number of 6.64 solutions. Thus, our parameter τ = 0.038 and
the number of estimate solutions of the entire problem is 118.7. In this way, the
error percentage is only 0.2%.

Table 2. Random instances < n, c, d >, n:variables, c:constraints and d :domain size

Problems actual con- Parameter Number of Number of Number of %
strainedness τ States Solutions Estimated Sol. Error

< 3, 5, 5 > 0.09 0.07 125 11.2 8.7 2%
< 3, 5, 10 > 0.05 0.043 1000 50 43 0.7%
< 3, 10, 5 > 0.024 0.013 125 3 1.6 1.12%
< 5, 5, 5 > 0.04 0.038 3125 125 118.7 0.2%
< 5, 10, 5 > 0.008 0.01 3125 25 31.2 0.19%
< 5, 10, 10 > 0.0045 0.0034 100000 453 340 0.1%

5.2 Evaluating our heuristic

The n-queens problem is a classical search problem to analyse the behaviour of
algorithms. Table 3 shows the amount of constraint check saving in the n-queens
problem.

Table 3. Constraint check saving using GT , BT, FC and RFLA in the n-queens
problem.

GT&GT+CO BT&BT+CO FC&FC+CO RFLA&RFLA+CO

queens Constraint Constraint Constraint Constraint

Check Saving Check Saving Check Saving Check Saving

5 2.1 × 104 2.4 × 102 150 110

10 4.1 × 1011 3.9 × 107 1.4 × 105 9.3 × 104

20 1.9 × 1026 3.6 × 1018 9.6 × 1014 6.03 × 1011

50 2.4 × 1070 3.6 × 1052 3.1 × 1044 1.6 × 1032

100 2.1 × 10143 2.1 × 10106 4.5 × 1093 1.8 × 1066

150 5.2 × 10219 3.7 × 10161 6.8 × 10142 2.1 × 10100

200 9.4 × 10295 8.7 × 10219 9.9 × 10198 2.2 × 10134



We incorporated our constraint ordering (CO) to well-known CSP solver:
GT+CO, BT+CO, FC+CO and RFLA+CO. Here, the objective is to find all
solutions. The results show that the amount of constraint check saving was
significant in GT+CO and BT+CO and lower but significant in FC+CO and
RFLA+CO. This is due to these techniques are more powerful than BT and GT.

6 Conclusion and future work

In this paper, we introduce a parameter (τ) that measures the ”constrainedness”
of a search problem. τ represents the probability of the problem being feasible.
A value of τ = 0 corresponds to an over-constrained problem. τ = 1 corresponds
to an under-constrained problem. This parameter can also be used in a heuristic
to guide search. To achieve this parameter, we compute the tightnesses of each
constraint. We can take advantage of this tightnesses to classify the constraints
from the tightest constraint to the loosest constraint. Using this ordering heuris-
tic, the search can be accelerated due to inconsistencies can be found earlier and
the number of constraint checks can significantly be reduced.

Furthermore, this heuristic technique is appropriate to solve problems as a
distributed CSPs [8] in which agents are committed to solve their subproblems.

For future work, we are working on exploiting this constraint ordering to
remove redundant constraints in large problems.
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