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Abstract

Railway capacity has been a significant issue in the railway industry. Over
the last few years, numerous approaches and tools have been developed
to compute railway capacity. In this paper, we compute railway capacity
to design a topological model for solving periodic train scheduling, de-
veloped in collaboration with the National Network of Spanish Railways
(RENFE). This topological technique transforms the railway optimiza-
tion problem in subproblems such that a traffic pattern is generated for
each subproblem. These traffic patterns will be periodically repeated to
compose the entire running map. The results show that this technique
improve the results obtained by well known tools as LINGO and ILOG
Concert Technology (CPLEX).

1 Introduction

Rail transport has played a major role in the economic development of the last
two centuries. It represented a major improvement in land transport technology
and has obviously introduced important changes in the movement of freight and
passengers. Over the last few years, railway traffic has increased considerably,
which has created the need to optimize the use of railway infrastructures. This
is, however, a very difficult task. Thanks to developments in computer science
and advances in the fields of optimization and intelligent resource management,
railway managers can optimize the use of available infrastructures and obtain
useful conclusions about their topology.

The overall goal of a long-term collaboration between our group at the
Polytechnic University of Valencia (UPV) and the National Network of Span-
ish Railways (RENFE) is to offer assistance to help in the planning of train
scheduling, to obtain conclusions about the maximum capacity of the network,
to identify bottlenecks, to determine the consequences of changes, to provide
support in the resolution of incidents, to provide alternative planning and real
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traffic control, etc. Besides of mathematical processes, a high level of inter-
action with railway experts is required to be able to take advantage of their
experience.

Railway capacity has been a significant issue in the railway industry. Many
approaches and tools have been developed to compute railway capacity. How-
ever, capacity is a complex and loosely defined term that has numerous mean-
ings. In general, within a rail concept, capacity can be described as ”a measure
of the ability to move a specific amount of traffic over a defined rail line with a
given set of resources under a specific service plan” [7]. This could mean any-
thing from the number of tons moved, speed of trains, on-time-performance,
available track maintenance time, service reliability, or maximum number of
trains per day that the subdivision can handle. Kreuger classified the capacity
is different kinds: theoretical capacity, practical capacity, used capacity and
available capacity.

Different models and mathematical formulations for train scheduling have
been created by researchers [9], [3], [8], [5], [4], [2], etc. Several European
companies are also working on similar systems. These systems include complex
stations, rescheduling due to incidents, rail network capacities, etc. These are
complex problems for which work in network topology and heuristic-dependent
models can offer adequate solutions.

In this paper, we formalize railway capacity (theoretical capacity) to design
a topological model for solving periodic train scheduling. This technique has
been inserted in our system [1] and it is committed to solve this problem in
order to obtain as good and feasible running map as possible. The system is
able to plot the obtained running map. A running map contains information
regarding railway topology (stations, tracks, distances between stations, traffic
control features, etc.) and the schedules of the trains that use this topology (ar-
rival and departure times of trains at each station, frequency, stops, junctions,
crossing, etc,) (section 2). In our system, the railway running map problem
is formulated as a Constraint Optimization Problem (COP). Variables are fre-
quencies, arrival and departure times of trains at stations. Constraints are
composed by user requirements and the intrinsical constraints (railway infras-
tructures, rules for traffic coordination, etc.). These constraints are composed
by the parameters defined using user interfaces and database accesses. The
objective function is to minimize the journey time of all trains. The problem
formulation is (traditionally) translated into a formal mathematical model to
be solved for optimality by means of mixed integer programming techniques. In
our framework, the formal mathematical model is partitioned in two different
subproblems: integer programming problem composed by the constraints with
integer variables and linearized problem in which integer variables have been
instantiated. Therefore, the problem constraints are classified such that most
restricted constraints are studied first [10]. The most restricted constraints
are considered to be composed of integer variables. In this way, our system
studies first the integer programming problem and then it solves the linearized
problem. The integer programming problem will be partitioned in a set of
subproblems such that the solution of each subproblem will generate a traffic



pattern. The partition is carried out through the stations that take part in the
running map. Each block of the partition is composed by contiguous stations,
so that each traffic pattern represents the running map corresponding to each
block of constraints. In Figure 1, a possible block of the partition may be com-
posed by the first four stations: Malaga Cent, Malaga Renfe, Los Prados and
Aeropuerto. Each traffic pattern will be periodically repeated to composed the
entire running-map.

2 Problem Topology

A sample of a running map is shown in Figure 1, where several train crossings
can be observed. On the left side of Figure 1, the names of the stations are
presented and the vertical line represents the number of tracks between sta-
tions (one-way or two-way). The objective of the system is to obtain a correct
and optimized running map taking into account: (i) the railway infrastructure
topology, (ii) user requirements (parameters of trains to be scheduled), (iii)
traffic rules, (iv) previously scheduled traffic on the same railway network, and
(v) criteria for optimization.
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Figure 1: A sample of a running map

On a rail network, the user needs to schedule the paths of n trains going
in one direction and m trains going in the opposite direction, trains of a given
type and at a desired scheduling frequency.

The type of trains to be scheduled determines the time assigned for travel
between two locations on the path. The path selected by the user for a train



trip determines which stations are used and the stop time required at each
station for commercial purposes. In order to perform crossing in a section with
a one-way track, one of the trains should wait in a station. This is called a
technical stop. One of the trains is detoured from the main track so that the
other train can cross or continue. (Figure 2).

For periodic train scheduling, we assume that all the trains in the same
direction are of the same type and they stop in the same stations.

2.1 Railway Traffic Rules, topological and requirement
constraints

A valid running map must satisfy and optimize the set of existing constraints
in the periodic problem. Some of the main constraints to be considered are:

1. Traffic rules guarantee crossing operations. The main rules to take into
account are:

• Crossing constraint : Any two trains and going in opposite directions
must not simultaneously use the same one-way track. The crossing of
two trains can be performed only on two-way tracks and at stations,
where one of the two trains has been detoured from the main track
(Figure 2). Several crossings are shown in Figure 1.
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Figure 2: Constraints related to crossing in stations

• Expedition time constraint. There exists a given time to put a de-
toured train back on the main track and exit from a station.

• Reception time constraint. There exists a given time to detour a train
from the main track so that crossing or overtaking can be performed.

2. User Requirements: Constrains due to user requirements are:

• Type of train and Number of trains going in each direction to be
scheduled and travel time between locations.

• Path of trains: Locations used and stop time for commercial pur-
posed in each direction.



• Scheduling frequency. The frequency requirements of the departure
of trains in both directions. This constraint is very restrictive, be-
cause, when crossing is performed, trains must wait for a certain
time interval at stations. This interval must be propagated to all
trains going in the same direction in order to maintain the estab-
lished scheduling frequency.

In accordance with user requirements, the system should obtain the best
solutions available so that all constraints are satisfied. Several criteria can
exist to qualify the optimality of solutions: minimize duration and/or number
of technical stops, minimize the total time of train trips (span) of the total
schedule, giving priority to certain trains, etc.

2.2 General System Architecture

The general outline of our system is presented in Figure 3. It shows several
steps, some of which require the direct interaction with the human user to insert
requirement parameters, parameterize the constraint solver for optimization, or
modify a given schedule. First of all, the user should require the parameters of
the railway network and the train type from the central database (Figure 3).
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Figure 3: General scheme of our tool.

This database stores the set of locations, lines, tracks, trains, etc. Normally,
this information does not change, but authorized users may desire to change this
information. With the data acquired from the database, the system generates
the formal mathematical model. This model is composed by a large number
of mixed-integer constraints. To translate the mixed-integer problem into a
linear problem, a topological technique is carried out to assign value to each
integer variable. This technique carries out a partition of the stations such that
each block of stations represents a subproblem and a traffic pattern (solution)



must be generated for each subproblem. This traffic pattern is generated based
on the problem topology such as the number of stations, the train frequency,
the type of stations, and mainly the distance among the stations. Once the
traffic patterns are generated, the integer variables are instantiated and the
linearized problem is straightforward solved returning the running map data.
If the mathematical model is not feasible, the user must modify the parameters,
mainly the most restrictive ones. If the running map is consistent, the graphic
interface plots the scheduling. Afterwards, the user can graphically interact
with the scheduling to modify the arrival or departure times. Each interaction
is automatically checked by the constraint checker in order to guarantee the
consistency of changes. The user can finally print out the scheduling, to obtain
reports with the arrival and departure times of each train in each location, or
graphically observe the complete scheduling topology.

3 Railway Capacity

Railway capacity is a quite old argument. How can a railway section be full,
if at every cross section only once in 10 minutes or so a train passes? Most of
the time there is nothing to see [11]. Certainly, there exist many definitions of
railway capacity, but there does not yet exist an accepted definition of capacity
on railway networks. So that, we will adopt the following definition of railway
capacity.

Definition. Railway capacity is the maximum number of trains which can
be scheduled in the railway in a fixed period of time.

Based on this definition, railway capacity will be subjected to a topological
restrictions of the railway (distance between trains, number of lines, speed of
trains, etc). For instance, if all sections have two-ways tracks, railway capacity
will be higher than in sections with only one-way tracks. On the opposite, if
there is two very distant cities joined by a one-way track, the railway capacity
will be conditioned by this track, because once a train departures from one
station to the other, no train can departure from this last station since the for-
mer train arrives. These tracks are bottlenecks and they condition the railway
capacity. This example answers the question below (for many minutes there is
no train to see).

In this section, we formalize the distance that trains must maintain to guar-
antee a feasible schedule. This distance will determine railway capacity. So,
our aim is to geometrically study each train with tracks between stations.

We assign to each type of train and each track an angle that represent the
speed of this train in this track. As we maintain in our database the distance
of each track (d) and the journey time for each train-track (t), the angle α can
be straightforward deduced (Figure 4).

In this way, we define the angle α as arc tangent of distance (in meters)
divided by time (in seconds). This angle is ranged between 0 and 90 as intu-
itively can be seen in the running-map. Thus an angle α → 0 means that the
train has traveled a very short distance in a long time. Alternatively, an angle
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Figure 4: Angle per train and track.

α → 90 means that the train has traveled a very long distance in a short time.
Once, we have ranged the speed in the interval [0, 90], we will study railway

capacity by means of the minimum security distance for each track. We will
focus on periodic trains and one-way tracks. Thus, all trains in each direction
are of the same type.

For each track of distance ”d” between two contiguous stations and each
pair of trains in opposite direction, the total time (tt) of both journeys (up
direction and down direction) is tt = h + t1 + t2 = h + d · (cotα + cot β),
where h = mrt + met is the sum of the minimum reception time (mrt) of the
train that arrives plus the minimum expedition time (met) of the train that
departures. These values (t1 and t2) are trigonometrically obtained as can be
seen in Figure 5.
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Figure 5: Minimum security distance of a track.

Applying this formula to each of the k tracks of the network,the railway
capacity (denoted by C) for a time period tp is:

C = 2 ·
⌊

tp

Max{hi + di · (cotαi + cotβi)}i=1...k

⌋
(1)

It must be taken into account that the bottleneck of the railway will occur
in the station that satisfies Max{hi + di · (cotαi + cotβi)}i=1...k. So that, the
minimal frequency must be greater than the bottleneck.



Theorem. Given a railway R with one-way tracks with capacity C in a
period tp, no additional train can be scheduled.

Proof. (Proof by Contradiction.) Assume to the contrary that there is a
new train T that can be scheduled in R. Given the capacity C and the period
tp, we can obtain the track j with maximum total time. Due to track j is a
one-way track and train T is scheduled in this track, then to avoid crossing this
train can only arrive or departure from critical station (all trains join) in the
temporal interval h, that is, between the arrival of the predecessor train and
the departure of the successor train. In this case ttk = hk + t1 + t2, where hk

is the sum of mrt plus met plus the necessary time for train T to cross the
station (cs). Obviously cs > 0, so that hk = mrt + met + cs. However, we
define hk = mrt + met → cs = 0. # contradiction. So, any new train can be
scheduled in railway R. 2

4 Topological Constraint Optimization
Technique

The railway optimization problem is considered to be more complex than job-
shop scheduling [6], [12]. Here, two trains, traveling in opposite directions use
tracks between two locations for different durations, and these durations are
causally dependent on how the scheduling itself is done (ie: order of tasks),
due to the stopping, and starting time for trains in a non-required technical
stop, expedition, reception times, etc. Some processes (detour from the main
railway) may or may not be required for each train at each location. In our
system, the problem is modeled as a COP, where finite domain variables repre-
sent frequency and arrival and departure times of trains of locations. Relations
on these variables permit the management of all the constraints due to the user
requirements, topological constraints, traffic rules, commercial stops, techni-
cal operations, maximum slacks, etc. Hundred of trains, of different types, in
different directions, along paths of dozens of stations have to be coordinated.
Thus, many variables, and many and very complex constraints arise. The prob-
lem turns into a mixed-integer programming problem, in which thousands of
inequalities have to be satisfied and a high number of variables take only inte-
ger values. As is well known, this type of model is far more difficult to solve
than linear programming models. So, our objective is to solve this problem
previously assigning values to integer variables such that the mixed-integer pro-
gramming problem is transformed into a linear programming problem. Then,
the linearized problem is easily solved. In this way, the topological constraint
optimization technique is committed to this goal.

The topological constraint optimization technique generates traffic patterns
based on our definition of railway capacity.

For example, if two stations are so far away so that a train takes more
than ten minutes in travelling this itinerary, there exist a physical constraint
(bottleneck), because it is not possible to assign a five minutes frequency due
to trains in opposed directions must be crossed between both stations. As we



pointed out in section 3, these type of tracks determine the railway capacity.
Figure 6 shows this feature. Thus, the frequency must be greater than the
minimal allowed frequency between both stations.
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Figure 6: Example of bottleneck.

4.1 Topological Technique

The main idea of this technique is to generate a traffic pattern based on our
definition of railway capacity. Each traffic pattern is generated for each set of
stations such that the union of these traffic patterns determine the journey of
each train. Figure 7 shows a possible set of stations (block).
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Figure 7: First traffic pattern generation.

The block of stations will be selected taking into account the speed of the
trains, the distance among stations and mainly the frequency inserted into
the problem. Each traffic pattern covers the block of stations necessary for a
train to go from the first station of the block to the last station of the block
and return from the last station to the first one (round trip). This round
trip must arrive to the first station (St.1) as close but before to the following
train departure (Train 2) as possible. Thus, our objective is to minimize the



remaining time between the frequency and the round trips. Each possible round
trip will involve a different set of constraints. The round trip that minimize
the remaining time will be selected as the pattern. This traffic pattern will be
composed by a higher number of stations than the rest of possible round trips.

Once the first traffic pattern has been generated, the block of stations in-
volved in this traffic pattern are temporally removed in order to study the
following pattern with the remaining stations. Figure 8 shows the generation
of the second pattern using the same strategy.
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Figure 8: Second Pattern generation.

Therefore, when the second traffic pattern is generated, the topological
technique studies the following traffic pattern until there is no station left.
In Figure 9, we can observe an example of running map with three complete
traffic patterns and some stations without traffic pattern. However, it is usual
that there are some stations left. These stations are not involved in any traffic
pattern. We must take into account that the best traffic pattern in a block
of stations implies to start the following block of stations in the last station
of the previous block. We must check all traffic patterns together in order to
obtain the journey. Moreover, the first combination of traffic patterns may not
be the best solutions due to existence of some combinations of traffic patterns.
This combination depends on the number of stations that are not involved in
a traffic pattern.

Figure 9 shows an example in which three stations are not involved in any
traffic pattern. So, some combinations are possible and they are restricted to
the set of stations involved in the first traffic pattern. Thus, these three stations
can be sorted between the first and the last traffic pattern. In this way, the
first traffic pattern may start at the second or third station and the last traffic
pattern may finish in the penultimate or last but two station. However, due to
efficient use of resources, or depending on the importance of the station, it is
more appropriate the first traffic pattern (last traffic pattern) starts (finishes)
at the first (last) station.
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Figure 9: Periodic Pattern generation.

5 Evaluation

The application and performance of this system depends on several factors:
Railway topology (locations, distances, tracks, etc.), number and type of trains
(speeds, starting and stopping times, etc.), frequency ranges, initial departure
interval times, etc.

In this section, we compare the performance of our topological technique
with some well-known COP solvers: CPLEX and LINGO, because they are
the most appropriate tools for solving these types of problems. However, the
system carried out important preprocessing heuristics [1] before executing these
well-known COP solvers in order to significantly reduce the size of this type of
problems.

This empirical evaluation was carried out integrating both different types of
problems: benchmark (real) problems and random problems. Thus, we defined
random instances over a real railway infrastructure that joins two important
Spanish cities (La Coruña and Vigo). The journey between these two cities is
currently divided by 40 dependencies between stations (23) and halts (17).

In our empirical evaluation, each set of random instances was defined by the
3-tuple < n, s, f >, where n was the number of trains in each direction, s the
number of stations/halts and f the frequency. The problems were randomly
generated by modifying these parameters. Thus, each of the tables shown
sets two of the parameters and varies the other one in order to evaluate the
algorithm performance when this parameter increases.

In Table 1, we present the running time and the journey time in problems
where the number of trains was increased from 5 to 50 and the number of sta-
tions/halts and the frequency were set at 40 and 90, respectively: < n, 40, 90 >.
The results shows that CPLEX obtained better running time and journey time
than LINGO. However, it can be observed that the running time is lower us-
ing the topological technique than the other two COP tools. Furthermore,
our technique always obtained the same journey time (lower than CPLEX and
LINGO) due to the fact that it generates the corresponding traffic patterns and



it is independent of the number of trains. Figure 10 shows the system interface
executing our technique with the instance < 10, 40, 90 >. The first window
shows the user parameters, the second window presents the best solution ob-
tained in this moment, the third window presents data about the best solution
found, and finally the last window show the obtained running map.

Table 1: Running time and journey time in problems with different trains.

<n,40,90> CPLEX LINGO TOPOLOGICAL
Trains runtime journey time runtime journey time runtime journey time

5 5” 2:29:33 8” 2:30:54 3” 2:22:08
10 8” 2:26:04 17” 2:31:37 4” 2:22:08
15 13” 2:26:18 24” 2:31:51 5” 2:22:08
20 16” 2:26:25 35” 2:31:58 5” 2:22:08
50 55” 2:31:09 1302” 2:32:11 10” 2:22:08

Figure 10: System Interface.

Table 2 shows the running time and the journey time in problems where the
number of stations was increased from 10 to 60 and the number of trains and
the frequency were set at 10 and 90, respectively: < 10, s, 90 >. In this case,
only stations were included to analyze the behavior of the techniques. It can be



observed that the running time was lower using our technique in all instances.
The journey time was also improved using our topological technique. It is
important to realize the difference between the instance < 10, 40, 90 > of the
Table 1 and the instance < 10, 40, 90 > of the Table 2. They represents the same
instance, but in Table 2 we only used stations (no halts), so that the number
of possible crossing between trains is much more larger. This item reduced the
journey time from 2:22:08 to 2:20:22, but the number of combination increased
the running time from 4” to 7”. Furthermore, CPLEX and LINGO maintained
similar behaviors.

Table 2: Running time and journey time in problems with different number of
stations.

<10,s,90> CPLEX LINGO TOPOLOGICAL
Stations runtime journey time runtime journey time runtime journey time

10 2” 0:58:36 4” 0:58:06 1” 0:57:36
20 3” 1:04:11 20” 1:04:11 2” 1:04:11
30 15” 1:45:08 42” 1:45:38 4” 1:45:08
40 56” 2:23:16 28” 2:24:36 7” 2:20:22
60 340” 3:44:28 326” 3:44:22 40” 3:32:15

In Table 3, we present the running time and the journey time in problems
where the frequency was increased from 60 to 140 and the number of trains
and the number of stations were set at 20 and 40, respectively: < 20, 40, f >.
It can be observed that the frequency the topological technique improved the
journey time when the frequency increased. As in previous results, the running
time of the topological technique was lower than CPLEX and LINGO.

Table 3: Running time and journey time in problems with different cadencies.

<20,40,f> CPLEX LINGO TOPOLOGICAL
Frequency runtime journey time runtime journey time runtime journey time

60 >43200” - >43200” - 36” 2:32:11
90 17” 2:26:25 32” 2:31:58 5” 2:22:08
100 18” 2:23:10 34” 2:22:55 3” 2:19:09
120 16” 2:16:17 27” 2:18:47 4” 2:16:00
140 17” 2:20:18 27” 2:16:19 4” 2:17:03

6 Conclusions

We have formalized railway capacity to design a topological model for solving
periodic train scheduling in collaboration with the National Network of Spanish
Railways (RENFE). This technique has been inserted into the system to solve
more efficiently periodic timetables. This system, at a current stage of inte-
gration, supposes the application of methodologies of Artificial Intelligence in



a problem of great interest and will assist railways managers in optimizing the
use of railway infrastructures and will help them in the resolution of complex
scheduling problems.
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