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Abstract Over the last few years constraint satisfaction, plan-
ning, and scheduling have received increased attention, and
substantial effort has been invested in exploiting constraint
satisfaction techniques when solving real life planning and
scheduling problems. Constraint satisfaction is the process
of finding a solution to a set of constraints. Planning is the
process of finding a sequence of actions that transfer the
world from some initial state to a desired state. Schedul-
ing is the problem of assigning a set of tasks to a set of
resources subject to a set of constraints. In this paper, we
introduce the main definitions and techniques of constraint
satisfaction, planning and scheduling from the Artificial In-
telligence point of view.
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1 Introduction

Planning and scheduling techniques have recently seen im-
portant advances thanks to the application of constraint sat-
isfaction models and tools. Most real-world problems can be
cast as highly coupled planning and scheduling problems,
where resources must be allocated so as to optimize over-
all performance objectives. Therefore, solving these prob-
lems requires an adequate mixture of planning, scheduling
and resource allocation to competing goal activities over
time in the presence of complex state-dependent constraints.
Solutions to these problems must integrate resource alloca-
tion and plan synthesis capabilities, which can be efficiently
managed by using constraint satisfaction techniques. The
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aim of this paper is to give a general overview of three differ-
ent but interrelated areas: constraint satisfaction, planning,
and scheduling.

2 Constraint Satisfaction Problems

Constraint programming (CP) is a powerful paradigm for
solving combinatorial problems. CP was born as a multi-
disciplinary research area that embeds techniques and no-
tions coming from many other areas, among which artifi-
cial intelligence, computer science, databases, programming
languages, and operations research play an important role.
Constraint programming is currently applied with success to
many domains such as scheduling, planning, vehicle rout-
ing, configuration, networks, and bioinformatics. More in-
formation about constraint programming can be found in
(Apt, 2003; Dechter, 2003; Tsang, 1993; Rossi et al., 2006).

2.0.1 Definitions

The concept of a constraint satisfaction problem (CSP) is
fundamental in constraint programming.

Definition 1 (CSP). A constraint satisfaction problem con-
sists of:

— aset of variables X = {z1,22,..., 2, }

— a set of domains D = {D;, Ds, ..., D,,} such that for
each variable x; € X there is a domain D;;

— a set of constraints C = {cy,ca, ..., cx } such that the
scope of each constraint is a subset of X.

Definition 2 (Variable Domain). The domain of a variable
is a set of all considered values that can be assigned to the
variable. Usually, we assume finite discrete domains.



Definition 3 (Instantiation). An instantiation is a set of pairs
(x4, a;) such that x; is a variable; a; is a value from the do-
main of xz;; and each variable appears at most once in the
instantiation.

We say that the instantiation is complete for a set of vari-
ables X if each variable from X appears in the instantiation
and no other variable appears there. If the instantiation does
not contain all variables from X, then the instantiation is in-
complete (partial) for X. We say that instantiation I extends
instantiation J if I O J.

Definition 4 (Constraint). A constraint is a pair (¢, R), where
t is a set of variables (called scope; the size of scope is called
arity) and R is a set of complete instantiations for ¢ (some-
times called a domain of the constraint). We can also see the
constraint as a subset of the Cartesian product of domains
of variables in ¢ - the constraint restricts the values that the
variables can simultaneously take. A CSP with constraints
of arity one or two is called a binary CSP.

Instantiation I satisfies constraint (t, R) if there exists
J € R such that I extends J. Constraint can be specified
extensionally as a set of tuples (satisfying instantiations) or
intentionally as a formula that defines the satisfying instan-
tiations.

Definition 5 (Solution). A solution to a CSP is a complete
instantiation of the variables in X satisfying all the con-
straints in C.

Definition 6 (Consistency). If a CSP has at least one solu-
tion, it is said that the CSP is satisfiable or consistent, other-
wise we say that it is inconsistent.

2.1 Example: Map/Graph Coloring Problem

The map coloring problem is the problem to color the ar-
eas in a map using a predefined number of colors so that the
neighboring areas have different colors. The map coloring
problem can be represented as a graph coloring problem to
color the vertices of a given graph using a predefined number
of colors in such a way that connected vertices get different
colors. It is very easy to model this problem as a Constraint
Satisfaction Problem (CSP): there are as many variables as
vertices, and the domain of each variable contains the colors
to be used. If there is an edge between the vertices repre-
sented by variables x; and z; , then there is an inequality
constraint referring to these two variables, namely: z; # ;.

Graph coloring is known to be NP-complete, so one does
not expect a polynomial-time algorithm for solving this prob-
lem. It is easy to generate a large number of test graphs with
certain parameters, which are more or less difficult to be col-
ored, so the family of graph coloring problems is appropri-
ate to test algorithms thoroughly. Furthermore, many prac-
tical problems, like ones from the field of scheduling and

planning, can be expressed as an appropriate graph coloring
problem (Ruttkay, 1998).

{r.g.b} {r.g,b}

{r.g.b} {r.g.,b}

Fig. 1 Map/Graph Coloring Problem

Figure 1 shows an example of a map coloring problem
and its graph representation. The map is composed of four
regions/variables {x, y, z, w} to be colored. Each region can
be colored in three different colors: red (r), green (g), or blue
(b) (its domain). Each edge represents the binary constraint
which states that two adjacent regions must be colored with
different colors.

2.2 Search Techniques

A CSP can be solved by systematically exploring the solu-
tion space via an uninformed search. Such search algorithms
instantiate variables one after the other in such a way that
the current partial instantiation is always consistent. If this
is not possible, that is, all the possible values for the next
variable are in conflict with some earlier assignment, then
backtracking takes place.

Following, we present some well-known search tech-
niques. More information can be found in (Bartdk, 1998;
Rossi et al., 20006).

2.2.1 Complete Search Algorithms

Most algorithms for solving CSPs search systematically the
space of all possible assignments of values to variables. Such
algorithms are guaranteed to find a solution, if one exists, or
to prove that the problem is insoluble. The disadvantage of
these algorithms is that they may take a very long time. The
actions of many search algorithms can be described by a
search tree.

Backtracking Search (BT)

A simple algorithm for solving a CSP is backtracking
search (Bitner & Reingold, 1975). Backtracking works with
an initially empty set of consistently instantiated variables
and tries to extend the set to a new variable and a value
for that variable. If successful, the process is repeated until



all variables are included. If unsuccessful, another value for
the most recently added variable is considered. Returning to
an earlier variable in this way is called a backtrack. If that
variable doesn’t have any further values, then the variable is
removed from the set, and the algorithm backtracks again.
The simplest backtracking algorithm is called chronological
backtracking because at a dead-end the algorithm returns to
the previous variable in the ordering.

In the BT method, as soon as all the variables relevant to
a constraint are instantiated, the validity of the constraint is
checked. If a partial solution violates any of the constraints,
backtracking is performed to the most recently instantiated
variable that still has alternatives available. Clearly, when-
ever a partial instantiation violates a constraint, backtracking
is able to eliminate a subspace from the Cartesian product of
the variable domains.

Look-Back Algorithms

Chronological backtracking can suffer from thrashing;
the same dead-end can be encountered many times. If X; is
a dead-end, the algorithm will backtrack to X;_;. Suppose
a new value for X,_1 exists, but there is no constraint be-
tween X; and X,;_1. The same dead-end will be reached at
X, again and again until all values of X;_; have been ex-
hausted.

Look-back algorithms try to exploit information from
the problem to behave more efficiently in dead-end situa-
tions. Like BT, look-back algorithms perform consistency
checks backwards (between the current variable and past
variables).

Backjumping (BJ) (Gaschnig, 1979) is an algorithm sim-
ilar to BT except that it behaves in a more intelligent manner
when a dead-end (X;) is found. Instead of backtracking to
the previous variable (X;_1), BJ backjumps to the deepest
past variable X, with j < 4, that is in conflict with the cur-
rent variable X;. It is said that variable X; is in conflict with
the current variable X if the instantiation of X; precludes
one of the values in X;. Changing the instantiation of X
may make it possible to find a consistent instantiation of the
current variable. Thus, BJ avoids the redundant work that
BT does by trying to reassign variables between X; and the
current variable X;.

Conflict-directed backjumping (Prosser, 1993), backmark-
ing (Gaschnig, 1977), and learning (Frost & Dechter, 1994)
are other examples of look-back algorithms.

Look-Forward Algorithms

As we have explained, look-back algorithms try to en-
hance the performance of BT by a more intelligent behavior
when a dead-end is found. Nevertheless, they still perform
only backward consistency checks and they ignore the future
variables.

Look-forward algorithms make forward checks at each
step of the search. Let us assume that, when searching for a
solution, variable X; is given a value which excludes all the

possible values for a later variable X;. When using unin-
formed search, this will only turn out when X; will be con-
sidered for instantiation. Moreover, in case of BT, thrashing
will occur: the search tree will be expanded again and again
till X, as long as the level of backtracking does not reach
X;. Both anomalies could be avoided by recognizing that
the chosen value for X; cannot be part of a solution, as there
is no value for X; which is compatible with it. Lookahead
algorithms do this, by accepting a value for the current vari-
able only if after having looked ahead, it could not be seen
that the instantiation would lead to a dead-end. When check-
ing this, problem reduction can also take place, by removing
the values from the domain of the future variables which
are not compatible with the current instantiation. The algo-
rithms differ in how far and thorough they look ahead and
how much reduction they perform.

Forward-checking (FC) (Haralick & Elliot, 1980) is one
of the most common look-forward algorithms. It checks the
satisfiability of the constraints, and removes the values of the
future variables which are not compatible with the current
variable’s instantiation. At each step, FC checks the current
assignment against all the values of future variables that are
constrained with the current variable. All values of future
variables that are not consistent with the current assignment
are removed from their domains. If a domain of a future vari-
able becomes empty, the assignment of the current variable
is undone and a new value is assigned. If no value is con-
sistent then backtracking is carried out. Thus, FC guaran-
tees that at each step the current partial solution is consis-
tent with each value in each future variable. Thus, FC can
identify dead-ends and prune the search space sooner.

2.2.2 Incomplete Search Algorithms

Although complete search techniques, such as those described
in the previous sections, always return a solution if there is
one, or prove that there is no solution, we may sometimes
want to use other techniques that don’t possess this desir-
able property if they are more convenient from other points
of view.

Incomplete search methods (Michalewicz & Fogel, 2000)
do not explore the whole search space. They search the space
either non-systematically or in a systematic manner, but with
a limit on some resource. These approaches do not ensure
to collect all the solutions, nor to find a solution if there is
at least one, nor to detect inconsistency, but their compu-
tational time can be much shorter compared to systematic
search techniques.

Moreover, they may be sufficient when just some solu-
tion, or a good enough solution, is needed. These methods,
known as metaheuristics, covers a very large class of resolu-
tion paradigms, from evolutionary algorithms to local search
techniques. The main approaches for incomplete search are



based on constructive methods or on iterative repair meth-
ods. The first ones gradually extend a partial solution to a
complete one, while the second ones start with an initial so-
lution and incrementally modify the values to get a better
one.

For instance, local search does not instantiate one vari-
able at a time, but (in its simpler version) start with a com-
plete assignment to all the variables, and then modifies it
slightly to pass to a new complete assignment which is closer
to be a solution, or closer to optimality.

2.3 Consistency Techniques

Consistency techniques were introduced to simplify CSPs

and to improve the efficiency of systematic search techniques.

The number of possible solutions can be huge, while only
very few may be consistent. By eliminating redundant val-
ues from the problem definition, the size of the solution
space decreases. Reduction of the problem can be done once,
as a pre-processing step, or it can be interleaved with the ex-
ploration of the solution space by a search algorithm.

Local inconsistencies are single values or combination
of values for variables that cannot participate in any solution
because they do not satisfy some local consistency property.
For instance, if a value a of variable x is not compatible
with all the values in a variable y that is constrained with =z,
then a is inconsistent and this value can be removed from
the domain of the variable x.

In the following paragraphs we introduce the most well-
known and widely used algorithms for binary CSPs.

— A CSP is node-consistent if all the unary constraints are
satisfied by all the elements of the variable domains.
The straightforward node-consistency algorithm (NC),
which removes the redundant elements by checking the
domains one after the other, has O(dn) time complex-
ity, where d is the maximum size of the domains and n
is the number of variables. Thus, enforcing this consis-
tency property ensures that all values of a variable satisfy
all the unary constraints on that variable.

— A CSP is arc-consistent if for any pair of constrained
variables x;, x;, for every value a in D; there is at least
one value b in D; such that the assignment (z;,a) and
(x,b) satisfies the constraint between x; and x;, and
viceversa. Any value in the domain D; of variable x;
that is not arc-consistent can be removed from D); since
it cannot be part of any solution.

Arc-consistency has become very important in CSP solv-
ing and it is in the heart of many constraint programming
languages. The optimal algorithms to make the CSP arc-
consistent require time O(ed?), where e is the number
of constraints (arcs in the constraint network) and d is

the size of domains. Arc-consistency can also be easily
extended to non-binary constraints.

— A CSP is path-consistent, if for every pair of values a
and b for two variables x; and x;, such that the assign-
ments of a to x; and b to x; satisfies the constraint be-
tween x; and x;, there exist a value for each variable
along any path between x; and z; such that all con-
straints along the path are satisfied.

When a path-consistent problem is also node-consistent
and arc-consistent, then the problem is said to be strongly
path-consistent.

Consistency techniques can be exploited during the for-
ward checking stage of search algorithms. Each time some
search decision is taken (for example, a value is assigned to
the variable), the problem is made arc consistent. If failure
is detected (that is, any domain becomes empty) then it is
not necessary to instantiate other variables and backtracking
occurs immediately.

3 Planning Problems

Planning is an important aspect of rational behavior and it
is a fundamental topic of artificial intelligence since its be-
ginning. Planning capabilities are necessary for autonomous
controlling of vehicles of many types including space ships
(Muscettola et al., 1998) and submarines (McGann et al.,
2008), but we can also find planning problems in areas such
as manufacturing, games or even printing machines (Ruml
et al., 2005). In this section we formally describe the plan-
ning problem and its representation.

Classical planning deals with finding a sequence of ac-
tions that transfer the world from some initial state to a de-
sired state. The state space is large but finite. It is also fully
observable (we know precisely the state of the world), deter-
ministic (the state after performing the action is known), and
static (only the entity for which we plan changes the world).
Moreover, we assume the actions to be instantaneous so we
only deal with action sequencing. Naturally, there exist ex-
tensions of planning problems dealing with durative and par-
allel actions with uncertain effects, the state of the word may
not be fully known or may be changed by other entities such
as nature. However, these extensions are out of scope of this
introduction, for a detailed survey see (Ghallab et al., 2004).

Typically, the world state is described as a set of predi-
cates that hold in the state, such as location(roboty, cityss)
saying that robot; is located in citys3. In other words, for
each predicate and for each state we describe whether the
predicate holds in the state or not. This is called a classical
representation of planning problems. Actions are described
using a triple (Prec, Eff+, Eff~), where Prec is a set
of predicates that must hold for the action to be applicable
(preconditions), Ef f is a set of predicates that will hold



after performing the action (positive effects), and Ef f~ is
a set of predicates that will not hold after performing the
action (negative effects). For example, action move(roboty,
cityi2, cityas), describing that robot; moves from city;s to
cityas, is specified as a triple ({location(roboty, cityi2)},

{location(roboty, cityas) }, {location(roboty, city12)}). For-

mally, action a is applicable to state s if Prec(a) C s.
The result of applying action a to state s is a new state
v(s,a) = (s — Eff~(a)) U Eff*(a). Notice that this de-
scription assumes a frame axiom, that is, other predicates
than those mentioned among the effects of the action are not
changed by applying the action. The set of predicates to-
gether with the set of actions is called a planning domain.
We assume both sets of predicates and actions to be finite.
The goal is specified as a set of predicates that must hold
in the goal state, that is, if g is a goal then any state s such
that ¢ C s is a goal state. The classical planning problem
is defined by the planning domain, the initial state s, and
the goal g, and the task of planning is to find a sequence
of actions < ai,as,...,a, >, called a plan, such that a;
is applicable to the initial state sg, as is applicable to state
~v(s0,a1) etc., and g C y(v(v(s0,a1), a2)..., an).

There exists an alternative to the above logical formal-
ism that is based on so called multi-valued state variables.
For each feature of the world, there is a variable describing
this feature, for example location(roboty, S) describes the
position of robot; at state S. Instead of specifying the va-
lidity of the predicate in some state S, say location(roboty,
citys3), we can specify the value of the state variable in a
given state, in our example location(robot;, S) = cityss.
Hence the evolution of the world can be described as a set
of state-variable functions where each function specifies the
evolution of the values of certain state variable. The actions
are described as entities changing the values of state vari-
ables. We can still use preconditions specifying required val-
ues of certain state variables, but the positive and negative
effects are merged to effects of setting the values of certain
state variables. Notice that this multi-valued formulation is
more compact than the logical formulation, where, for ex-
ample, one needs to express explicitly that if robot; is in
cityss then it is not present in another location. For exam-
ple, the action of moving robot; from cityss to citys4 needs
to explicitly describe (in negative effects) that, after per-
forming the action, the predicate location(roboty, cityss) is
no more valid. In the multi-valued representation assigning
value citysy to state variable location(roboty, S) implicitly
means that robot; is not at a different location at state S.

4 Scheduling Problems

Scheduling concerns with the allocation of resources to ac-
tivities with the objective of optimizing some performance
measures. Depending on the situation, resources could be

machines, humans, runways, processors etc., activities could
be manufacturing operations, duties, landings and take-offs,
computer programs etc., and objectives could be minimiza-
tion of the schedule length, maximization of resource uti-
lization, minimization of delays, and others.

Scheduling has been studied since 1950s when researchers
were faced with problems of efficient management of oper-
ations in workshops (Leung, 2004). The problems studied
at that time were relatively simple and a number of effi-
cient algorithms providing optimal solutions were proposed.
In late 1960s, scheduling problems were encountered in the
area of computer science where the problem of efficient uti-
lization of scarce computational resources became very im-
portant. As scheduling problems became more complicated,
researchers were unable to develop efficient algorithms for
them and the proposed techniques were essentially exponen-
tial in time. This is not so surprising, since many schedul-
ing problems have been shown to be NP-hard. Nowadays,
an increased attention is paid to approximation and stochas-
tic algorithms that can provide some solutions even to hard
problems. The history of scheduling is reflected in the style
of research in the area. The focus is almost always on solv-
ing a specific scheduling problem or showing its complex-
ity rather than on providing a general scheduling approach.
The result is that we have a huge number of scheduling
algorithms for a large number of specific problems. This
makes scheduling very different from the approach of plan-
ning where the focus is on solving general planning prob-
lems rather than developing ad-hoc techniques for particular
planning problems.

Let us now introduce some basic scheduling terminol-
ogy more formally. Typically, the scheduling problem con-
sists of a set of n jobs that can run on m machines. Each
job i requires some processing time p;; on a particular ma-
chine j. This part of a job is usually called an operation.
The schedule of each job is an allocation of one or more
time intervals (operations) to one or more machines. The
scheduling problem is to find a schedule for each job sat-
isfying certain restrictions and optimizing given objectives.
The start time of job j can be restricted by a release date r;,
which is the earliest time at which job j can start its pro-
cessing. A release date models the time when the job arrives
at the system. Similarly, a deadline d; can be specified for
job j, which is the latest time by which the job j must be
completed. More frequently, a due date ¢; is specified for
job j which is an expected time of job completion. The job
can complete later (or earlier) the due date, but it will incur a
cost. Let C; be the completion time of job j. Then lateness
of job j is defined as L; = C; — J; and the tardiness of
job j is defined as T; = max(0, L;). Completion time, late-
ness, and tardiness are the typical participants in traditional
objective functions expressing the quality of the schedule.



It is possible to specify precedence constraints between
jobs, which express the fact that certain jobs must be com-
pleted before certain other jobs can start processing. In the
most general case, the precedence constraints are represented
as a directed acyclic graph, where each vertex represents a
job and, if job ¢ precedes job j, then there is a directed arc
from ¢ to j. If each job has at most one predecessor and at
most one successor, then we are speaking about chains; they
correspond to serial production. If each job has at most one
successor then the constraints are referred to as an intree.
This structure is typical for assembly production. Similarly,
if each job has at most one predecessor, then the constraint
structure is called an outtree. This structure is typical for
food or chemical production where from the raw material
we obtain several final products with different flavors”.

Each job (operation) requires certain resource(s) for its
processing. Operations can be pre-assigned to particular re-
sources and then we are looking for time of processing only.
Or there may be several alternative resources to which the
operation can be allocated, and then resource allocation is
part of the scheduling task. Such alternative resources are ei-
ther identical then we can union them into a so called cumu-
lative resource that can process several operations in parallel
until some given capacity, or the alternative resources may
be different (for example processing time may depend on the
resource). The resource, that can process at most one opera-
tion at any time, is called a unary or disjunctive resource. If
processing of operation on a machine can be interrupted by
another operation and then resumed possibly on a different
machine, then the job is said to be preemptable.

There exists a special category of scheduling problems
with a particular combination of precedence constraints, so
called shop problems. If each job has its own predetermined
route to follow, that is, the job consists of a chain of oper-
ations where each operation is assigned to a particular ma-
chine (the job may visit some machines more than once or
never) then we are talking about job-shop scheduling (JSS).
If the machines are linearly ordered and all the jobs follow
the same route (from the first machine to the last machine)
then the problem is called a flow-shop problem. Finally, if
we remove the precedence constraints from the flow-shop
problem, that is, the operations of each job can be processed
at any order, then we obtain an open-shop problem.

As we mentioned above, the scheduling research focuses
on solving specific scheduling problems, so it is crucial to
have a good classification of scheduling problems. The most
widely used notation to classify scheduling problems is the
well known «|(] notation by Graham et al. (Graham et al.,
1979). The « field describes the machine environment, for
example whether there is a single machine (1), m parallel
identical machines (Pm), job-shop (Jm), flow-shop (Fm) or
open-shop (Om) environment with m machines. The ( field
characterizes jobs and scheduling constraints and it may con-

tain none entry or multiple entries. The typical representa-
tives are restriction of the release dates (r;) or deadlines (d;)
for jobs, assuming precedence constraints (prec) or allow-
ing pre-emption of jobs (pmtn). Finally, the ~ field contains
the objective function to optimize, usually a single entry is
present but more entries are allowed. The widely used ob-
jectives are minimization of the maximal completion time -
a so called makespan(Cipqz) or minimization of maximal
lateness (Lynqz)-

5 Constraint Satisfaction in Planning and Scheduling
Problems

Constraint satisfaction is a general technology for solving
combinatorial optimization problems and hence it is not sur-
prising that this technology has been applied to planning
and scheduling problems as well. Constraint-based planning
is a discipline that studies how to solve planning problems
by constraint satisfaction, while constraint-based schedul-
ing deals with applying constraint satisfaction techniques to
scheduling problems.

Constraint satisfaction techniques typically assume the
problem to be fully specified in advance by fixed sets of vari-
ables and constraints. The scheduling problem with a known
set of activities is static in the sense that the activities and
hence the size of the solution are known in advance so the
scheduling problem can be naturally mapped to a constraint
satisfaction problem. On contrary, the planning problem is
dynamic in the sense that the activities and hence the size of
the solution are unknown in advance. So it is more compli-
cated to map a full planning problem to a constraint satis-
faction problem - usually a series of constraint satisfaction
problems is necessary to solve the planning problem or con-
straints are used only to model some planning sub-problem
such as temporal consistency.

5.1 Constraint Satisfaction in Planning

One of the difficulties of planning is that the length of the
plan, that is, the set of used actions, is unknown in advance,
so some dynamic technique which can produce plans of "un-
restricted” length is required. Frequently, the shortest plan is
being looked for, which is a form of optimal planning. As it
has been shown in (Kautz & Selman, 1992), the problem of
shortest-plan planning can be translated into a series of log-
ical satisfiability (SAT) problems, where each SAT instance
encodes the problem of finding a plan of a given length.
First, we start with finding a plan of length 1, and, if it does
not exist, then we continue with a plan of length 2, etc., until
the plan is found. There exist criteria to stop these extensions
if the plan does not exist (Ghallab et al., 2004), but for sim-



plicity reasons in this paper we assume that a plan always
exists.

Now, the problem of finding a plan of length n can be
encoded as a constraint satisfaction problem. The most im-
portant steps when designing a constraint model are the se-
lections of variables, their domains, and finally constraints
defining consistent tuples of the variables. We will present
here the straightforward constraint model that has been de-
scribed in (Ghallab ef al., 2004) and a more advanced model
called CSP-PLAN (Lopez & Bacchus, 2003), both models
for multi-valued state variables. For detailed comparison of
these models and their further improvement, the interested
reader is referred to (Bartdk & Toropila, 2008).

We assume sequential planning where the world state is
described using v multi-valued state variables, the instanti-
ation of which exactly specifies a particular state. A CSP
denoting the problem of finding a plan of length n consists
of n+1 sets of above mentioned multi-valued variables, with
the 1%¢ set denoting the initial state and k*" set denoting the
state after performing k-1 actions, for k € {2,...,n+ 1} .
We also need n action variables A7, where j ranges from 0
to n-1, indicating the selected actions (Figure 2).

n-1
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Fig. 2 Base decision variables and constraints modeling plans of
length n.

The two above mentioned constraint models (straight-
forward and CSP-PLAN) differ in the set of constraints used
to describe state transitions.

In the straightforward model we use logical constraints
that connect two adjacent sets of state variables through the
corresponding action variable between them, that is, for given

s we connect state variable layers V;* and Vf“, i€{0,...,v—

1}, through the action variable A®:

A® = act — Pre(act)®,Yact € Dom(A?), (1)

A® = act — Ef f(act)*™,Yact € Dom(A*®), ()

where Pre(act)® and Ef f(act)*™! are conjunctions of
equalities setting the values for required state variables cor-
responding to preconditions of action act in layer s, and
its effects in layer s 4+ 1 respectively. We also need con-
straints representing the frame axioms, that is, constraints

that would enforce equalities between those state variables
V.;? and VisH, which are not affected by the selected action
A? (the frame assumption is implicit in classical planning
representations):

A® € NonAffAct(V;) — V&=V T Vie<0,0—1>,
3

where NonAf f Act(V;) is the set of actions that do not
have state variable V; among its effects. Please note that this
set depends purely on actions’ definition and thus can be
pre-computed in advance.

The straightforward model uses separate constraints to
describe preconditions and effects of actions and frame ax-
ioms specifying that the value of some state variable is not
changed by the selected action. There is another more effi-
cient way to describe how the state is changed by merging
the constraints for effects and frame axioms into so called
successor state constraints originally described in (Reiter,
2001). This method has been used in CSP-PLAN (Lopez
& Bacchus, 2003) that was originally proposed as a con-
straint model for a so called planning graph (Blum & Furst,
1997). In the planning graph, several parallel actions can be
used in each layer provided that these actions do not in-
fluence each other. We will present here a simplified ver-
sion of the constraint model with a single action per layer.
The encoding of action preconditions is again using the con-
straints of type (1). However, in contrary to the straightfor-
ward model we use the successor state axioms instead of
effects and frame axioms. In particular, for each possible as-
signment of state variable V;° = val,val € Dom(V}?), we
have a constraint between it and the same state variable as-
signment fol = val in the previous layer. The constraint
says that state variable V;° takes value val if and only if
some action assigned this value to the variable V*, or equa-
tion Vis_1 = wal held in the previous layer and no action
changed the assignment of variable V;. Formally:

Vi =wval «» A1 € O(i,val)V(VS™! = val AN A € N(i)),

“)

where C(i,val) denotes the set of actions containing
V; = wal among their effects, and N () denotes the set
NonAf f Act(V;) as described within the previous model.

Notice that the straightforward model uses constraints
in the form of implication which is basically an abbrevia-
tion for disjunctive constraints. Disjunctive constraints are
known for weak propagation so the constraint models with
disjunctive constraints do not exploit constraint propagation
a lot and hence search is the prevailing technique for solving
such problems. The equivalence constraint in CSP-PLAN



leads to a stronger domain filtering and hence this model is
more efficient.

Designing a constraint model is just the first step to solve
the problem using constraint satisfaction technology. The
next step is defining the search strategy, that is, the order in
which the variables are instantiated and the order in which
the values are tried for the variables. One can use generic
search techniques for constraint satisfaction problems, how-
ever, it is usually better to exploit the particular structure of
the problem. First, one should realize that it is enough to
instantiate just the action variables A° because when their
values are known then the values of remaining variables, in
particular the state variables, are set by means of constraint
propagation. Of course, we assume that the values for state
variables V2 modeling the initial state were set and similarly
the state variables V;" in the final layer were set according
to the goal (the final state is just partially specified so some
state variables in the final layer remain un-instantiated). The
action variables can be instantiated in the increasing order
A® to A"~ to mimic the forward planning or in the de-
creasing order from A" ! to A° to mimic regression (back-
ward) planning. For value ordering (selection of action), one
can use the planning heuristics designed for other planning
algorithms (Ghallab er al., 2004).

In this section we gave two examples of constraint mod-
els for finding a plan of a given length. These models are
generated automatically from the description of the planning
domain and the planning problem. There also exist hand-
crafted constraint models, for example CPlan (van Beek &
Chen, 1999). All these models deal with sequential plans.
Constraints are also used in partial order planners (the plan
is a partially ordered structure of actions, it is a specific ver-
sion of plan-space planning) such as CPT planner (Vidal
& Geffner, 2004). Last but not least, constraint satisfaction
techniques are frequently applied to planning sub-problems
such as temporal constraint satisfaction problems (Dechter
et al., 1991) dealing with maintaining temporal relations be-
tween actions.

5.2 Constraint Satisfaction in Scheduling

Scheduling is a “killing application” for constraint satisfac-
tion. The success of constraint-based scheduling in real-life
applications is thanks to the fact that two research areas,
namely operations research (OR) and artificial intelligence

(AI), combined their complementary strengths in the constraint-

based approach. The traditional OR approach to scheduling
focuses on exploiting the combinatorial nature of a relatively
simple mathematical model of the scheduling problem. This
leads to a high level of efficiency when solving such prob-
lems. The drawback of this approach is that, when map-
ping the real problem to the mathematical model, usually

some degrees of freedom need to be discarded and simpli-
fying assumptions need to be taken. Discarding degrees of
freedom may eliminate some interesting solutions while dis-
carding side constraints may lead to unacceptable solutions.
In contrast, the Al approach traditionally focuses on general
problem-solving techniques so all degrees of freedom and
side constraints are preserved which may have the disad-
vantage of poor performance when comparing to dedicated
solving algorithms. Constraint satisfaction provides a very
good framework for integrating OR techniques in more gen-
eral Al solving algorithms. The key technology for this inte-
gration is based on the notion of global constraints. Global
constraints encapsulate a certain part of the constraint sat-
isfaction problem and, rather than using a set of constraints
to model this sub-problem, a dedicated “larger” global con-
straint is used that can exploit better the structure of the
sub-problem. Global constraints together with sophisticated
search techniques are the key power behind the success of
constraint-based scheduling. Global constraints provide ef-
ficient algorithms to solve well-defined sub-problems while
they can be still combined with other constraints modeling
the side features of the problem.

Let us first describe the base constraint model of a schedul-
ing problem. Recall that a scheduling problem is a decision
problem where we are looking for when and where the jobs
will be processed. Jobs typically consist of temporally con-
nected operations that are the basic scheduling objects. For
each operation, we can introduce three variables indicating
its position in time, namely, the start time, the end time,
and the processing time (duration). For operation A we de-
note these variables by start(A), end(A), and p(A). We expect
the domains for these variables to be discrete (for example
natural numbers representing time) where the release date
and the deadline of the operation make natural bounds for
them. It is possible to further restrict the domain by assum-
ing the time windows when the operation can be processed
(time windows are a typical example of a real-life side con-
straint). Thought frequently the processing time of opera-
tion is a constant number and so the start time is enough
to fully specify the allocation of operation to time, we pre-
fer to use all three variables to simplify description of the
constraints. Speaking about constraints, for operations with-
out pre-emption, the following constraint connects the above
three variables: start(A) + p(A) = end(A). The preemp-
tive case is slightly more complicated, the reader may look
at ((Baptiste et al., 2006), p. 765) for details. If resource al-
location is a part of the scheduling problem, then one more
variable is required to describe which resource will process
the operation: resource(A). Its domain equals the set of num-
bers, where the numbers are uniquely assigned to resources.
The domain contains just the numbers indicating resources
that can process a given operation.



Basically, there are two groups of constraints involved
in the model: temporal and resource constraints. Temporal
constraints describe the direct temporal relations between
the operations such as the precedence relations. The relation
that operation A must be processed before operation B can
be modeled using the constraint: end(A) < start(B). In
the remaining text, we will denote this constraint as A <<
B. Tt is easy to generalize this constraint to model a more
detailed temporal relation with minimal and maximal de-
lays between the operations. Then the constraint has a form

min_delay(A, B) < start(B)—end(A) < maz_delay(A, B).

When the temporal constraint network is sparse, as is the
usual case in scheduling, then standard arc-B-consistency
(Lhomme, 1993) is used to propagate these constraints. For
more dense networks it is more appropriate to use path-
consistency like algorithms.

Assume we have a unary (disjunctive) resource that can
process at most one operation at any time. Two operations
A and B processed on the unary resource cannot overlap in
time, so either A precedes B or vice versa: A << BV B <<
A. The unary resource can be fully modeled by a set of
such disjunctive constraints. Unfortunately, the disjunctive
constraints do no propagate well (arc consistency does not
prune a lot the domains of time variables). Nevertheless, as
mentioned above, a set of disjunctive constraints can be en-
capsulated to a single global constraint where stronger do-
main pruning can be achieved by exploiting techniques for
solving specific scheduling problems. Typically, the global
constraints model resources, that is, all start times of all
operations allocated to certain resource participate in the
global constraint. Constraints modeling unary resources are

frequently based on edge-finding technique (Baptiste & Le Pape,

1996) deducing that certain operation must be processed
first or last among the set of operations. Edge-finding al-
gorithms with the time complexity as good as O(n.log n)
(Vilim et al., 2005), where n is the number of operations, ex-
ist. A complementary technique to edge-finding called “not-
first/not-last” deduces that an operation cannot be processed
first or last (Torres & Lopez, 2000). (Vilim, 2004) proposed
a filtering algorithm with the time complexity O(n.log n).
Some of above mentioned techniques can be extended to cu-
mulative resources, that is, discrete resources with capacity
greater than one (more operations can be processed in par-
allel). For example, the paper (Baptiste et al., 2006) shows
a cumulative version of the edge-finding technique. Other
techniques have been proposed particularly for cumulative
resources, for example the energy precedence propagation
(Laborie, 2003) combines information about precedence re-
lations and limited capacity of the resource. As we already
mentioned the big advantage of constraint models is their
flexibility to combine constraints describing various aspects
of the problem. So in addition to “’standard” features of the

problem modeled typically by global constraints, the user
may define any other restriction on decision variables.

From the section on constraint satisfaction it should be
clear that the constraint model is not enough to solve the
problem; the constraint model needs to be accompanied by
the search procedure that instantiates the variables. It is pos-
sible to use any search strategy developed for constraint sat-
isfaction problems; however, the dedicated search strategies
for a class of problems frequently give better results. For
example, instead of instantiating the decision variables in
the model, the scheduling search strategies are usually based
on different branching schemes. As scheduling is basically
about finding a sequence of operations, the branching is typ-
ically based on deciding which operation is processed before
another operation. In particular, if operations A and B are
processed on the same resource, we can decide which one
will be processed first by exploring two alternatives A <<
B or B << A.In (Baptiste et al., 1995) a different branch-
ing scheme for operation selection is studied. Rather than
deciding about the order of two not-yet ordered operations,
we can decide about the first operation in the resource - we
are resolving the disjunction A << 2V —=A << {2, where
{2 is a set of operations allocated to the same resource as A.
Heuristics for selection which disjunct in the above disjunc-
tions should be tried first are frequently based on the notion
of slack proposed in (Smith & Cheng, 1993). Briefly speak-
ing, slack describes the flexibility for allocating the opera-
tions and the disjunct with larger flexibility should be tried
first.

This section gave some examples and techniques of us-
ing constraint satisfaction for solving scheduling problems.
A more detailed survey can be found in (Bartak, 2005) and
(Baptiste et al., 2006), where planning techniques are also

covered. Probably the most comprehensive coverage of constraint-

based scheduling is (Baptiste et al., 2001) where the filtering
algorithms behind the propagation rules for various types of
resources are described.

6 Integration of Planning and Scheduling

By planning we refer generally to the process of deciding
what to do, that is to say, the process of transforming strate-
gic objective into executable activity networks. On the other
hand, the scheduling process decides when and how, that is,
which resources to use to execute various activities and over
what time frames. Thus, planning deals with goal, states and
actions meanwhile scheduling deals with temporal and re-
source constraints.

In the traditional approach to managing complex sys-
tems, planning and scheduling are two very distinct phases:
first, the planner generates a plan and then the scheduler en-
sures the feasibility and optimality on the plan. This gap has
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several drawbacks and, in a wide variety of real applica-
tions, this strict separation is not possible or beneficial. In
many real cases, planning and scheduling are intertwined:
time constraints affect which actions may be chosen, and
also how they should be combined (Planken et al., 2008);
during scheduling it is often necessary to make planning de-
cisions (plan the setup of a machine); moreover planning
decisions can benefit from scheduling information (choose
a process plan depending on resource loads), etc

The Crikey planner (Halsey et al., 2004) circumvents
this problem by identifying which parts are separable, and
which are not. In the parts that are non-separable the ca-
sual and temporal problems are solved together; the sepa-
rable parts are treated as separate problems. Whereas some
researchers try to decouple planning and scheduling as much
as possible (Halsey et al., 2004), (Srivastava & Kambham-
pati, 1999b), other works are based on the integration of
them.

From the planning perspective, planning and scheduling
models can be classified into two categories: a) temporal
planning and b) integration of planning and scheduling mod-
els. The first group includes planners which can deal with
time and resources, and we can distinguish two different ap-
proaches: planning systems with embedded scheduling sub-
systems like LPG 1.2 (Gerevini & Serina, 2000), MIPS-

XXL (Edelkamp et al., 2006),LPG-TD (Gerevini et al., 2006); [Bartik 19§S]B artak R
and scheduling systems with embedded planning sub-systems ’ i

such as CPT (Vidal & Geffner, 2006). The second group
aims to exploit the advantages of both processes by shar-
ing heuristics, space search reduction and improvements of
the overall performance. However this integration is neither
easy nor intuitive and there are some trends to combine these
two processes which try to overcome the gap between them
(Smith et al., 1996). First attempt tend to include a tempo-
ral reasoning process that carries out the scheduling process
inside the own planning process (Garrido et al., 2000). Nev-
ertheless, the temporal reasoning needed in real problems
is too complex to be carried out in the same planning pro-
cess so that it remains difficult to deal with the existing con-
straints and optimize the plan. Furthermore, it is difficult
to determine when the system is planning or it is schedul-
ing (Bartdk, 2000). Many other attempts redefine both pro-
cesses, but some of them are only useful when no complex
availability constraints exist on share resources (Srivastava
& Kambhampati, 1999a). Many other interesting attempts
can be found mainly from the works of Muscettola (Muscet-
tola, 1993), Smith (Smith ef al., 2000), etc.
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