
Nogood-FC for Solving Partitionable Constraint
Satisfaction Problems?

Montserrat Abril, Miguel A. Salido, Federico Barber

Dpt. of Information Systems and Computation, Technical University of Valencia
Camino de Vera s/n, 46022, Valencia, Spain
{mabril, msalido, fbarber}@dsic.upv.es

Abstract. Many real problems can be naturally modelled as constraint
satisfaction problems (CSPs). However, some of these problems are of a
distributed nature, which requires problems of this kind to be modelled
as distributed constraint satisfaction problems (DCSPs). In this work,
we present a distributed model for solving CSPs. Our technique carries
out a partition over the constraint network using a graph partitioning
software; after partitioning, each sub-CSP is arranged into a DFS-tree
CSP structure that is used as a hierarchy of communication by our dis-
tributed algorithm. We show that our distributed algorithm outperforms
well-known centralized algorithms solving partitionable CSPs.

keywords: Distributed Constraint Satisfaction Problems, Graph Partition, Dis-
tributed Algorithms.

1 Introduction

One of the research areas in computer science that has gained increasing inter-
est in recent years is constraint satisfaction, mainly because many problems can
be modelled as constraint satisfaction problems (CSPs) and solved using spe-
cific constraint satisfaction techniques. These include problems from fields such
as artificial intelligence, operational research, information systems, databases,
etc. Most of these problems can be naturally modelled as CSPs. However, some
of these problems are of a distributed nature either for reasons of security, for
privacy requirements, or for physical distribution of objects, variables or con-
straints. Therefore, problems of this kind must be modelled as distributed con-
straint satisfaction problems (DCSPs), where the set of variables and constraints
are distributed among a set of agents. These agents, as distributed solvers, are
in charge of solving their own sub-problem and must coordinate themselves with
the rest of the agents in order to reach a solution to the global problem [5].
? This work has been partially supported by the research projects TIN2004-06354-

C02- 01 (Min. de Educacion y Ciencia, Spain-FEDER), FOM- 70022/T05 (Min. de
Fomento, Spain), GV/2007/274 (Generalidad Valenciana) and by the Future and
Emerging Technologies Unit of EC (IST priority - 6th FP), under contract no. FP6-
021235-2 (project ARRIVAL).



On the other hand, constraint satisfaction problems can also model large
real problems, which generally imply models with a great number of variables
and constraints. These problems often have clear, smaller sub-problems. These
problems can be handled as a whole only at overwhelming computational cost.
This leads to problem partition so that they can subsequently be solved more
effectively by means of algorithms that solve DCSPs. In this work, we divide
a problem using graph partitioning techniques. Many researchers are currently
working on graph partitioning ([1], [9]). The main objective of graph partitioning
is to divide the graph into a set of regions so that each region has roughly the
same number of nodes and so that the sum of all the edges connecting differ-
ent regions is minimized. Graph partitioning can also be applied to constraint
satisfaction problems. Thus, we can use graph partitioning when dealing with
large-scale CSPs to distribute the problem into a set of sub-CSPs. For instance,
we can divide a CSP into several sub-CSPs so that constraints among variables
of each sub-CSP are minimized.

In the literature of constraint satisfaction, the need to handle DCSP emerged
at the beginning of the 90s. However, most researchers who work in this field
focus their attention on algorithms in which each agent handles a single variable
[11]. Even though these algorithms can be transformed so that each agent han-
dles multiple variables [7], none of the resulting algorithms scales up well as the
size of the problems increases, due to space requirements and/or computacional
cost. Therefore, the resolution of real problems with algorithms of this type, in
practice, is not viable.

In this paper, we present new algorithms for the resolution of distributed
constraint satisfaction problems that are able to handle multiple variables by
agent. These algorithms handle the data obtained by means of communication
among the agents in order to obtain greater efficiency during the resolution
process. In addition, their space requirements are minimum, which is why they
are able to handle large, local sub-problems.

In the following section, we summarize some definitions about CSPs. A
method for translating a CSP into a DFS-tree CSP structure is presented in
section 3. Our distributed algorithm for solving DFS-tree CSP structures (depth
first search tree CSP structures) is presented in section 4. In section 5, we propose
a new algorithm to carry out intra-agent search. An evaluation of our methods
over random problems is presented in section 6. Finally, we summarizes our
conclusions in section 7.

2 Constraint Satisfaction Problems

In this section, we present some basic definitions related to CSPs, which will be
convenient for our purposes and will unify works from the constraint satisfaction
community. Then, we present three ways for solving a CSP: as a centralized
problem, as a partitionable problem and as a distributed problem.



A CSP consists of a set of variables X = {x1, ..., xn}; each variable xi ∈ X
has a set Di of possible values (its domain); and a finite collection of constraints
C = {c1, ..., cp} that restricts the variable values.

A solution to a CSP is an assignment of values to all the variables so that
all constraints are satisfied.

A binary constraint network is a network in which every constraint in-
volves at most two variables. In this case, the network can be associated with
a constraint graph, where each node represents a variable and the arcs connect
nodes whose variables are explicitly constrained [2]. In this paper, we assume a
binary constraint network.

A DFS-tree CSP structure is a tree whose nodes are composed by sub-
problems, where each subproblem is a CSP (sub-CSPs) (see Figure 2). Each node
of the DFS-tree CSP structure is a DFS-node and each individual and atomic
node of each sub-CSP is a single-node . Each single-node represents a variable,
and each DFS-node is made up of one or several single-nodes. Each constraint
between two single-nodes of different DFS-nodes is called inter-constraint .
Each constraint between two single-nodes of the same DFS-node is called intra-
constraint .

Partition : A partition of a set C is a set of disjoint subsets of C whose
union is C. The subsets are called the blocks of the partition.

Distributed CSP : A distributed CSP (DCSP) is a CSP in which the vari-
ables and constraints are distributed among automated agents [11]. Each agent
attempts to determine the values of its variables satisfying its intra-constraints.
Furthermore, there are inter-constraints and agents must be coordinated among
them because their value assignment must also satisfy inter-constraints.

2.1 Partitioning of CSPs

There are many ways to solve a CSP. However, these problems can be classified
into three categories: centralized problems, distributed problems, and partition-
able problems.

– A CSP is a centralized CSP when there are no privacy/security rules between
parts of the problem, and all knowledge about the problem can be gathered
into one process. It is commonly recognized that centralized CSPs must be
solved by centralized CSP solvers. Many problems are represented as typical
examples to be modelled as a centralized CSP and solved using constraint
programming techniques. Some typical examples are: sudoku, n-queens, map-
coloring.

– A CSP is a distributed CSP when variables, domains and constraints of
the underlying network are distributed among agents. This distribution is
mainly carried out due to security and/or privacy factors: constraints may be
strategic information that should not be revealed to competitors; a failure



of one agent can be less critical and other agents might be able to find
a solution without the failed agent. Examples of such systems are sensor
networks, meeting scheduling, web-based applications, etc.

– A CSP is a partitionable CSP when the global problem can be divided into
smaller problems (sub-problems) which must be coordinated to find the so-
lution to the global problem. In this case, the set of variables and/or con-
straints can have a distributed spacial structure. Therefore, the search space
of a CSP can be divided into several regions, and a solution is found by using
parallel computing (see Figure 1).

Given these three categories, we can conclude that a distributed CSP cannot
be solved by using centralized techniques. However, a centralized CSP can be
solved by using distributed techniques if the CSP is decomposed previously.

Real problems usually imply models with a great number of variables and
constraints, causing dense networks. Thus, it could be an advantage to divide
problems of this kind into several simpler interconnected sub-problems which
can be more easily solved.

In the following example, we show that a centralized CSP could be partitioned
into several sub-problems in order to obtain simpler sub-CSPs. This way, we can
apply a distributed technique to solve the partitioned CSP.

The map coloring problem is a typically centralized problem. The goal of
a map coloring problem is to color a map so that regions sharing a common
border have different colors. Let’s suppose that each country of Europe must
be colored. Figure 1 (1) shows a colored portion of Europe. This problem can
be solved by a centralized CSP solver. However, if the problem is to color each
region of each country of Europe (Spain, Figure 1(3); France, Figure 1(4)), it is
easy to realize that the problem can be partitioned into a set of sub-problems,
grouped by clusters. This problem can be solved as a distributed problem, even
when the problem is not inherently distributed.

A map coloring problem can be rephrased in a non-directed graph. Here,
every region of the map is replaced by a vertex of the graph, and two vertices
are connected by an edge if and only if the two regions share a border seg-
ment. In our problem of coloring the regions of each country of Europe, it can
be observed that the corresponding graph maintains clusters representing each
country (Spain, Figure 1(3); France, Figure 1(4)). Thus, the problem can be
solved in a distributed way.

3 How to Decompose a binary CSP into a DFS-Tree CSP
structure

Given any binary CSP, it can be translated into a DFS-tree CSP structure.
However, there exist many ways to decompose a graph into a DFS-tree CSP
structure. Depending on the user requirements, it may be desirable to obtain
balanced DFS-nodes, that is, each DFS-node maintains roughly the same number
of single-nodes; or it may be desirable to obtains DFS-nodes in such a way that
the number of edges connecting two DFS-nodes is minimized.



(1) (2)

(3) (4)

Fig. 1. Map coloring of Europe.

We present a proposal that is focused on decomposing the problem by using
graph partitioning techniques. Specifically, the problem decomposition is carried
out by means of a graph partitioning software called METIS [6]. METIS provides
two programs, pmetis and kmetis, for partitioning an unstructured graph into
k roughly equal partitions, such that the number of edges connecting nodes in
different partitions is minimized.

The first step to obtain a DFS-tree CSP structure is to divide the problem. We
use METIS to decompose a CSP into several sub-CSPs so that inter-constraints
among variables of each sub-CSP are minimized. Each DFS-node will be com-
posed by a sub-CSP.

Algorithm DFSStructure(G,v)

Input: Graph G, originally all nodes are unvisited. Start DFS-node v of G
Output: DFS-Tree CSP structure

process(v); /* put DFS-node v into DFS-tree CSP structure */
mark v as visited;
forall DFS-node i adjacent1 to v not visited do

DFSStructure(G,i);
end
/* (1) DFS-node i is adjacent to DFS-node v if at least one

inter-constraint exists between i and v. */

Algorithm 1: DFSStructure Algorithm.



The next step is to build the DFS-tree CSP structure with r DFS-nodes in
order to be studied by agents. The number of agents (r) is obtained by using
the formulae given in [10]. The DFS-tree CSP structure is used as a hierarchy
to communicate messages between DFS-nodes. The DFS-tree CSP structure is
built by using Algorithm 1. The nodes and edges of graph G are, respectively,
the DFS-nodes and inter-constraints obtained after the CSP decomposition.
The root DFS-node is obtained by selecting the tightest DFS-node, in the sense
that this sub-CSP maintains a higher number of single-nodes. The DFSStruc-
ture algorithm then simply puts DFS-node v into the DFS-tree CSP structure
(process(v)), initializes a set of markers so we can tell which vertices are visited,
chooses a new DFS-node i, and recursively calls DFSStructure(i). If a DFS-node
has several adjacent DFS-nodes, it would be equally correct to choose them
in any order, but it is very important to delay the test to determine whether a
DFS-node is visited until the recursive calls for previous DFS-nodes are finished.

Figure 2 shows an example of CSP generated by a random generator module
generateR(C, n, k, p, q)1, where C is the constraint network; n is the number of
variables in network; k is the number of values in each of the domains; p is the
probability of a non-trivial edge; q is the probability of an allowable pair in a
constraint. This figure represents the constraint network < C, 20, 50, 0.1, 0.1 >.
We can observe that this problem can be divided into several cluster (Figure
2-left) and it can be converted into a DFS-tree CSP structure (Figure 2-right).

Fig. 2. Left: Decomposed Problem. Right: DFS-Tree CSP structure.

1 A library of routines for experimenting with different techniques for solving binary
CSPs is available at http://ai.uwaterloo.ca/∼vanbeek/software/software.html



4 The DFS-Tree Search Algorithm: DTS

In section 3, we presented a method for structuring a binary CSP into a DFS-
Tree CSP structure. In this section, we show the DFS-Tree Search Algorithm
(DTS) for solving DFS-Tree CSP structures.

The DTS algorithm can be considered as a distributed and asynchronous
technique. In the specialized literature, there are many works about distributed
CSPs. In [11], Yokoo et al. present a formalization and algorithms for solving dis-
tributed CSPs. These algorithms can be classified as either centralized methods,
synchronous or asynchronous backtracking [11].

The DTS algorithm is committed to solving the DFS-tree CSP structure in
a Depth-First Search Tree (DFS Tree) where the root DFS-node is composed by
the tightest sub-CSP. In the literature, DFS trees have already been investigated
as a means to boost search [3]. Due to the relative independence of nodes lying
in different branches of the DFS tree, it is possible to perform search in parallel
on these independent branches.

Once the variables are divided and arranged into a DFS-tree CSP struc-
ture, the problem can be considered as a distributed CSP, where a group of
agents manages each sub-CSP with its variables (single-nodes) and its con-
straints (edges). Each agent is in charge of solving its own sub-CSP by means
of a search. Each subproblem is composed by its CSP subject to the variable
assignment generated by the ancestor agents in the DFS-tree CSP structure. In
this way, DFS-tree CSP structure induces a tree-based structure of solver agents.

Thus, the root agent works on its subproblem (root DFS-node). If the root
agent finds a solution, then it sends the consistent partial state to its children
agents in the DFS-tree CSP structure, and all children work concurrently to
solve their specific subproblems knowing consistent partial states assigned by
the root agent. When a child agent finds a consistent partial state, it again
sends this partial state to its children and so on. Finally, leaf agents try to find
a solution to its own subproblems. If each leaf agent finds a consistent partial
state, it sends an OK message to its parent agent. When all leaf agents answer
with OK messages to their parents, a solution to the entire problem is found.
When a child agent does not find a solution, it sends a Nogood message to the
parent agent. The Nogood message contains the variables that empty the variable
domains of the child agent. When the parent agent receives a Nogood message,
it stops the search of the children and it tries to find a new solution taking into
account the Nogood information and so on. Depending on the management of
this information, the search space is differently pruned. If a parent agent finds
a new solution, it will start the same process again sending this new solution to
its children. Each agent works in the same way with its children in the DFS-tree
CSP structure. However, if the root agent does not find a solution, the DTS
algorithm returns no solution found.

At the top of Figure 3, we show our technique for translating a CSP into
a DFS-tree CSP structure. Figure 3 also shows an example of DTS algorithm
execution. The root agent (a1) starts the search process finding a partial so-
lution. Then, it sends this partial solution to its children. The brother agents



Nogood Stop Solution Nogood SolutionSolution Problem Solution
Fig. 3. Partitioning Technique and DTS Algorithm Execution.

are committed to concurrently finding the partial solutions of their subproblem.
Each agent sends the partial problem solutions to its children agents. A problem
solution is found when all leaf agents find their partial solutions. For example,
(state s12 + s41) + (state s12 + s23 + s31) is a problem solution. The concurrence
can be seen in Time step 4, in which agents a2 and a4 are concurrently working.
Agent a4 sends a Nogood message to its parent (agent a1) in step 9 because
it does not find a partial solution. Then, agent a1 stops the search process of
all its children, and it finds a new partial solution which is again sent to its
children. Now, agent a4 finds its partial solution, and agent a2 works with its
child, agent a3, to find their partial problem solution. When agent a3 finds its
partial solution, a solution to the global problem will be found. This happens in
Time step 25.

5 Intra-agent search of partial solutions

In section 4, we show the distributed algorithm DTS for solving CSPs and we
point out that each agent is in charge of solving its own sub-CSP by means of
search techniques. Agents are free to select their own search methods in order
to find partial solutions.

In this section, we propose a new algorithm to search partial solutions: Nogood-
FC algorithm. The core of Nogood-FC is the well-known Forward Checking (FC)



algorithm [3]. Furthermore, our algorithm is based on Nogood message, which al-
lows us to prune the search space.

Algorithm Nogood-FC(G, Nogood message)

Input: Constraint Graph G={X, E} where E is a set of constraints and
X={x1, ..., xn} is a set of variables ordered according to
d=(x1, ..., xn); Nogood message: set of inconsistent variables.

Output: partial solution

if Nogood message==Ø then
solution ← FC(x1); /* search 1st partial solution starting

Forward Checking algorithm from variable x1. */

else
solution ← current solution;
if ∃ xj ∈ X: xj ∈ Nogood message and
@ xt ∈ X:(xt ∈ Nogood message ∧ t > j) then

while (solution 6= NO SOLUTION) and
(@ xi ∈ Nogood message: xi changed value(xi)) do

if ∃ xs ∈ X: xs ∈ Nogood message and
@ xt ∈ X:(xt ∈ Nogood message ∧ s < t < j) then

set value(xj) restricted by xs;
end
foreach xi ∈ X / j ≤ i < n do

reset effects of assignment xi ← value(xi);
end

end

solution ← FC(xj); /* search next partial solution

starting FC algorithm from variable xj. */

end
end
return solution

Algorithm 2: Nogood-FC Algorithm.

First, Nogood-FC uses Nogood information to prune the search space jump-
ing to the variable (xj) involved in the Nogood message within the lowest level in
the search tree. Furthermore, if there is another variable (xs) involved in the No-
good message within the second lowest level in the search tree, then Nogood-FC
will cancel the current value of xj until xs changes its current value.

Algorithm 2 shows the pseudo-code of Nogood-FC. This algorithm has the
same behavior of FC when it searches the first solution. However, the search
of the next solutions is different because it first prunes some solutions that
are inconsistent with the Nogood message, and later it searches for a new solu-
tion using FC. Therefore, the search space is pruned and partial solutions can
be deleted. However Nogood-FC does not prune any valid global solution of



the whole problem. However, it does eliminate partial solutions that cannot be
included in a global solution since they are inconsistent with the variables of
other/s sub-CSP/s.

Next, we show an example of Nogood-FC execution. It is based on the DCSP
shown in Figure 4. This figure shows a CSP divided into two sub-problems.

X1<= X2 X2 => X3X1 > X5X6 X5 X5 X7 X7< X3
Fig. 4. Example of DCSP.

According to the DTS and Nogood-FC algorithms, the process starts with the
search for the first partial solution in sub-problem 1. In this case (first solution),
the Nogood-FC algorithm works in the same way as the FC algorithm. It finds
the first partial solution included in the set of valid partial solutions which are
shown in Figure 5: (X1=1, X2=1, X3=1, X4=2). This first partial solution is
inconsistent with sub-problem 2 since assignment X1=1 empties the domain of
X5. Therefore, sub-problem 2 sends the Nogood message: (X1 = 1).

When the agent that owns sub-problem 1 gets the Nogood message (X1 = 1),
it eliminates value 1 of D1, and it searches for a new partial solution. The Nogood-
FC algorithm detects the pruning of all solutions with X1=1 (see Figure 6).
Therefore, it undoes the effects of X3, X2 and X1 assignments, and it executes
FC(X1) to find a new partial solution: (X1=2, X2=2, X3=1, X4=1). Again,
this partial solution is inconsistent with sub-problem 2 since assignment X3=1
empties the domain of X7. Therefore, sub-problem 2 sends the Nogood message:
(X3 = 1).

The Nogood message (X3 = 1) causes the pruning of all solutions with X3=1
(see Figure 7). Now, the Nogood-FC algorithm undoes the effects of X3 assign-



Fig. 5. Set of valid partial solutions of Sub-P1 (Figure 4).

Fig. 6. Nogood-FC pruning with Nogood -message (X1=1).

ment, and it executes FC(X3) to find a new partial solution: (X1=2, X2=2,
X3=2, X4=1). This new partial solution is again inconsistent since assignments
X1=2 and X3 = 2 do not allow the algorithm to find any consistent values in
domains D5 and D7 that satisfy constraint X5 6= X7. Therefore, the agent that
owns sub-problem 2 sends the Nogood message: (X1=2,X3 = 2).

The information of the Nogood message (X1=2,X3 = 2) causes the Nogood-
FC algorithm to set X3 restricted by X1. Thus, the value of X3 will not be
2 until X1 changes its current value. Therefore, the partial solutions shown in
Figure 8 are pruned. Then, the Nogood-FC algorithm undoes the effects of the X3

assignment, and it executes FC(X3) to find a new partial solution: (X1=2, X2=3,
X3=3, X4=1). Finally, this partial solution is consistent with sub-problem 2.

Figure 8 shows that thanks to the Nogood message, the Nogood-FC algorithm
has pruned 17 partial solutions of sub-problem 1 which are inconsistent with
sub-problem 2.



Fig. 7. Nogood-FC pruning with Nogood -message (X3=1).

Fig. 8. Nogood-FC pruning with Nogood -message (X1=2,X3=2).

6 Evaluation

In this section, we carry out an evaluation between the DTS algorithm versus a
complete CSP solver. To this end, we have used a well-known centralized CSP
solver called Forward Checking (FC)2.

Experiments were conducted on random distributed networks of binary con-
straints defined by the 8-tuple < a, n, k, c, p1, p2, q1, q2 >, where a was the num-
ber of sub-CSPs, n was the number of variables on each sub-CSP, k was the val-
ues in each domain, c was the probability of connection between two sub-CSPs,
p1 was the inter-constraint density for each connection between two sub-CSPs
(probability of a non-trivial edge between sub-CSPs), p2 was the intra-constraint
density on each sub-CSP (probability of a non-trivial edge on each sub-CSP),
q1 was the tightness of inter-constraints (probability of a forbidden value pair

2 FC was obtained from: http://ai.uwaterloo.ca/ vanbeek/software/software.html



in an inter-constraint) and q2 was the tightness of intra-constraints (probability
of a forbidden value pair in an intra-constraint). These parameters are currently
used in experimental evaluations of binary Distributed CSP algorithms [4]. The
problems were randomly generated by using the generator library in [4] and
by modifying these parameters. Each problem instance execution had a limited
CPU-time (TIME OUT) of 3600 seconds.

In this evaluation, we compare the running times and concurrent constraint
checks (CCC) ([8]) of the DTS and FC algorithms. The intra-agent search in each
sub-CSP of the distributed model is carried out with the Nogood-FC algorithm.
After evaluating the parameters of the 8-tuple < a, n, k, c, p1, p2, q1, q2 >, we
detected that the parameter c (probability of connection between two sub-CSPs)
implies the major behavior differences between DTS and FC. Obviously, random
problems with low values of c represent constraint networks with clear clusters,
and random problems with high values of c represent dense networks.

The following graphs show the influence of parameter c on the DTS and
FC behaviors. For each 8-tuple < a, n, k, c, p1, p2, q1, q2 >, we tested these algo-
rithms with 4 problem instances of random CSPs according to the following val-
ues: the number of variables on each sub-CSP (n) was increased from 5 to 30; the
number of sub-CSPs (a) and the domain size (k) were fixed to 5; c = {10, 50, 90};
p1 = {1, 5, 9}; p2 = {10, 50, 90}; q1 = {10, 50, 90}; q2 = {10, 50, 90}. Each result
shown in the graphs is the average of 44 = 256 instances of random CSPs with
different combinations of p1, p2, q1 and q2.

DTS + Nogood-FC

0,E+00
5,E+07
1,E+08
2,E+08
2,E+08
3,E+08
3,E+08
4,E+08
4,E+08
5,E+08
5,E+08

5 10 15 20 25 30

Variables

C
C

C

C=10 C=50 C=90

Fig. 9. The influence of parameter C on Concurrent Constraint Checks executing the
DTS algorithm and the Nogood-FC intra-agent search with a different number of
variables.



FC

0,E+00

2,E+09

4,E+09

6,E+09

8,E+09

1,E+10

1,E+10

1,E+10

5 10 15 20 25 30

Variables

C
C

C

C=10 C=50 C=90

Fig. 10. The influence of parameter C on Concurrent Constraint Checks executing the
FC algorithm with a different number of variables.

In Figures 9 and 10, we show the number of concurrent constraint checks used
for DTS and FC to solve problems with different values of parameter c: 10%,
50% and 90%, and different numbers of variables. It can be observed that DTS
concurrent constraint checks are always lower than FC concurrent constraint
checks. However, DTS running times are not always better than FC running
times. This is due to the cost of message exchange carried out by the DTS
algorithm. Figures 11 and 12 show the running times used for DTS and FC to
solve the same problems. In constraint networks with clusters (c = 10), DTS
running times are lower than FC running times, but FC has lower running times
than DTS when problems are very connected (c = 90). The running times of
both algorithms are very similar when c = 50.

In Figures 13 and 14, we show TIME OUT executions of the DTS and FC
algorithms, respectively. As the number of variables increases, the number of
problem instance executions that achieve TIME OUT increases. Furthermore,
as in the running time case, DTS has fewer TIME OUT executions than FC
when c = 10, and FC has fewer TIME OUT executions than DTS when c = 90.

7 Conclusions

We have proposed a distributed algorithm (DTS) for solving partitionable CSPs
that can manage sub-CSPs with several variables. First, we translate the original
CSP into a DFS-tree CSP structure, where each node is a sub-CSP. Later, DTS
solves the resultant DFS-tree CSP structure. Furthermore, we present a new
algorithm (Nogood-FC) to carry out intra-agent search. Nogood-FC exploits
the Nogood information for pruning the search space. The evaluation shows a



DTS + Nogood-FC

0

100

200

300

400

500

600

700

800

5 10 15 20 25 30

Variables

R
u

n
n

in
g

 T
im

es
 (

S
ec

o
n

d
s)

C=10 C=50 C=90

Fig. 11. The influence of parameter C on Running Times executing the DTS algorithm
and the Nogood-FC intra-agent search with a different number of variables.

FC

0

100

200

300

400

500

600

700

800

5 10 15 20 25 30

Variables

R
u

n
n

in
g

 T
im

es
 (

S
ec

o
n

d
s)

C=10 C=50 C=90

Fig. 12. The influence of parameter C on Running Times executing the FC algorithm
with a different number of variables.

good behavior in partitionable CSPs. Thus, this technique is suitable for solving
centralized problems that can be divided into smaller subproblems in order to
improve the search for solution.



DTS + Nogood-FC

0

5

10

15

20

25

5 10 15 20 25 30

Variables

%
 T

IM
E

_O
U

T

C=10 C=50 C=90

Fig. 13. The influence of parameter C on % of TIME OUTs executing the DTS algo-
rithm and the Nogood-FC intra-agent search with a different number of variables.

FC

0

5

10

15

20

25

5 10 15 20 25 30

Variables

%
 T

IM
E

_O
U

T

C=10 C=50 C=90

Fig. 14. The influence of parameter C on % of TIME OUTs executing the FC algo-
rithm with a different number of variables.

References

1. A. Abou-Rjeili and G. Karypis, ‘Multilevel algorithms for partitioning power-law
graphs’, pp. 10 pp.+, (2006).

2. R. Dechter, ‘Constraint networks (survey)’, Encyclopedia Artificial Intelligence,
276–285, (1992).

3. R. Dechter, Constraint Processing, Morgan Kaufman, 2003.
4. R. Ezzahir, C. Bessiere, M. Belaissaoui, and El-H. Bouyakhf, ‘DisChoco: A plat-

form for distributed constraint programming’, In Proceedings of IJCAI-2007 Eighth



International Workshop on Distributed Constraint Reasoning (DCR’07), 16–27,
(2007).

5. B. Faltings, ‘Distributed constraint programming’, 699–729, (2006).
6. G. Karypis and V. Kumar, ‘Using METIS and parMETIS’, (1995).
7. Yokoo M. and Hirayama K., ‘Distributed constraint satisfaction algorithm for com-

plex local problems’, Proceedings of the 3rd International Conference on Multi
Agent Systems, (1998).

8. A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan, ‘Comparing performance of dis-
tributed constraint processing algorithms’, In Proc. 4th Workshop on Distributed
Constraint Reasoning, (2002).

9. F. Pellegrini, ‘A parallelisable multi-level banded diffusion scheme for computing
balanced partitions with smooth boundaries’, Springer-Verlag, published in the
LNCS series, 4641, 191–200, (2007).

10. M.A. Salido and F. Barber, ‘Distributed csps by graph partitioning’, Applied Math-
ematics and Computation, 183, 491–498, (2006).

11. M. Yokoo and K. Hirayama, ‘Algorithms for distributed constraint satisfaction: A
review’, Autonomous Agents and Multi-Agent Systems, 3, 185–207, (2000).


