1

Stochastic Local Search for Distributed Constraint Satisfaction Problems
Miguel A. Salido*, Federico Barber'

*Dpto. Ciencias de la Computaéci e Inteligencia Artificial. Universidad de Alicante
Campus de San Vicente, Ap. de Correos: 99, E-03080, Alicante, Spain

"Dpto. de Sistemas Inforaticos y Computadin. Universidad Poléicnica de Valencia
Camino de Vera s/n, 46071, Valencia, Spain
{msalido, fbarber@dsic.upv.es

Abstract

Nowadays, many real problems can be solved us-
ing local search strategies. These algorithms in-
crementally alter inconsistency value assignments
to all the variables using eepair or hill climbing
metaphor to move towards more and more com-
plete solutions. Furthermore, if the problem can be
modeled as a distributed problem, the advantages
can be even greater.

This paper presents a distributed model for solving
Constraint Satisfaction Problems (CSPs), in which
agents are committed to sets of constraints. The
problem constraints are ordered and partitioned, by
a preprocessing step, so that the most restricted
constraints are studied first. Thus, each agent
solves a subproblem by means of a stochastic local
search algorithm. This constraint ordering, as well
as value and variable ordering, can improve effi-
ciency because inconsistencies can be found earlier
and the number of constraint checks can be signifi-
cantly reduced.

Introduction

distributed model in which a preprocessing step classifies the
constraints ink sets, so that the most restricted constraints

(included in set 1) are studied first (by agent 1). This is based
on thefirst-fail principle, which can be explained as

"To succeed, try first where you are more likely to fail”

Our model manages CSPs in a distributed way so that each
agent is committed to a set of constraints. The constraints that
are more likely to fail are studied first using some local search
algorithm. In this way, inconsistent tuples can be found ear-
lier. It must be taken into account the difference between
our block structure, to solve classical CSPs, and a hierarchi-
cal CSP. Our model internally uses a block structure towards
helping search in problems where all constraints are required
and no preferences among constraints are defined, whereas a
hierarchical CSP is focused on representing preferences de-
fined by the user. However, our model internally transforms
any CSP into a hierarchical one by means of an ordered block
structure[Salido, 2003,

2 Definitions and Algorithms

In this section, we relate some basic definitions as well as
basic algorithms for solving CSPs.

Nowadays, many real problems in Artificial Intelligence (Al) 2.1 Definitions

as well as in other areas of computer science and engineeringsp: priefly, a constraint satisfaction problem (CSP) consists
can be efficiently modeled as Constraint Satisfaction Probg-

lems (CSPs). Some examples of such problems include: spa-)

tial and temporal planning, qualitative and symbolic reason- ® @ Set of variables(= {zy, s, ..., z,}

ing, diagnosis, decision support, scheduling, real-time sys- e a set of domaind) = {D;, Ds,..., D,,}, where each
tems and robot planning.

General methods for solving CSPs inclu@enerate and

test [Kumar, 1992 and Backtracking[Kumar, 1987 algo-

rithms. Many works have been carried out to improve the
Backtrackingmethod. One way of increasing the efficiency

of Backtrackingncludes the use afearch ordeffor variables
and values. Some heuristics basedvariable orderingand

value ordering[Sadeh, 1990have been developed, because

variablex; € X has a seD; of possible values

¢ afinite collection of constraints’' = {c1, co, ..., ¢, } re-
stricting the values that the variables can simultaneously
take.

Partition : A partition of a setC is a set of disjoint subsets
of C whose union ig”. The subsets are called the blocks of
the partition.

of the additivity of the variables and values. However, con-
straints are also considered todmiditive that is, the order of Distributed CSP A distributed CSP is a CSP in which

imposition of constraints does not matter; all that matters ighe variables and constraints are distributed among automated
that the conjunction of constraints be satisfiBdrtak, 1999. agentdYokooet al, 1994.

In spite of the additivity of constraints, little work has been Each agent has some variables and attempts to determine
done over constraint ordering. In this paper, we propose ¢heir values. However, there are interagent constraints and the

value assignment must satisfy these interagent constraints. In Generate&Tesgenerates a state and then checks whether
our model, there aré agentsl, 2, ..., k. Each agent main- it satisfies all the constraints, i.e., checks if it is a solution.
tains a set of constraints and the variables involved in thes&he simplest way to generate a state is to randomly select a
constraints. value for each variable. However, this is a less efficient way.
There have been some research efforts to make the generator
smarter. The most popular idea is Local Sed&bsic, 1994

*or many large CSPs, it always gives better results than the
systematic Backtracking paradigm. It generates an initial (but
possibly inconsistent) state and then incrementally uses hill

Objective in a CSPA solution to a CSP is an assignment
of values to all the variables so that all constraints are sati
fied. A problem with a solution is termeshtisfiableor con-
sistent The objective in a CSP may be to determine:

e whether a solution exists, that is, if the CSP is consistentglimbing[Selman, 199Por min-conflict{Minton et al,, 1994
e all solutions, many solutions, or only one solution, with to move to a solution with a better evaluation value among its

no preference as to which one.

e an optimal, or a good solution by means of an objective
function defined in terms of certain variables.

Terms in local search methodology

e state one possible assignment of all variables; the num-
ber of states is equal to the Cartesian product of the do-
main size

e evaluation value the number of constraint violations of
the state

e neighbor: the state which is obtained from the current
state by changing only one variable value

e local-minimum: the state that is not a solution and the
evaluation values of all its neighbors are larger than or
equal to the evaluation value of this state.

2.2 Algorithms

There are several algorithms and a lot of improved methods
for solving CSPs. According to how many solutions the sys-
tem seeks concurrently, we can divide the current algorithms
in Single-solution Algorithmsvhere the system is searching
for only one solution at a time aridulti-solution Algorithms
where the system is parallel searching for several solutions.
If considering nor-basic algorithms, we can also put those
hybrid algorithms in this category, such Bartfolio of Algo-
rithmsandCooperative SearciHogg, 1993.

However, cooperative search can also be applied to find a
single solution. In this way, CSPs can be modeled as dis-
tributed CSPs in order to improve efficiency. Every agent is
committed to finding a consistent partial state to its own prob-
lem and cooperates with the other agents to find a problem
solution. Each agent can use any search method for solving

CSPs and finding a consistent partial state to its partial prob- o

lem. Furthermore, a single solution from the first agent can
lead to many solutions at the last agent.

From the viewpoint of the search style, algorithms can be
classified in two typesSystematic seardBacktracking) and
Generate&testKumar, 1992.

Backtracking assigns values to variables sequentially and
then checks constraints for each variable assignment. If a par-
tial state does not satisfy any of the constraints, it will go back
to the most recently assigned variable and perform the pro-
cess again. Backtracking cannot solve largescale problems
because its search space increases sharply with the problem
size and it is not an efficient algorithm. We will use this tech-
nigue in the evaluation section in order to analyze the behav-
ior of our distributed model.

current solution neighborhood, until a solution is found.
Let's look at some well-known local search techniques
summarized iiBartak, 199%:

e Hill-Climbing

Hill-climbing is probably the most well-known algo-
rithm for local search. The idea of hill-climbing is: to
start at randomly generated state; move to the neigh-
bor with the best evaluation value; and if a strict local-
minimum is reached then restart at another randomly
generated state. This procedure repeats till the solution
is found. Generally, this algorithm maintains a param-
eter called Max-Flips), that is used to limit the maxi-
mum number of moves between restarts which helps us
to leave non-strict local-minimums. The fact that the
hill-climbing algorithm has to explore all the neighbors
of the current state before choosing the move must be
taken into account. This can take a lot of time.

o Min-Conflicts

To avoid exploring all neighbors of the current state,
some heuristics were proposed to find a next move. A
Min-conflicts heuristic[Minton et al,, 1994 randomly
chooses any conflicting variable, that is, the variable that
is involved in any unsatisfied constraint, and then picks
a value which minimizes the number of violated con-
straints. If no such value exists, it randomly picks a value
that does not increase the number of violated constraints.
Note, that the pure min-conflicts algorithm is not able
to leave local-minimum. In addition, if the algorithm
achieves a strict local-minimum it does not perform any
move at all and, consequently, it does not terminate with
the global solution.

Tabu-Search

Tabu search (TS)Glover, 1986 is another method to
avoid cycles and getting trapped in local minimums. It
is based on the notion of tabu list, which is a special short
term memory that maintains a selective history, com-
posed of previously encountered configurations or more
generally pertinent attributes of such configurations. A
simple TS strategy consists of preventing configurations
of tabu list from being recognized for the nexitera-
tions (¢, called tabu tenue, is the size of tabu list). Such a
strategy prevents Tabu from being trapped in short term
cycling and allows the search process to go beyond local
optima.

e Simulated Annealing

Simulated AnnealingKirkpatrick et al, 1983 is a Preprocessing Step
Monte Carlo approach for combinatorial problems. It

is a famous algorithm inspired by the roughly analogous e, ot
physical process of heating and then slowly cooling a o
o

substance to obtain a strong crystalline structure. It can
be regarded as a heuristic of the stochdstical Search

i . Block Time steps
3 Our Distributed Model Agents
Agent-based computation has been studied for several year| @ 5 S S | oo B
. . i . . . A 11 12 13 1t
in the field of artificial intelligence and has been widely used | —Z; . : : %
in other branches of computer science. Multi-agent systems Su*oa | Sz | | i z
are computational systems in which several agents interac g %
or work together in order to achieve goals. In the special- | ‘ T
ized literature, there are many works about distributed CSP. In | ‘ m e |

[Yokooet al., 1999, Yokoo et al. present a formalization and U
algorithms for solving distributed CSP. These algorithms can
be classified as centralized methods, as synchronous back-
tracking and as asynchronous backtracKivigkoo, 1995. Figure 1: Multi-agent model

Our model can be considered as a synchronous model. It
is meant to be a framework for interacting agents to achieve a . . .
global solution state. The main idea of our multi-agent modefnd well distributed states (s a polynomial function) in or-
is based on carrying out a partition of the problem constraints‘,jer to represent the entire populatlon: As in statistic, the user
in & groups calleclocksof constraints, so that the most re- Selects the size of the sample#)). Without loss of gener-
stricted constraints are grouped and studied by autonomo@ity, We suppose a sample of¥) states.2 The preprocessing
agents. To this end, a preprocessing step carries out a partitiGHP studies how many state's : s¢; < n” satisfy each con-
of the constraints, similar to a sample in finite population, inStraintc;. Thus, each constraint is labeled withp;: c;(p:),
order to classify the constraints from the most restricted one¥Nerep; = st;/n” represents the probability that satis-
to the least restricted ones. Then, a grougbloick agents fies the_whole proble_m. Thus, in th_e preprocessing step the
manages concurrently each block of constraints, generated q@nstramts.are classified in ascending order of the Ighels
the preprocessing step. Eaalock agents in charge of solv- herefore, in the preprocessing step, the |n|t|aI'CSP' is trans-
ing its partial problem by means of a stochastic local searcited into an ordered CSP so that, it can be divided into a set
algorithm. Thus, finding a solution to a distributed CSP re-Of subproblems. Furthermore, this sample will be used by the
quires that alblock agentdind a incremental consistent par- stochastic local search algorithms to restart the search. Thus,
tial state for their own partial problem, that is, the solution isthe random states with lower evaluation valli¢ are firstly
incrementally generated from the fitsibck agento the last ~ Sélected to restart the search.
block agent

Figure 1 shows the multi-agent model, in which consistent
partial statesd;;) are concurrently generated by edubck
agent(a,;) and sent to the followinblock agenuntil a consis-
tent state is found (for example, statgi + so1 + sx1). Each
block agentmaintains the corresponding domains for its new
variables and must assign values to its new variables so that
the block of constraints is satisfied. Whehlack agenfinds 3 : : : :
a value for each new variable, then it communicates with the| " selected states by sample in finite population
nextblock agenby sending the consistent partial state. Thus, ‘ :

Problem Solutions H

b X v v

when the lasblock agenfassigns values to the new variables a [X X X X 7]
that satisfy its block of constraints, then a consistent state is % < < < T 15
found. Ts1 T2 | Tss| Ts Tss | Tse Ts7 | Tss | Tso

Constraint checking with selected states

3.1 Preprocessing Step

In this section, we present the preprocessing step that classi- i i
fies the constraints, so that the most restricted constraints are Figure 2: Preprocessing step
studied first.

As we pointed out above, the preprocessing step carries out The stochastic local search algorithm moves to the neigh-
a sample from a finite population in statistics, where there idor and restarts at the following lower evaluation value state
a population, and a sample is chosen to represent this populathen a local-minimum or a number of iteratiohdgx-Flips)
tion. In our context, the population is composed by the states reached. In Figure 2, an example of the preprocessing step
generated by means of the Cartesian Product of variable d@s shown. It can be observed that a sample of states is selected
main bounds and the sample is composedsfy) random from the spanning tree. Each state is checked with the prob-

lem constraints and the evaluation vallig is stored to be tries to find any other consistent partial state. So, ddatk

used by the stochastic local search algorithms. Furthermoragentyj, using the variable assignment of the previous block
each constraint; is labeled in order to be classified from the agentsl, 2, .., 5 — 1, tries to find concurrently a more com-
most restricted one to the least restricted one. Thus, as waete assignment. A consistent state is obtained when the last
pointed in Figure 1, these ordered constraints are partitioneblock agent: finds a complete variable assignment.

in k blocks to divide the problem i interdependent sub-

problems. Each problem will be solved by an agent, Calleciar to the one presented ivokoo et al, 1998). There
block agentusing a stochastic local search algorithm and theare three variables,z; .z, 75, with variable domains

information derived from the preprocessing step. {1,2,3},{1,2},{1,2, 3}, respectively, and constraints :

3.2 Block Agent x1 # v2 andes @ x2 = x5 (see Figure 4).

A block agenis a cooperating agent with a set of properties.

Without loss of generality, we make the following assump- ||| variables: x,, x,, x,

tions (Figure 3): d;:{1,2.3}
dy{1,2}

d;:{123}

C1 X\ 7X,

Example: Let's look at the following example, (simi-

Consistent
state

€yt X)Xy \xz:;l,z;jxj:h,z,z',\ [=23 |

! - =
Assigment
= /’ {"'vé"é‘a"égi"}" Block Time steps
2 agents
g
-; @ HC, HC,
® AN T 22 |\
é @) 4 HC Hq‘ HC, HC,
Variables involved: V,,v,, 210] 31.1) [(1.22) [8.2.2)]
’ Domain of new variables v, ‘ J L i i J } Q L,
H Problem Solutions: {(2,1,1), 3,1,1), (1,2,2), (3,2,2)} H
Hill-Climbing Neighbors |
i : i Rand
Figure 3: Block agent R 18,4023, (12) 1)
*]
k Evaluation values The best 3
e There is a patrtition of the set of constraildis= ‘UICZ‘ HC,: (A3), 4623) (12), (A0} HC, (1), 4.1, 1), (A1)
=
generated by the preprocessing step, and ddobk HG,: (23 {61.8), . (:21),. 2.2} HC,:(2.2.2),(1.2.2)y. (3.2.2)5)
agenta; has a block of constraints;.
e Eachblock agent:; knows a set of variablels; involved Figure 4: CSP solved by our model using Hill-Climbing.
in its block of constraint€’;. These variables fall into
two different setsused variableset (7;) andnew vari- Only two constraints are involved, so the constraint parti-
ablesset (v;), thatis:V; = ; U v;. tion is straightforward, and only two blocks, with only one

e The domainD; corresponding to variable; is main- constraint, are considered. The first block is composed by
tained in the firsblock agentz, in which z; is involved, ~ constraintc, and the last block is composed by constraint
(i.e),z; € vy c1. This is due to the fact that constraiat is more re-

Eachblock agents. assians values (bv a stochastic lo- stricted than constraint becaus_eg maint_ains_ two valid tu-
* gen, d (by oles: (—,1,1) and (—, 2,2), while ¢; maintains four valid

cal search algorithm) to variables that have not been ad)

signed yet, that isy; assigns values to variables € v;, uPles:(1,2,-),(2,1,-), (3,1, —) and(3,2, —). So, block

because variables, ¢ v, have already been assigned 29€nta1 manages constraint 1 aibfock agentz; manages

by previous agents, , as J ai constraint 2. It can be observed that variabtesand s are
A2,y Q1.

.) new variablesn a; andz; is anew variablein as, while x5
e Eachblock agenta; kn(_)ws the consistent partial states jg 5 ;sed variablén as. Thus, domains of variable, andzs
generated by the previous agenfsas, ..., a;—1. ThUS, 4re known byu;, and the domain af; is known byas. Fur-
agenta; knows assignments of variables included inthermoreg; is responsible for assigning valuesitpandzs,
Setsivy, Uz, ..., Uj-1. using a stochastic local search algorithm, apds responsi-
Block agentsooperate to achieve a consistent stBleck ble for assigning values te,. Figure 4 shows the behavior of
agentl tries to find a consistent state of its partial problem.our distributed model using Hill-Climbing. It can be observed
When it has a consistent partial state, it communicates thithat the time step 1 is only used lay to generate a con-
partial state tdlock agent2. Block agent2 studies the sec- sistent partial state (-,1,1). Hill-Climbing starts at randomly
ond set of more restricted constraints using the variable aggenerated state (-,1,3) with evaluation value (1fi6';. Its
signments generated tpfock agentl. Meanwhile, agent 1 neighbors are (-,2,3),(-,1,2) and (-,1,1), with evaluation value

(1),(2) and (0), respectively. So, the neighbor with the bes 7,7, 7,7, 1.4

evaluation value is (-,1,1), which is a consistent partial state| ¢ |72y 1=1

Thus,a; sends a messagedg containing the consistent par- A e

tial state(—, 1,1). In time step 2, both; anda, work for oz =1 =
finding a consistent state for their own problems.tries to o I;z:?} Zf =
find a value tar;, knowing thatz, andzs are fixed to (1,1). alldifferent(z)

Hill-Climbing starts at randomly generated state (1,1,1) with|-=_ -

evaluation value (1) inHC5. Its neighbors are (2,1,1) and Pﬁzz:f ;f;: M)(l’z)(1’3)(l’4)(2’l)%(2’3)(2’4)(3’1)0’2)%(3’4)(4’Dg;?:;ﬁfj;ﬁ?)
(3,1,1), W|t_h eyaluat|on value_ (0) an.d (0), respectwely. Fur- cilzezf=1 (13)14RAG1)ANE2) 6
thermore, in time step 2, tries to find another consistent c; \zj-zj\!ZZ L2(AICAINAG2YAI) -
partial state forz, and 3. Thus, in time step 2q5 finds a _ o lnzl=3 (12032HRHCHRGDEEDE) 10
value tozx, and a consistent state (2,1,1) is reached, whilg ezl (L3LACAGIAA) 5

a; finds anothgr consistent partial state72?2) in HC,. If c“j \ZZ-ZS\;=2 (1’2)(1’4)(2’3)(3’4)(2’1)(4’1)(3 243) 8
only one solution is required, the process is halted. However) ™ ™ 4;_1 1’3 1’4 2’4 3’1 4’1 4’2 AT 6

if more solutions are required, the process continues in time— e &Z!=1 (1390A2H3DEDED)

steps 3,4 and 5 using Hill-Climbing C3 and HCY. It can be 0O ®) =)

observed (in time step 2) that our model allows agents to rum .

concurrently to achieve consistent partial states. <
Let's suppose that the domain of is d; : {1}. Then, ¢ lzz,)l=1 e zfi=2

the first consistent partial state, generated,byin time step Cilg=1 [S, & s State |y [z02,)1=3

1), is (-,1,1). It does not go through a consistent state, beH ¢ lzz)i=1 s b=

cause there is no value tg (in time step 2) to satisfy the
constraintc;. Thus, the stat¢l,1,1) is a local-minimum
because this state is not a solution and the evaluation valuesigyre 5: The 4-queens problem in our distributed model.

of all its neighbors are larger than or equal to the evaluation

value of this state. Then, restarts at another randomly gen-

erated state (-,2,3), (in time step 2), in which Hill-climbing Figure 5 shows the initial CSP and the possible solu-
finds a consistent partial state (-,2,2), that will go through dions (2,4,1,3) and (3,1,4,2). The preprocessing step checks

consistent state (1,2,2) lay in the time step 3. how many partial states (from a given sample: 16 tuples
{(1,1),(1,2),---,(4,3),(4,4)}) satisfy each constraint and
3.3 Application to Problems with Hard and Soft classifies them afterwards. It can be observed that some con-
Constraints straints are more restricted than others. Constraints,, cg

. . only satisfy 6 partial states, while constraints c; satisfy
IThe prqt[?]ohse% d'St”t:Ut?? m%del f(t:an bet alls? agpllgd 10 proby partial states and constraing satisfies 10 partial states.
ems withhard constraintsand soft constraints nard con- 1,5 - the preprocessing step classifies the most restricted
straintsare conditions that must be satisfisdft constraints constraints first;, ¢4, cs. These constraints are enough to
however may be violated, but should be satisfied as much 88, hoth solutions:
possible. :
This type of problems can be easily managed as following: (2,4,1,3) «—¢c1:(2,4),c4:(4,1),¢6: (1,3)

. . . 1,4,2 : 1 : (1,4 1 (4,2
e First, the preprocessing step studies normallytthel (3,1,4,2) —ex: (3,1),ea 5 (1,4), 06 (4,2)

constraints that is, it classifies thbard constraintsso In the 4-queens problem, the use_fulness of our propqsal
that the most restricted set bard constraintsare stud- becomes apparent when a stochastic local search algorithm
ied first. is carried out to find a solution. The algorithm starts at a

randomly generated state and the algorithm studies the eval-
uation value for each neighbor and constraint. In our dis-
tributed model, the evaluation value is only calculated in the
first block of constraints, with the corresponding constraint
check saving.

In this way, the priority of constraints is: The most re- Following, two tables are presented to evaluate our dis-
strictedhard constraintsthe least restricteldard constraints tributed model in thex—queens problem. In Table 1, our
the least restrictesoft constraintand the most restrictesbft ~ objective is to find only one solution using Hill-Climbing. In
constraints Thus,hard constraintamust be satisfied and as Table 2, our objective is to find all solutions usi@gner-
manysoft constraintas possible. ate&TestandBacktracking

The percentage of restart savings inthequeens problem
; using Hill-Climbing with Max-Flips=nis presented in Table
4 Evaluation 1. It can be observed that the percentage is highnfoe
The n-queens problem is a classical search problem in thg that is, in the 4-queens problem the number of restarts is
artificial intelligence area. The 4-queens problem is internallyeduced by 57.62%. In the 13-queens problem the percentage
managed in Figure 5. of restarts is reduced by 91.5%. This restart saving is due to

e Later, the preprocessing step studiesdbi constraints
However, in this case, it classifies theft constraintso
that the least restricted set®dft constraintsre studied
first.

the random states with lower evaluation vallig are firstly As future work, we are working on a distributed model in

selected to restart the search. Thus, Our model does not seleghich block agentsan dynamically interchange constraints,

random states but it selects the most appropriate ones. depending on the evaluation values, so that the preprocess-
ing step can be removed and block agents can carry out this
constraint partition.

Table 1: Percentage of restart savings inithejueens prob-

lem using Hill-Climbing. References
Hill-Climbing [Bartak, 1999 Roman Bartak. Constraint Programming: In
n-queens|| Percentage of Pursuit of the Holy Grail. IrProceedings of WDS99 (in-
restart savings vited lecture), Prague, June 1999.

4 57.62% [Glover, 1988 Fred Glover. Future paths for Integer Pro-
5 70.41% gramming and Links to Artificial IntelligenceComputers
6 75-84;% and Operations Research, 5:533—-549, 1986.
:) [Hogg, 1993 Tad Hogg, and Colin P. WilliamsSolving the
9 85.51EV(0) Really Hard Problems with Cooperative SeardProc. of
10 87.27% .AAAI9.3, 231-236, 1993. . .
13 91.50% [Kirkpatrick et al,, 1983 Scott Kirkpatrick, C. Gelatt, and

M. Veechi. Optimization by Simulated AnnealingSci-
ence, 220:671-681, 1983.

The amount of constraint check savings in the n-queengcymar, 1987 Vipin Kumar. DepthFirst Search In Ency-
p(rsc_)rbleDm usn:j% 0L||(r dlskt_nbuéezlq IanOd'el W|t@enefa'vlt_e&_l-_ret;°’lt clopedia of Artificial Intelligence, 2:1004-1005, 1987.
(GT+Dis) andBacktracking(BT+Dis) is presented in Table [Kumar, 1992 Vipin Kumar. Algorithms for Constraint Sat-

2. In this case, our objective is to obtain all solutions in the'™" .) iy)
n—queens problem. The results show that the amount of con- !Sfaction Problems: a Survewrtificial Intelligence Mag-
azine, 1:32-44, 1992,

straint check savings is significant in GT+Dis and BT+Dis.
This is due to the fact that the preprocessing step classifiddlinton et al, 1993 Steven Minton, Mark D. Johnston, An-
the constraints in ascending order (see Figure 5), so that the drew B. Philips, and Philip Laird. Minimizing Conflicts:
most restricted constraints have been checked first, and in- A Heuristic Repair Method for Constraint Satisfaction and

consistent states have been discarded earlier. Scheduling ProblemsgAtrtificial Intelligence 52:161-205,
1992.
_ . . . [Sadeh, 1990 Nomal Sadeh. Variable and Value Ordering
T?:klﬁe%] amount of constraint check savings infhejueens Heuristics for Activity-based Jobshop Schedulihgproc.
P ' of Fourth International Conference on Expert Systems in

Production and Operations Managemgh84—-144, 1990.

Solu CGTtD'.St CBTJ'P'S. : [Salido, 2003 Miguel A. Salido, and Federico Barber. A
n-queens) olutions ch onksSraln 4 ch onkssraln d Constraint Ordering Heuristic For Scheduling Problems.
7 5 ec731avmg_ e022 avings To appear in Proc. of 1st International Conference on
5 10 21336 240 Scheduling : Theory and Applicatiorz003. _
6 4 446474 2406 [Selman, 199P Bart Selman, Hector Levesque, and David
7 40 14039727 24408 Mitchell. A New Method for Solving Hard Satisfiability
8 92 40.6 x 107 267982 Problems.Proceedings of the Tenth National Conference
9 352 13.6 x 103 3120302 on Artificial Intelligence 440-446, 1992.
10 724 402.1 x 10° 3.9 x 107 [Sosic, 1994 Rok Sosic, Jun Gu. Efficient local search with

conflict minimization: A case study of the Nqueen prob-
lem. IEEE Transactions on Knowledge and Data Engi-
neering 6:661-668, 1994.

5 Conclusions and future work [Yokoo, 1995 Makoto Yokoo. Asynchronous Weak-
In this paper, we propose a distributed method for solving g(;tt?sr?;tcrgggt Psrgglrggsf(grosg I\g? %heD Ilszwskiultﬁgmcgt?s;gmt
constraint satisfaction problems in which agents are commit- Conference on Principles and Practice of Constraint Pro-
ted to solving their partial problems by means of stochastic gramming 88102, 1995

local search algorithms. They communicate partial solution ' ’

to other agents so that the most restricted set of constraints ar§okooetal, 1994 Makoto Yokoo, Edmund H. Durfee,
studied first. Thus, inconsistencies can be found earlier and T0ru Ishida, Kazuhiro Kuwabara. The Distributed Con-
the number of constraint checks can be significantly reduced. Straint Satisfaction Problem: Formalization and Algo-
In this way, hard problems can be solved more efficiently, es- thms. Knowledge and Data Engineering0:673-685,
pecially problems where the number of constraints is large. 1998

