
Stochastic Local Search for Distributed Constraint Satisfaction Problems
Miguel A. Salido∗, Federico Barber†

∗Dpto. Ciencias de la Computación e Inteligencia Artificial. Universidad de Alicante
Campus de San Vicente, Ap. de Correos: 99, E-03080, Alicante, Spain

†Dpto. de Sistemas Inforḿaticos y Computación. Universidad Polit́ecnica de Valencia
Camino de Vera s/n, 46071, Valencia, Spain

{msalido, fbarber}@dsic.upv.es

Abstract
Nowadays, many real problems can be solved us-
ing local search strategies. These algorithms in-
crementally alter inconsistency value assignments
to all the variables using arepair or hill climbing
metaphor to move towards more and more com-
plete solutions. Furthermore, if the problem can be
modeled as a distributed problem, the advantages
can be even greater.
This paper presents a distributed model for solving
Constraint Satisfaction Problems (CSPs), in which
agents are committed to sets of constraints. The
problem constraints are ordered and partitioned, by
a preprocessing step, so that the most restricted
constraints are studied first. Thus, each agent
solves a subproblem by means of a stochastic local
search algorithm. This constraint ordering, as well
as value and variable ordering, can improve effi-
ciency because inconsistencies can be found earlier
and the number of constraint checks can be signifi-
cantly reduced.

1 Introduction
Nowadays, many real problems in Artificial Intelligence (AI)
as well as in other areas of computer science and engineering
can be efficiently modeled as Constraint Satisfaction Prob-
lems (CSPs). Some examples of such problems include: spa-
tial and temporal planning, qualitative and symbolic reason-
ing, diagnosis, decision support, scheduling, real-time sys-
tems and robot planning.

General methods for solving CSPs includeGenerate and
test [Kumar, 1992] and Backtracking[Kumar, 1987] algo-
rithms. Many works have been carried out to improve the
Backtrackingmethod. One way of increasing the efficiency
of Backtrackingincludes the use ofsearch orderfor variables
and values. Some heuristics based onvariable orderingand
value ordering[Sadeh, 1990] have been developed, because
of the additivity of the variables and values. However, con-
straints are also considered to beadditive, that is, the order of
imposition of constraints does not matter; all that matters is
that the conjunction of constraints be satisfied[Bartak, 1999].

In spite of the additivity of constraints, little work has been
done over constraint ordering. In this paper, we propose a

distributed model in which a preprocessing step classifies the
constraints ink sets, so that the most restricted constraints
(included in set 1) are studied first (by agent 1). This is based
on thefirst-fail principle, which can be explained as

”To succeed, try first where you are more likely to fail”

Our model manages CSPs in a distributed way so that each
agent is committed to a set of constraints. The constraints that
are more likely to fail are studied first using some local search
algorithm. In this way, inconsistent tuples can be found ear-
lier. It must be taken into account the difference between
our block structure, to solve classical CSPs, and a hierarchi-
cal CSP. Our model internally uses a block structure towards
helping search in problems where all constraints are required
and no preferences among constraints are defined, whereas a
hierarchical CSP is focused on representing preferences de-
fined by the user. However, our model internally transforms
any CSP into a hierarchical one by means of an ordered block
structure[Salido, 2003].

2 Definitions and Algorithms
In this section, we relate some basic definitions as well as
basic algorithms for solving CSPs.

2.1 Definitions
CSP:Briefly, a constraint satisfaction problem (CSP) consists
of:

• a set of variablesX = {x1, x2, ..., xn}
• a set of domainsD = {D1, D2, ..., Dn}, where each

variablexi ∈ X has a setDi of possible values

• a finite collection of constraintsC = {c1, c2, ..., cp} re-
stricting the values that the variables can simultaneously
take.

Partition : A partition of a setC is a set of disjoint subsets
of C whose union isC. The subsets are called the blocks of
the partition.

Distributed CSP: A distributed CSP is a CSP in which
the variables and constraints are distributed among automated
agents[Yokooet al., 1998].

Each agent has some variables and attempts to determine
their values. However, there are interagent constraints and the

value assignment must satisfy these interagent constraints. In
our model, there arek agents1, 2, ..., k. Each agent main-
tains a set of constraints and the variables involved in these
constraints.

Objective in a CSP: A solution to a CSP is an assignment
of values to all the variables so that all constraints are satis-
fied. A problem with a solution is termedsatisfiableor con-
sistent. The objective in a CSP may be to determine:

• whether a solution exists, that is, if the CSP is consistent.

• all solutions, many solutions, or only one solution, with
no preference as to which one.

• an optimal, or a good solution by means of an objective
function defined in terms of certain variables.

Terms in local search methodology:

• state: one possible assignment of all variables; the num-
ber of states is equal to the Cartesian product of the do-
main size

• evaluation value: the number of constraint violations of
the state

• neighbor: the state which is obtained from the current
state by changing only one variable value

• local-minimum: the state that is not a solution and the
evaluation values of all its neighbors are larger than or
equal to the evaluation value of this state.

2.2 Algorithms
There are several algorithms and a lot of improved methods
for solving CSPs. According to how many solutions the sys-
tem seeks concurrently, we can divide the current algorithms
in Single-solution Algorithmswhere the system is searching
for only one solution at a time andMulti-solution Algorithms
where the system is parallel searching for several solutions.
If considering non−basic algorithms, we can also put those
hybrid algorithms in this category, such asPortfolio of Algo-
rithmsandCooperative Search[Hogg, 1993].

However, cooperative search can also be applied to find a
single solution. In this way, CSPs can be modeled as dis-
tributed CSPs in order to improve efficiency. Every agent is
committed to finding a consistent partial state to its own prob-
lem and cooperates with the other agents to find a problem
solution. Each agent can use any search method for solving
CSPs and finding a consistent partial state to its partial prob-
lem. Furthermore, a single solution from the first agent can
lead to many solutions at the last agent.

From the viewpoint of the search style, algorithms can be
classified in two types:Systematic search(Backtracking) and
Generate&test[Kumar, 1992].

Backtrackingassigns values to variables sequentially and
then checks constraints for each variable assignment. If a par-
tial state does not satisfy any of the constraints, it will go back
to the most recently assigned variable and perform the pro-
cess again. Backtracking cannot solve largescale problems
because its search space increases sharply with the problem
size and it is not an efficient algorithm. We will use this tech-
nique in the evaluation section in order to analyze the behav-
ior of our distributed model.

Generate&Testgenerates a state and then checks whether
it satisfies all the constraints, i.e., checks if it is a solution.
The simplest way to generate a state is to randomly select a
value for each variable. However, this is a less efficient way.
There have been some research efforts to make the generator
smarter. The most popular idea is Local Search[Sosic, 1994].
For many large CSPs, it always gives better results than the
systematic Backtracking paradigm. It generates an initial (but
possibly inconsistent) state and then incrementally uses hill
climbing[Selman, 1992] or min-conflict[Minton et al., 1992]
to move to a solution with a better evaluation value among its
current solution neighborhood, until a solution is found.

Let’s look at some well-known local search techniques
summarized in[Bartak, 1999]:

• Hill-Climbing
Hill-climbing is probably the most well-known algo-
rithm for local search. The idea of hill-climbing is: to
start at randomly generated state; move to the neigh-
bor with the best evaluation value; and if a strict local-
minimum is reached then restart at another randomly
generated state. This procedure repeats till the solution
is found. Generally, this algorithm maintains a param-
eter called (Max-Flips), that is used to limit the maxi-
mum number of moves between restarts which helps us
to leave non-strict local-minimums. The fact that the
hill-climbing algorithm has to explore all the neighbors
of the current state before choosing the move must be
taken into account. This can take a lot of time.

• Min-Conflicts
To avoid exploring all neighbors of the current state,
some heuristics were proposed to find a next move. A
Min-conflicts heuristic[Minton et al., 1992] randomly
chooses any conflicting variable, that is, the variable that
is involved in any unsatisfied constraint, and then picks
a value which minimizes the number of violated con-
straints. If no such value exists, it randomly picks a value
that does not increase the number of violated constraints.
Note, that the pure min-conflicts algorithm is not able
to leave local-minimum. In addition, if the algorithm
achieves a strict local-minimum it does not perform any
move at all and, consequently, it does not terminate with
the global solution.

• Tabu-Search
Tabu search (TS)[Glover, 1986] is another method to
avoid cycles and getting trapped in local minimums. It
is based on the notion of tabu list, which is a special short
term memory that maintains a selective history, com-
posed of previously encountered configurations or more
generally pertinent attributes of such configurations. A
simple TS strategy consists of preventing configurations
of tabu list from being recognized for the nextt itera-
tions (t, called tabu tenue, is the size of tabu list). Such a
strategy prevents Tabu from being trapped in short term
cycling and allows the search process to go beyond local
optima.

• Simulated Annealing

Simulated Annealing[Kirkpatrick et al., 1983] is a
Monte Carlo approach for combinatorial problems. It
is a famous algorithm inspired by the roughly analogous
physical process of heating and then slowly cooling a
substance to obtain a strong crystalline structure. It can
be regarded as a heuristic of the stochasticLocal Search.

3 Our Distributed Model
Agent-based computation has been studied for several years
in the field of artificial intelligence and has been widely used
in other branches of computer science. Multi-agent systems
are computational systems in which several agents interact
or work together in order to achieve goals. In the special-
ized literature, there are many works about distributed CSP. In
[Yokooet al., 1998], Yokoo et al. present a formalization and
algorithms for solving distributed CSP. These algorithms can
be classified as centralized methods, as synchronous back-
tracking and as asynchronous backtracking[Yokoo, 1995].

Our model can be considered as a synchronous model. It
is meant to be a framework for interacting agents to achieve a
global solution state. The main idea of our multi-agent model
is based on carrying out a partition of the problem constraints,
in k groups calledblocksof constraints, so that the most re-
stricted constraints are grouped and studied by autonomous
agents. To this end, a preprocessing step carries out a partition
of the constraints, similar to a sample in finite population, in
order to classify the constraints from the most restricted ones
to the least restricted ones. Then, a group ofblock agents
manages concurrently each block of constraints, generated by
the preprocessing step. Eachblock agentis in charge of solv-
ing its partial problem by means of a stochastic local search
algorithm. Thus, finding a solution to a distributed CSP re-
quires that allblock agentsfind a incremental consistent par-
tial state for their own partial problem, that is, the solution is
incrementally generated from the firstblock agentto the last
block agent.

Figure 1 shows the multi-agent model, in which consistent
partial states (sij) are concurrently generated by eachblock
agent(ai) and sent to the followingblock agentuntil a consis-
tent state is found (for example, state:s11 + s21 + sk1). Each
block agentmaintains the corresponding domains for its new
variables and must assign values to its new variables so that
the block of constraints is satisfied. When ablock agentfinds
a value for each new variable, then it communicates with the
nextblock agentby sending the consistent partial state. Thus,
when the lastblock agentassigns values to the new variables
that satisfy its block of constraints, then a consistent state is
found.

3.1 Preprocessing Step
In this section, we present the preprocessing step that classi-
fies the constraints, so that the most restricted constraints are
studied first.

As we pointed out above, the preprocessing step carries out
a sample from a finite population in statistics, where there is
a population, and a sample is chosen to represent this popula-
tion. In our context, the population is composed by the states
generated by means of the Cartesian Product of variable do-
main bounds and the sample is composed bys(n) random

���������
�	��

������

� � ������ � ��� �

�

�

�

� �

�

�
��

�
��

�
��

�
��
� �

� �

�
��
� �

� �
� � � � � �

� �

�
��
� �

� �

� � �
� � � � 	
 � �
 �� � � � � � � � � � �

� � � � � � � � � ���� �! �"
#%$!&�'�()

*,+ &�- +.�� &�)/)/0 '�$21	(&�-

3�4
3�5

�
3�6

798;:,< = >@? A :�=
B ? > = A = AC8C:

*,+.��D!� &�EF1 �G� H (0 � '�)

�
���

�

I/J

�
�

ICK

�
�

ICL

Figure 1: Multi-agent model

and well distributed states (s is a polynomial function) in or-
der to represent the entire population. As in statistic, the user
selects the size of the sample (s(n)). Without loss of gener-
ality, we suppose a sample of (n2) states. The preprocessing
step studies how many statessti : sti ≤ n2 satisfy each con-
straintci. Thus, each constraintci is labeled withpi: ci(pi),
wherepi = sti/n2 represents the probability thatci satis-
fies the whole problem. Thus, in the preprocessing step the
constraints are classified in ascending order of the labelspi.
Therefore, in the preprocessing step, the initial CSP is trans-
lated into an ordered CSP so that, it can be divided into a set
of subproblems. Furthermore, this sample will be used by the
stochastic local search algorithms to restart the search. Thus,
the random states with lower evaluation valueTsi are firstly
selected to restart the search.

����� ����� �	��
���
�� ��
�����
�
������ ��� ��� � ��� � �����������
�� � ���

�� � � � �

� � � � � � � � � �

�� � � � � � � �

�

�

�

� 	 � � 	
 � 	 � � 	 � � 	 � � 	
 � 	 � � 	 � � 	 �
������
�� ��
�� ������ �����!�� ��"�#�� � �
��	� ����� ����
��
�� ��

Figure 2: Preprocessing step

The stochastic local search algorithm moves to the neigh-
bor and restarts at the following lower evaluation value state
when a local-minimum or a number of iterations (Max-Flips)
is reached. In Figure 2, an example of the preprocessing step
is shown. It can be observed that a sample of states is selected
from the spanning tree. Each state is checked with the prob-

lem constraints and the evaluation valueTsi is stored to be
used by the stochastic local search algorithms. Furthermore,
each constraintci is labeled in order to be classified from the
most restricted one to the least restricted one. Thus, as we
pointed in Figure 1, these ordered constraints are partitioned
in k blocks to divide the problem ink interdependent sub-
problems. Each problem will be solved by an agent, called
block agent, using a stochastic local search algorithm and the
information derived from the preprocessing step.

3.2 Block Agent
A block agentis a cooperating agent with a set of properties.
Without loss of generality, we make the following assump-
tions (Figure 3):

������� ���	�
	���
������ ��
	������� ��� �	� �

����� ��! "#��$�"�%�&(')��*+! ��,�- %�.�'0/ 1

24353)6 7�8�94:<;
=?> 8�@4:<@A7?9?B
C @4D 6 @4EAF 9?3

G�H)IKJ L HNM
O IQP)RSM T)U
V P)M WNJ L P)X V

Figure 3: Block agent

• There is a partition of the set of constraintsC ≡
k⋃

i=1

Ci

generated by the preprocessing step, and eachblock
agentaj has a block of constraintsCj .

• Eachblock agentaj knows a set of variablesVj involved
in its block of constraintsCj . These variables fall into
two different sets:used variablesset (vj) andnew vari-
ablesset (vj), that is:Vj = vj ∪ vj .

• The domainDi corresponding to variablexi is main-
tained in the firstblock agentat in whichxi is involved,
(i.e.),xi ∈ vt.

• Eachblock agentaj assigns values (by a stochastic lo-
cal search algorithm) to variables that have not been as-
signed yet, that is,aj assigns values to variablesxi ∈ vj ,
because variablesxk ∈ vj have already been assigned
by previous agentsa1, a2, ..., aj−1.

• Eachblock agentaj knows the consistent partial states
generated by the previous agentsa1, a2, ..., aj−1. Thus,
agentaj knows assignments of variables included in
sets:v1, v2, ..., vj−1.

Block agentscooperate to achieve a consistent state.Block
agent1 tries to find a consistent state of its partial problem.
When it has a consistent partial state, it communicates this
partial state toblock agent2. Block agent2 studies the sec-
ond set of more restricted constraints using the variable as-
signments generated byblock agent1. Meanwhile, agent 1

tries to find any other consistent partial state. So, eachblock
agentj, using the variable assignment of the previous block
agents1, 2, .., j − 1, tries to find concurrently a more com-
plete assignment. A consistent state is obtained when the last
block agentk finds a complete variable assignment.

Example: Let’s look at the following example, (simi-
lar to the one presented in[Yokoo et al., 1998]). There
are three variables,x1, x2, x3, with variable domains
{1, 2, 3}, {1, 2}, {1, 2, 3}, respectively, and constraintsc1 :
x1 6= x2 andc2 : x2 = x3 (see Figure 4).

��������� �	��

������

� ��� ��� � �

�

�

� ���

� � � ��� ��! � �"� �#� ��!

� �#� ��� �$! � %&� ��� ��! � %#� �#� ��!

' � �� �
(*) +*,.-�/ ,#01-

243

215

�����

� � � 	
 � �

6

� �
 � � � � �6
�
� �
 � � �6
�
� �
 � � � � �

7

� � 8

� 8

�7
�
� � 8

�
� 8

�

� � � � � � �	 � � � 8

� � 8
�
� � 8
�

� �
 � � � � 	 �

� � � � � � �

� � � � 	

9
�

8

� � 8
�

7

:

� �
 � � � � �

9

8
�
� � 8
�

7
�

:
�
� �
 � � � � �

:
�
� �
 � � � � �

; < = > ? @ A

� ��� �#� �#!

� �
 � � � � 	
 �

� � � � 	

B�C

B�C
�

B�C
�

B�C
�

B�C
�

B�C
�

DFE

� � � G H I J4I K�L 3NM O G H I P4I K�L 3 I�G H I J"I P�L 3 I4G H I J�I J�L QSR

� � � ��� %#!UTWV X"� � � �#� %�!UTW��� � � ��� �#!UTW��� � � ��� ��! Y�Z� �
 � ��

� � � � 	

 � ��! � �� � � �
 � " 	 � � # � �� �

$ � � �% � � � �
 � � � �% 	 � & # 	 � � 	 � �

' � �� �	 � � � ��% � � �
 � � � � (� �
 �
) � � (� �
 �
) � � (
 � � � �) � � (� � � � �) �

DFE
�
� � � G H I P4I K�L 3NM O G H I J4I K�L 3 I�G H I P"I J�L 3 I4G H I P�I P�L QSR

DFE
�
� � � G J�I J4I J4L 3�M O G P�I J4I J4L Q�I�G K�I J4I J4L Q R

DFE
�
� � � G P�I P�I P4L 3 M O G J4I P�I P4L Q I4G K�I P�I P"L Q R

[

[
�

Figure 4: CSP solved by our model using Hill-Climbing.

Only two constraints are involved, so the constraint parti-
tion is straightforward, and only two blocks, with only one
constraint, are considered. The first block is composed by
constraintc2 and the last block is composed by constraint
c1. This is due to the fact that constraintc2 is more re-
stricted than constraintc1 becausec2 maintains two valid tu-
ples: (−, 1, 1) and (−, 2, 2), while c1 maintains four valid
tuples: (1, 2,−), (2, 1,−), (3, 1,−) and(3, 2,−). So,block
agenta1 manages constraint 1 andblock agenta2 manages
constraint 2. It can be observed that variablesx2 andx3 are
new variablesin a1 andx1 is anew variablein a2, while x2

is aused variablein a2. Thus, domains of variablex2 andx3

are known bya1, and the domain ofx1 is known bya2. Fur-
thermore,a1 is responsible for assigning values tox2 andx3,
using a stochastic local search algorithm, anda2 is responsi-
ble for assigning values tox1. Figure 4 shows the behavior of
our distributed model using Hill-Climbing. It can be observed
that the time step 1 is only used bya1 to generate a con-
sistent partial state (-,1,1). Hill-Climbing starts at randomly
generated state (-,1,3) with evaluation value (1) inHC1. Its
neighbors are (-,2,3),(-,1,2) and (-,1,1), with evaluation value

(1),(1) and (0), respectively. So, the neighbor with the best
evaluation value is (-,1,1), which is a consistent partial state.
Thus,a1 sends a message toa2 containing the consistent par-
tial state(−, 1, 1). In time step 2, botha1 anda2 work for
finding a consistent state for their own problems.a2 tries to
find a value tox1, knowing thatx2 andx3 are fixed to (1,1).
Hill-Climbing starts at randomly generated state (1,1,1) with
evaluation value (1) inHC3. Its neighbors are (2,1,1) and
(3,1,1), with evaluation value (0) and (0), respectively. Fur-
thermore, in time step 2,a1 tries to find another consistent
partial state forx2 andx3. Thus, in time step 2,a2 finds a
value tox1, and a consistent state (2,1,1) is reached, while
a1 finds another consistent partial state(−, 2, 2) in HC2. If
only one solution is required, the process is halted. However,
if more solutions are required, the process continues in time
steps 3,4 and 5 using Hill-ClimbingHC3 andHC4. It can be
observed (in time step 2) that our model allows agents to run
concurrently to achieve consistent partial states.

Let’s suppose that the domain ofx1 is d1 : {1}. Then,
the first consistent partial state, generated bya1 (in time step
1), is (-,1,1). It does not go through a consistent state, be-
cause there is no value tox1 (in time step 2) to satisfy the
constraintc1. Thus, the state(1, 1, 1) is a local-minimum
because this state is not a solution and the evaluation values
of all its neighbors are larger than or equal to the evaluation
value of this state. Then,a1 restarts at another randomly gen-
erated state (-,2,3), (in time step 2), in which Hill-climbing
finds a consistent partial state (-,2,2), that will go through a
consistent state (1,2,2) bya2 in the time step 3.

3.3 Application to Problems with Hard and Soft
Constraints

The proposed distributed model can be also applied to prob-
lems withhard constraintsandsoft constraints. Hard con-
straintsare conditions that must be satisfied,soft constraints
however may be violated, but should be satisfied as much as
possible.

This type of problems can be easily managed as following:

• First, the preprocessing step studies normally thehard
constraints, that is, it classifies thehard constraintsso
that the most restricted set ofhard constraintsare stud-
ied first.

• Later, the preprocessing step studies thesoft constraints.
However, in this case, it classifies thesoft constraintsso
that the least restricted set ofsoft constraintsare studied
first.

In this way, the priority of constraints is: The most re-
strictedhard constraints, the least restrictedhard constraints,
the least restrictedsoft constraintsand the most restrictedsoft
constraints. Thus,hard constraintsmust be satisfied and as
manysoft constraintsas possible.

4 Evaluation
The n-queens problem is a classical search problem in the
artificial intelligence area. The 4-queens problem is internally
managed in Figure 5.

�������������
	�������
������ �
� �
�� � ��� � � �������
���
�� � � � � 	 �������
��	
�� � � � � � �������
���
�� � � � � 	 �������
���
�� � � � � � �������
��
�� � 	 � � � �������
!#"$"$%�&$'('()�*+)�,�-/. ��021

3547698+:28+; <=69;#>?; @=; <A8
�?�
�� � � � � � � ���B� . �9����1 . �9����1 . ������1 . �C�(�91 . ���(�91 . ���2��1
���
�� � � � � 	 � ���D� . �9����1 . �9����1 . ������1 . �C����1 . ���(�91 . ���+�91 . ������1 . �����C1
�?	
�� � � � � � � ���D� . �9����1 . �9����1 . ������1 . �C����1 . ������1 . ���+�91 . ���(�91 . �����C1 . ������1 . ������1
���
�� � � � � 	 � ���B� . �9����1 . �9����1 . ������1 . �C�(�91 . ���(�91 . ���2��1
�?�
�� � � � � � � ���D� . �9����1 . �9����1 . ������1 . �C����1 . ���(�91 . ���+�91 . ������1 . �����C1
�?
�� � 	 � � � � ���B� . �9����1 . �9����1 . ������1 . �C�(�91 . ���(�91 . ���2��1

E
F
G
H
E
F
E

I @=; JLK$@=M#NOK$PL<=K

� 	�
�� �?� � ����� ���Q�

R 4L8(8+: SCM <UTVJXWCM <=8(Y#ZA[+\][X^$Z_[X\ `L^$ZA[X\ a9^$Z_[(\ b9^$Z/`9\][(^Z`9\ `L^Z`L\ a9^$Z/`9\ bL^$Z$aL\$[X^ZaL\ `9^$Z/a9\ aL^/Z$a9\ b9^ZbL\][X^$Z/b9\ `L^$Z$b9\ `9^$Z$bL\ a9^$Z/bL\ bL^

� ��
�� �
� � �7�?� �����
� �?
�� �7� � �
	�� �����
� �
�� �
	 � �7�?� �����

� �
c� � ��� � 	 � �����
�
�
c� � � � � � � �����

>?; @=; < >?; @=; <

d?e dgf dgh
i7ji+ki+l

i+mi+n i�o

Figure 5: The 4-queens problem in our distributed model.

Figure 5 shows the initial CSP and the possible solu-
tions (2,4,1,3) and (3,1,4,2). The preprocessing step checks
how many partial states (from a given sample: 16 tuples
{(1, 1), (1, 2), · · · , (4, 3), (4, 4)}) satisfy each constraint and
classifies them afterwards. It can be observed that some con-
straints are more restricted than others. Constraintsc1, c4, c6

only satisfy 6 partial states, while constraintsc2, c5 satisfy
8 partial states and constraintc3 satisfies 10 partial states.
Thus, the preprocessing step classifies the most restricted
constraints firstc1, c4, c6. These constraints are enough to
obtain both solutions:

(2, 4, 1, 3) ← c1 : (2, 4), c4 : (4, 1), c6 : (1, 3)
(3, 1, 4, 2) ← c1 : (3, 1), c4 : (1, 4), c6 : (4, 2)

In the 4-queens problem, the usefulness of our proposal
becomes apparent when a stochastic local search algorithm
is carried out to find a solution. The algorithm starts at a
randomly generated state and the algorithm studies the eval-
uation value for each neighbor and constraint. In our dis-
tributed model, the evaluation value is only calculated in the
first block of constraints, with the corresponding constraint
check saving.

Following, two tables are presented to evaluate our dis-
tributed model in then−queens problem. In Table 1, our
objective is to find only one solution using Hill-Climbing. In
Table 2, our objective is to find all solutions usingGener-
ate&TestandBacktracking.

The percentage of restart savings in then−queens problem
using Hill-Climbing withMax-Flips=n is presented in Table
1. It can be observed that the percentage is high forn =
4, that is, in the 4-queens problem the number of restarts is
reduced by 57.62%. In the 13-queens problem the percentage
of restarts is reduced by 91.5%. This restart saving is due to

the random states with lower evaluation valueTsi are firstly
selected to restart the search. Thus, Our model does not select
random states but it selects the most appropriate ones.

Table 1: Percentage of restart savings in then−queens prob-
lem using Hill-Climbing.

Hill-Climbing
n-queens Percentage of

restart savings
4 57.62%
5 70.41%
6 75.84%
7 80.04%
8 83.32%
9 85.51%
10 87.27%
13 91.50%

The amount of constraint check savings in the n-queens
problem using our distributed model withGenerate&Test
(GT+Dis) andBacktracking(BT+Dis) is presented in Table
2. In this case, our objective is to obtain all solutions in the
n−queens problem. The results show that the amount of con-
straint check savings is significant in GT+Dis and BT+Dis.
This is due to the fact that the preprocessing step classifies
the constraints in ascending order (see Figure 5), so that the
most restricted constraints have been checked first, and in-
consistent states have been discarded earlier.

Table 2: amount of constraint check savings in then−queens
problem.

GT+Dis BT+Dis
n-queens Solutions Constraint Constraint

Check Savings Check Savings
4 2 731 22
5 10 21336 240
6 4 446474 2406
7 40 14039727 24408
8 92 40.6× 107 267982
9 352 13.6× 108 3120302
10 724 402.1× 109 3.9× 107

5 Conclusions and future work
In this paper, we propose a distributed method for solving
constraint satisfaction problems in which agents are commit-
ted to solving their partial problems by means of stochastic
local search algorithms. They communicate partial solutions
to other agents so that the most restricted set of constraints are
studied first. Thus, inconsistencies can be found earlier and
the number of constraint checks can be significantly reduced.
In this way, hard problems can be solved more efficiently, es-
pecially problems where the number of constraints is large.

As future work, we are working on a distributed model in
which block agentscan dynamically interchange constraints,
depending on the evaluation values, so that the preprocess-
ing step can be removed and block agents can carry out this
constraint partition.

References
[Bartak, 1999] Roman Bartak. Constraint Programming: In

Pursuit of the Holy Grail. InProceedings of WDS99 (in-
vited lecture), Prague, June 1999.

[Glover, 1986] Fred Glover. Future paths for Integer Pro-
gramming and Links to Artificial Intelligence. Computers
and Operations Research, 5:533–549, 1986.

[Hogg, 1993] Tad Hogg, and Colin P. Williams.Solving the
Really Hard Problems with Cooperative Search. Proc. of
AAAI93, 231–236, 1993.

[Kirkpatrick et al., 1983] Scott Kirkpatrick, C. Gelatt, and
M. Veechi. Optimization by Simulated Annealing. Sci-
ence, 220:671–681, 1983.

[Kumar, 1987] Vipin Kumar. DepthFirst Search. In Ency-
clopedia of Artificial Intelligence, 2:1004-1005, 1987.

[Kumar, 1992] Vipin Kumar. Algorithms for Constraint Sat-
isfaction Problems: a Survey. Artificial Intelligence Mag-
azine, 1:32–44, 1992.

[Minton et al., 1992] Steven Minton, Mark D. Johnston, An-
drew B. Philips, and Philip Laird. Minimizing Conflicts:
A Heuristic Repair Method for Constraint Satisfaction and
Scheduling Problems.Artificial Intelligence, 52:161-205,
1992.

[Sadeh, 1990] Nomal Sadeh. Variable and Value Ordering
Heuristics for Activity-based Jobshop Scheduling.In proc.
of Fourth International Conference on Expert Systems in
Production and Operations Management, 134–144, 1990.

[Salido, 2003] Miguel A. Salido, and Federico Barber. A
Constraint Ordering Heuristic For Scheduling Problems.
To appear in Proc. of 1st International Conference on
Scheduling : Theory and Applications, 2003.

[Selman, 1992] Bart Selman, Hector Levesque, and David
Mitchell. A New Method for Solving Hard Satisfiability
Problems.Proceedings of the Tenth National Conference
on Artificial Intelligence, 440–446, 1992.

[Sosic, 1994] Rok Sosic, Jun Gu. Efficient local search with
conflict minimization: A case study of the Nqueen prob-
lem. IEEE Transactions on Knowledge and Data Engi-
neering, 6:661-668, 1994.

[Yokoo, 1995] Makoto Yokoo. Asynchronous Weak-
commitment Search for solving Distributed Constraint
Satisfaction Problems.Proc. of the First International
Conference on Principles and Practice of Constraint Pro-
gramming, 88–102, 1995.

[Yokooet al., 1998] Makoto Yokoo, Edmund H. Durfee,
Toru Ishida, Kazuhiro Kuwabara. The Distributed Con-
straint Satisfaction Problem: Formalization and Algo-
rithms. Knowledge and Data Engineering, 10:673–685,
1998.

