Distributing Constraints by Sampling in Non-Binary CSPs

Miguel A. Salido*

Dpto. Ciencias de la Computacién e I.A.
Universidad de Alicante

Campus de San Vicente, Apdo. 99, E-03080

Alicante, Spain
msalido@dsic.upv.es

Abstract

Nowadays, many real problems can be modeled as Con-
straint Satisfaction Problems (CSPs). Generally, these
problems are solved by search algorithms, which re-
quire an order in which variables and values should be
considered. Choosing the right order of variables and
values can noticeably improve the efficiency of con-
straint satisfaction. The order in which constraints
are studied can also improve efficiency, particularly in
problems with non-binary constraints.

In this paper, we present a distributed model for solv-
ing non-binary CSPs, in which agents are committed
to sets of constraints. A preprocessing agent is com-
mitted to ordering the constraints by a sample in finite
population so that the tightest constraints are studied
first. Then, a set of agents are incrementally and con-
currently committed to building partial solutions until
a problem solution is found. This constraint ordering,
as well as value and variable ordering, can improve effi-
ciency because inconsistencies can be found earlier and
the number of constraint checks can be significantly
reduced.

Introduction

Nowadays, many real problems in Artificial Intelligence
(AI) as well as in other areas of computer science and
engineering can be efficiently modeled as Constraint
Satisfaction Problems (CSPs) and solved using con-
straint programming techniques. Some examples of
such problems include: spatial and temporal planning,
qualitative and symbolic reasoning, diagnosis, decision
support, scheduling, hardware design and verification,
real-time systems and robot planning. Some of these
problems can be modeled naturally using non-binary
(or n-ary) constraints. The need to address issues re-
garding non-binary constraints has recently started to

Copyright (© 2003, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

*This work has been supported by the grant (PPI-02-
03) of visitor professor from the Polytechnic University of
Valencia, Spain.

Adriana Giret, Federico Barber

Dpto. Sistemas Informéaticos y Computacién

Universidad Politécnica de Valencia
Camino de Vera s/n, 46071
Valencia, Spain
{agiret,fbarber}@dsic.upv.es

be widely recognized in the constraint satisfaction liter-
ature. However, researchers have traditionally focused
on binary constraints (Tsang 1993). Thus, defining
models in order to solve non-binary CSPs becomes rel-
evant.

General methods for solving CSPs include Generate and
Test (GT) and Backtracking (BT) algorithms (Kumar
1992). The GT method generates each possible combi-
nation of the variables systematically and then checks
to see whether it is a solution, i.e., whether it satisfies
all the constraints. However, this method has a seri-
ous drawback, because it has to consider all instances
of the Cartesian product of all the variable domains.
In this respect, BT is more efficient than GT, as it as-
signs values to variables sequentially and then checks
constraints for each variable assignment. If a partial
assignment does not satisfy any of the constraints, it
will backtrack to the most recently assigned variable
and repeat the process again. Although this method
eliminates a subspace from the Cartesian product of all
the variable domains, its computational complexity for
solving most nontrivial problems is still exponential.

Many works have investigated various ways of improv-
ing the above mentioned BT method. In order to avoid
thrashing (Kumar 1992) in BT, consistency techniques,
such as arc-consistency and k-consistency, have been
developed by many researchers. These techniques are
able to remove inconsistent values from the domains of
the variables. Other ways of increasing the efficiency of
BT include the use of search order for variables and val-
ues. Thus, some heuristics based on wvariable ordering
and value ordering (Sadeh & Fox 1990)(Bartdk 1999)
have been developed, due to the additivity of the vari-
ables and values. However, constraints are also consid-
ered to be additive, that is, the order of imposition of
constraints does not matter; all that matters is that the
conjunction of constraints be satisfied (Bartdk 1999).

In spite of the additivity of constraints, little work has
been done in constraint ordering, and only some heuris-
tic techniques classify the non-binary constraints by
means of the arity. However, when all non-binary con-

straints have the same arity, these techniques cannot be
applied.

In this paper, we propose a distributed model in which
the problem is partitioned into a set of subproblems and
solved by any search algorithm. These subproblems are
classified so that the most restricted one is studied first.
This is based on the first-fail principle, which can be
explained as

7To succeed, try first where you are more likely to fail”

This classification is carried out in a preprocessing
step in which an agent called preprocessing agent car-
ries out a sample in finite population, as in statistics,
in which a well-distributed sample of states from the
search space represents the entire search space. This
sample is checked with all the constraints in order to
classify them from the tightest constraints to the loos-
est constraints. Thus, constraints are partitioned in
k blocks in order to be studied by agents called block
agents. However, as in statistics, although our objec-
tive is to select a well-distributed sample, an incorrect
constraint classification may be obtained, so a repair
method is dynamically carried out to classify the con-
straints in the appropriate order. Thus, constraints are
labelled to identify the number of violated tuples.

Block agent 1 works on the tightest constraints, that is,
the constraints that are more likely to fail, and so, in-
consistent tuples can be found earlier. If block agent 1
finds a solution to its partial problem, then block agent 2
begins to study the second set of tightest constraints us-
ing the consistent partial state generated by block agent
1. Concurrently, block agent 1 continues studying its
subproblem to obtain another consistent partial state,
and so on. Finally, block agent k, using the variable
assignments of the previous agents, attempts to find a
problem solution with its group of constraints (the loos-
est ones). This model allows agents to run concurrently
to achieve partial solutions, and it removes the draw-
backs of synchronous backtracking algorithms (Yokoo
et al. 1998).

In the following section, we formally define a constraint
satisfaction problem and describe two well-known or-
dering algorithms. Section 3 describes the multi-agent
model. In section 4, we present the computational com-
plexity. The results of the evaluation are presented in
section 5. Finally, in section 6, we present our conclu-
sions.

Definitions and Algorithms

In this section, we review some basic definitions as well
as basic algorithms for solving CSPs.

Definitions

CSP: Generally, a constraint satisfaction problem
(CSP) consists of:

e a set of variables X = {x1,x2,...,x,}

e a set of domains D = {Dy, D3, ..., D, }, where each
variable x; € X has a set D; of possible values

e a finite collection of constraints C' = {c1,c2,...,¢p}
restricting the values that the variables can simulta-
neously take.

State: one possible assignment of all variables; the
number of states is equal to the product of the domain
size

Partition : A partition of a set C' is a set of disjoint
subsets of C whose union is C. The subsets are called
the blocks of the partition.

Distributed CSP: A distributed CSP is a CSP in
which the variables and constraints are distributed
among automated agents (Yokoo et al. 1998).

Each agent has some variables and attempts to deter-
mine their values. However, there are interagent con-
straints and the value assignment must satisfy these in-
teragent constraints. In our model, there are k agents
1,2,...,k. Each agent knows a set of constraints and
the variables involved in these constraints.

Objective in a CSP: A solution to a CSP is an as-
signment of values to all the variables so that all con-
straints are satisfied. The objective in a CSP may be
to determine:

e whether a solution exists, that is, if the CSP is con-
sistent.

e all solutions, many solutions, or only one solution,
with no preference as to which one.

e an optimal, or a good solution by means of an objec-
tive function defined in terms of certain variables.

In some real problems, it is desirable to find all solutions
so some techniques such as value ordering are not valid.
In this paper, we focus mainly on problems of this kind,
so it is necessary to be able to efficiently find the dead-
ends in order to reduce the search tree.

Two ordering algorithms are analyzed in (Sadeh & Fox
1990),(Bartak 1999): variable ordering and value order-
ing. Let’s briefly look at these two algorithms.

Variable Ordering

The experiments and analyses by various researchers
have shown that the ordering in which variables are
assigned during the search may have substantial im-
pact on the complexity of the search space explored.
The ordering may be either a static ordering or a dy-
namic ordering. Examples of static ordering heuristics
are minimum width (Freuder 1982) and mazimum de-
gree (Dechter & Meiri 1994), in which the order of the
variables is specified before the search begins and is not
changed thereafter. An example of a dynamic ordering
heuristic is minimum remaining values (Haralick & G.
1980), in which the choice of the next variable to be
considered at any point depends on the current state of
the search.

Dynamic ordering is not feasible for all search algo-
rithms. For example, with simple backtracking, there
is no extra information available during the search that
could be used to make a different choice of ordering from
the initial ordering. However, with forward checking,
the current state includes the domains of the variables
as they have been pruned by the current set of instan-
tiations. Therefore, it is possible to base the choice of
the next variable on this information.

Value Ordering

Comparatively little work has been done on algo-
rithms for value ordering even for binary CSPs (Geelen
1992),(Frost & Dechter 1995). The basic idea behind
value ordering algorithms is to select the value for the
current variable which is most likely to lead to a solu-
tion. Again, the order in which these values are consid-
ered can have substantial impact on the time necessary
to find the first solution. However, if all solutions are
required or the problem is not consistent, then the value
ordering does not make any difference. A different value
ordering will rearrange the branches emanating from
each node of the search tree. This is an advantage if
it ensures that a branch which leads to a solution is
searched earlier than a branch which leads to a dead-
end. For example, if the CSP has a solution, and if a
correct value is chosen for each variable, then a solution
can be found without any backtracking.

Suppose we have selected a variable to instantiate: how
should we choose which value to try first? It may be
that none of the values will succeed. In that case, every
value for the current variable will eventually have to be
considered and the order does not matter. On the other
hand, if we can find a complete solution based on the
past instantiations, we want to choose a value which is
likely to succeed and unlikely to lead to a conflict.

The Multi-Agent Model

Agent-based computation has been studied for sev-
eral years in the field of artificial intelligence and has
been widely used in other branches of computer sci-
ence. Multi-agent systems are computational systems
in which several agents interact or work together to
achieve goals. Agents in such systems may be homoge-
neous or heterogeneous and may have common goals or
distinct goals (Liu 2001).

As we pointed out in the above definitions in section
2.1, a distributed constraint satisfaction problem (dis-
tributed CSP) is a constraint satisfaction problem in
which variables and constraints are semantically parti-
tioned (or distributed) into sub-problems, each of which
is to be solved by an agent.

In this section, we will provide the definitions, the spec-
ifications of the different agents involved in these mod-
els and the formulation for our proposed multi-agent
model.

Definition 1: A block agent a; is a virtual entity that
essentially has the following properties: autonomy, so-
cial ability, reactivity and pro-activity (Wooldridge &
Jennings 1995).

Block agents are autonomous agents. They operate
their subproblems without the direct intervention of any
other agent or human. Block agents interact with each
other by sending messages to communicate consistent
partial states or to exchange constraints. They perceive
their environment and changes in it, such as new partial
consistent states, and respond, if possible, with more
complete consistent partial states. Block agents take
the initiative by evicting constraints that are tightest
than others sending them to or exchanging them with
previous block agents.

Definition 2: A multi-agent system is a system that
contains the following elements:

1. An environment in which the agents live (variables,
domains, constraints and consistent partial states).

2. A set of reactive rules, governing the interaction be-
tween the agents and their environment (constraint
exchange rules, communication rules, etc).

3. A set of agents, A = {a1,as,...,ar}.

The Preprocessing Agent

The preprocessing agent carries out a preprocessing step
based on the sampling in finite population, as in statis-
tics, where there is a target population and a sampled

population is chosen to represent this population. In
our context, the population is made up of the states
generated by means of the product of variable domains.
The preprocessing agent chooses a sampled population
composed by s(n) states of the target population (s is a
polynomial function). These states are well distributed
in order to represent the target population. As in statis-
tics, the user may select the size of the sample s(n).
Figure 1 represents the preprocessing agent.

Preprocessing
Agent

D,x...xD,

NNE

Selected states by sample in finite population

— Vs v s - } v } v o
[v v] »I »I v 4 ~l Vk
Tpt Tp2 Tp3 Tpa Tps Tsm)

Constraint checking with selected states

Figure 1: The preprocessing agent

With the selected sample of states s(n), the preprocess-
ing agent checks how many states v; : v; < s(n) satisfy
each constraint ¢;. Thus, each constraint ¢; is labelled
with pry: ¢;(pr;), where pr; = v;/s(n) represents the
probability that c¢; satisfies the whole problem. Thus,
the preprocessing agent classifies the constraints in as-
cending order of the labels pr;. Therefore, the prepro-
cessing agent translates the initial non-binary CSP into
an ordered non-binary CSP so that it can be studied by
a CSP solver. In Figure 1, it can be observed that each
constraint is checked with each selected state. Further-
more, each state of the sample might store the evalu-
ation value T; to be used by a stochastic local search
algorithm to restart the search.

The ordered constraints are partitioned in k blocks of
constraints. Each block of constraints will be managed
by an agent called block agent. It must be taken into
account that block agent 1 is committed to solving the
most restricted subproblem and block agent k is com-
mitted to solving the least restricted subproblem. Fol-
lowing, we present the behavior of block agents.

The Block Agents

Block agents are agents committed to solving subprob-
lems. As we pointed out in definition 1, an agent has

a set of properties. Following, we present the behavior
and characteristics of block agents (Figure 2):

Assigment
of managed
variables

Partial
problem
solutions

Involved Constraints|

Exchange of
restricted
constraints

Labels

Involved Variables : v,V

‘ Domain of new variables v, ‘

Figure 2: Properties and characteristics of block agents.

e Each block agent a; has an identifier j.
e There is a partition of the set of constraints C =

k

\J C; and each block agent a; is committed to the
i=1

block of constraints C';. Each constraint is labelled
with the number of violated constraints.

e Each block agent a; has a set of variables V; involved
in its block of constraints C;. These variables fall
into two different sets: wused variables set (T;) and
new variables set (v;), that is: V; =7; Uwv;.

e The domain D; corresponding to variable z; is main-
tained in the first block agent a; in which z; is in-
volved, (i.e.), x; € v;.

e Each block agent a; assigns values to variables that
have not been assigned yet, that is, a; assigns val-
ues to variables x; € v;, because variables x € v;
have already been assigned by previous block agents
ai, a2, ...,a51.-

e Each block agent a; maintains a storage of par-
tial problem solutions generated by the previous
block agents ai,as,...,aj—1. Thus, block agent a;
maintains assignments of variables included in sets:
U1, U2, ...,@j_l.

e Each block agent a; can send constraints with the
highest labels to the previous block agent a;j_; to be
managed. In this case, the new variables involved in
these constraints are also sent to the previous block
agent with their corresponding variable domains.

Thus, these block agents are committed to solving CSPs
that represent subproblems of the main CSP. These
block agents must cooperate with each other by sending
messages with consistent partial states or exchanging
constraints.

In what follows, we present an overview of our multi-
agent formulation in which we analyze the relationship
among all agents.

Overview of the Multi-Agent Formulation

In the specialized literature, there are many works
about distributed CSPs. In (Yokoo et al. 1998), Yokoo
et al. present a formalization and algorithms for solving
distributed CSPs. These algorithms can be classified as
either centralized methods, synchronous backtracking
or asynchronous backtracking (Yokoo 1995).

Our model can be considered as a synchronous model.
It is meant to be a framework for interacting agents to
achieve a consistent state. The main idea of our multi-
agent model is based on carrying out a partition of the
problem constraints in k groups called blocks of con-
straints so that the tightest constraints are grouped and
studied by autonomous agents. To this end, a prepro-
cessing agent carries out a partition of the constraints,
similar to a sample in finite population, with the ob-
jective of classifying the constraints in k£ groups, from
the tightest ones to the loosest ones. As we pointed
out in Figure 1, each selected state of the sample can
store the evaluation value T; to be used by a stochas-
tic local search algorithm in order to restart the search.
Note that if some state has an evaluation value of zero,
(T; = 0), (the state does not violate any constraint),
then a solution is found.

Then, once the constraints are divided into k£ blocks by
the preprocessing agent, a group of block agents concur-
rently manages each block of constraints. Each block
agent is in charge of solving its own subproblem by
means of a search algorithm. Each block agent is free
to select any algorithm to find a consistent partial state.
It can select a local search algorithm, a backtracking-
based algorithm, or any other, depending on the prob-
lem topology. In any case, each block agent is com-
mitted to finding a solution to its particular subprob-
lem. This subproblem is composed by its CSP subject
to the variable assignment generated by the previous
block agents. Thus, block agent 1 works on the most
restricted block of constraints. If block agent 1 finds a
solution to its subproblem, then it sends this consistent
partial state to block agent 2, and both they work con-
currently to study their specific subproblems. However,
block agent 2 tries to solve its subproblem knowing that
its used variables have been assigned by block agent 1.
Thus, block agent j, with the variable assignments gen-
erated by the previous block agents, tries to find a more
complete consistent state using a search algorithm. Fi-
nally, block agent k, working concurrently with block
agents 1,2, ...(k — 1), tries to find a consistent state in
order to find a problem solution. Note that as the block
agent identifier gets higher, the number of new wvari-

ables gets lower. Therefore, the set of new variables in
block agents with a high identifier (k-2,k-1,k) may be
empty. In this case, these block agents need only check
their constraints with the (partial) states sent by the
previous block agents.

Dynamic repair method to exchange con-
straints: The preprocessing agent may not correctly
classify the constraints from the tightest one to the loos-
est one. This is due to the fact that the size of the
sample is not appropriate or the sample has not been
correctly selected. In this case, block agents can apply
a dynamic repair method to exchange constraints with
each other. Each constraint is labelled to identify the
number of violated tuples. Each block agent maintains
an upper bound of the label value. If the upper bound
is reached, block agent i and block agent i-1 negotiate
the exchange of the highest label constraints of block
agent i for the lowest label constraints of block agent
i-1. This way, the sampled population grows more and
more and the constraint ordering becomes more exact.

Preprocessing
Agent Corit .
o Constraint
Cordk
A
—
Block Time steps
Agents
/\ Sy S12 S13 | e | Sit
N ; e 3 3
/‘ S11+Sy | S12+Sy | | 000 z
. g
Cal ‘
- A4
U Problem Solutions H

Figure 3: Multi-agent model

Figure 3 shows the multi-agent model, in which the
preprocessing agent carries out a constraint ordering
and the block agents (a;) are committed to concurrently
finding partial problem solutions (s;;). Each block agent
sends the partial problem solutions to the following
block agent until a problem solution is found (by the
last block agent). For example, state: 11+ 821 +...+Sk1
is a problem solution. The concurrence can be seen in
Figure 3 in Time step 6 in which all block agents are
concurrently working. Each block agent maintains the
corresponding domains for its new variables. The block
agent must assign values to its new wvariables so that
the block of non-binary constraints is satisfied. When
a block agent finds a value for each new wariable, it

then sends the consistent partial state to the next block
agent. When the last block agent assigns values to its
new variables satisfying its block of constraints, then
a solution is found. The dynamic repair method can
also be applied if the constraint ordering has not been
correctly carried out.

Example: Let’s look at a similar example that
is presented in (Yokoo et al. 1998). There are
three variables, x1,%s,z3, with variable domains
{1,2,3},{1,2},{1,2,3}, respectively, and constraints
¢1:x1 # T and ¢ : 9 = x3 (see Figure 4).

variables: x,, x,, X,
d:{123}
d,: {12}
d: {123}
€1 X 77X,
€yl X)X,

Consistent
state

Block Time steps

agents
G [B [020 [022 [(28]
A] 2,1,1 [(GAN | (1.22) [222) [(322)

) S) —] = =
U Problem Solutions: {(2,1,1), (3,1,1), (1,2,2), (3,2,2)} ‘

Figure 4: CSP solved by our model

As there are only two constraints, the constraint par-
tition is straightforward. Therefore, there are only
two blocks with one constraint in each block to con-
sider. The first block is composed of constraint co
and the second block is composed of constraint c;.
This is due to the fact that constraint co is tightest
than constraint c¢; as c¢p maintains two valid tuples:
(-,1,1) and (—,2,2), while ¢; maintains four valid
tuples: (1,2,-),(2,1,-),(3,1,—) and (3,2,—). Block
agent a1 manages constraint 1 and block agent as man-
ages constraint 2. It can be observed that variables x5
and x3 are new variables in a1, and x1 is a new variable
in ao, while x5 is a used variable in as. Thus, domains
of variable x5 and x3 are known by a;, and the domain
of x1 is known by as. Furthermore, a; is responsible
for assigning values to xo and z3 using a search algo-
rithm, and a9 is responsible for assigning values to x7.
Figure 4 shows the behavior of our distributed model
using GT. It can be observed that Time step 1 is only
used by a1 to generate a consistent partial state (-,1,1).
Thus, a1 sends a message to as with the consistent par-
tial state (—, 1,1). In Time step 2, both a1 and as work
concurrently to find a consistent partial state for their
own problems. as tests state (1,1,1) which is not a so-
lution and simultaneously a; tests partial state (-,1,2)

which is not a consistent partial sate. In Time step 3,
as tests state (2,1,1) which is a consistent state, that is,
a solution. Meanwhile a; tests partial state (-,2,1). If
only one solution is required, the process is halted. If
more solutions are required, the model continues steps
4,5,6 and 7.

Example (The 5-Queens Problem): This well-
known problem is an example of a discrete problem with
five variables and eleven constraints.

2y, Zy, Z35 Z4 Z5 ¢ 1.5

¢, lzmz,)| 1= 1 5 |zy-z4| =1 8 |z5-z,| 1= 1 Ciot 124725 1= 1
C, |z,-z4| 1=2 5 |2y-2,| 1= 2 Cot |23z =2
¢yt |z,-z,| =3 c,ilzyzg =3
cz,-z.| =4
¢, |z-z4| !

_(Fl alldifferent(z,)

(T)(1,2)(1,3)(1,4)(1,5)(2,1)€2:2)(2,3)(2,4)(2,5)(3,1)(3,2)(3:3)
(3,4)(3,5)(4,1)(4,2)(4,2)(4,3)4:4)(4,5)(5,1)(5,2)(5,3)(5,4)(555)

Possible Tuples:

Natural Order Valid tuples
¢ lz,z!=1 (1,3)(14)(1.5)2.4)(2,5)(3,1)(3,5)(4,1)(4,2)(5,1)(5.2)(5.3) 12
¢yt |z-z4|!=2 (1,2)(14)(1.5)2,1)(2,3)(2,5)(3,2)(3.4)(4, 1)(4,3)(4,5)(5,1)(5.2)(5.4) 14
eyt [z,-z,|!=3 (1,2)(1,3)(1,5)(2,1)(2,3)(2,4)(3,1)(3,2)(3,4)(4,1)(4,2)(4,3)(4,5)(5,1)(5,3)(5,4) 16
oy |z-zs!=4 (1,2)(1,3)(1,4)(2,1)(2,3)(2:4)(2,5)(3,1)(3,2)(3:4)(3,5)(4,1)(4,2)(4,3)(4,5)(5:2)(5,3)(5:4) 18
Cgi |z,24)!= 11 (1,3)(1,4)(1.5)(2,4)(2,5)(3,1)(3.5)(4,1)(4,2)(5,1)(5.2)(5.3) 12
Cgi |Z7y77,|1=2 (1.2)(1,4)(1.5)(2,1)(2.3)(2.5)(3.2)(3.4)(4, 1)(4.3)(4.5)(5.1)(5.2)(5.4) 14
¢t |7-7!=3 (1,2)(1,3)(1,5)(2,1)(2,3)(2:4)(3,1)(3,:2)(3,4)(4,1)(4,2)(4,3)(4,5)(5,1)(5,3)(54) 16
cg [z5-z,|!=1 (1,3)(1,4)(1,5)(2,4)(2,5)(3,1)(3,5)(4,1)(4,2)(5,1)(5,2)(5.3) 12
Cy! |23-25|!=2 (1,2)(1,4)(1,5)(2,1)(2,3)(2,5)(3,2)(3,:4)(4, 1)(4,3)(4,5)(5,1)(5,2)(5:4) 14
Cot I2z4l1=1 (1,3)(14)(1,5)2.:4)(2,5)(3,1)(3,5)(4,1)(4,2)(5,1)(5.2)(5.3) 12

| N |uajsmp[[z'°
N

s |
Block Time Steps

Agents

8 (24153) | (13524) | (1,1,28.4) [(12345) |

8 \'(2.4.1.5.3) ﬂ (13524) | \'(1.22341.5) |

8 S ‘__(1.3.5.2.4)

* 3
R - C
*]
I . &

] [] [I
U Problem Solutions H

Figure 5: The 5-queens problem using our multi-agent
model

Figure 5 shows the initial CSP and the number of valid
tuples in each disequation. The preprocessing agent
generates five blocks of constraints corresponding to
the groups of valid tuples, from the tightest constraint
(all-different constraint) to the loosest one (constraint
¢4). Thus, each block agent is committed to its block
of constraints and solves its subproblem by means of
any search algorithm. It can be observed that all block
agents can work concurrently when the last block agent
receives a consistent (partial) state. In section , we
present an exhaustive evaluation of the n-queens prob-
lem in which we can observe the constraint check saving.

Analysis of Our Distributed Model

In this section, we only evaluate the computational cost
of the preprocessing agent because each block agent can
use any search algorithm with the corresponding com-
putational complexity. The preprocessing agent selects
a sample composed of s(n) points, so the spatial cost
is O(s(n)). The preprocessing agent checks the consis-
tency of the sample with each non-binary constraint,
so its temporal cost is O(ks(n)). Then, the prepro-
cessing agent classifies the set of constraints in ascend-
ing order. Its temporal complexity is O(klogk). Thus,
the temporal complexity of the preprocessing agent is
O(max{ks(n), klogk}).

Application to Problems with Soft
Constraints

The proposed model can also be applied to problems
with hard constraints and soft constraints. Hard con-
straints are conditions that must be satisfied; however,
soft constraints may be violated, but they should be
satisfied as much as possible (Abdennadher 1999).

Problems of this type can easily be managed as follows:

e First, the preprocessing agent studies normally the
hard constraints, that is, it classifies the hard con-
straints so that the tightest hard constraints are stud-
ied first.

e Later, the preprocessing agent studies the soft con-
straints. However, in this case, it classifies the soft
constraints so that the loosest soft constraints are
studied first.

This way, the constraints are managed in the following
order: the tightest hard constraints, the loosest hard
constraints, the loosest soft constraints and the tightest
soft constraints. Thus, all the hard constraints must be
satisfied and as many of the soft constraints as possible
should be satisfied as well.

Evaluation of Our Model

In this section, we compare the performance of our
model with two well-known and complete CSP solvers:
Generate and Test (GT) and Backtracking (BT), be-
cause they are the most appropriate techniques for ob-
serving the number of constraint checks. Furthermore,
we compare the performance of our model with Hill-
Climbing because it is a well-known local search algo-
rithm for analyzing the number of restart savings.

This empirical evaluation was carried out with two dif-

ferent types of problems: benchmark problems and ran-
dom problems.

Benchmark Problems

The n-queens problem is a classical search problem in
the artificial intelligence area. The 5-queens problem
was studied in the previous section. The 5-queens prob-
lem is an instance of the n-queens problem with 10 pos-
sible solutions. The problem is to place five queens on
a b x 5 chessboard so that no two queens can capture
each other. That is, no two queens are allowed to be
placed on the same row, the same column, or the same
diagonal. In the general n-queens problem, a set of n
queens is to be placed on a n x n chessboard so that no
two queens attack each other.

Table 1: Number of constraint check saving using our
model with GT and BT in the n-queens problem.

Mod+GT Mod+BT
queens | Solutions Constraint Constraint
Check Saving | Check Saving
4 2 731 22
5 10 21336 240
6 4 446474 2406
7 40 14039727 24408
8 92 40.6 x 107 267982
9 352 13.6 x 108 3120302
10 724 402.1 x 10° 3.9 x 107
Table 2: Percentage of restart savings using Hill-
Climbing (Max-Flip=n) in the n-queens problem.
Mod-+Hill-Climbing
queens Percentage of
Restart Savings
4 57.62%
5 70.41%
6 75.84%
7 80.04%
8 83.32%
9 85.51%
13 91.50%

In Table 1, we present the number of constraint check
saving in the n-queens problem using GT with our
model (Mod+GT) and BT with our model (Mod+BT).
Here, our objective is to find all solutions. The results
show that the number of constraint check saving was
significant in Mod+GT and Mod+BT due to the fact
that our model classifies the constraints in ascending or-
der (see Figure 5), so that the tightest constraints were
checked first, and inconsistent tuples were discarded
earlier.

Furthermore, the percentage of restart savings using
Hill-Climbing with our model is also presented in Table
2. Hill-Climbing uses the sample and selects the points
with the highest labels to restart the search. Here, our
objective is to find only one solution. It can be observed
that the percentage was high for n = 4, that is, in the
4-queens problem the number of restarts was reduced
by 57.62%. In the 13-queens problem, the percentage
of restarts was reduced by 91.5%.

Random Problems

Benchmark sets are used to test algorithms for specific
problems. However, in recent years, there has been a
growing interest in the study of the relation among the
parameters that define an instance of CSP in general
(i.e., the number of variables,number of constraints, do-
main size, arity of constraints, etc). Therefore, the no-
tion of randomly generated CSPs has been introduced
to describe the classes of CSPs. These classes are then
studied using empirical methods.

In our empirical evaluation, each set of random con-
straint satisfaction problems was defined by the 3-tuple
< n,c,d >, where n was the number of variables, ¢
the number of constraints and d the domain size. The
problems were randomly generated by modifying these
parameters. We considered all constraints as global
constraints, that is, all constraints had maximum ar-
ity. Thus, Tables 3 and 4 sets two of the parameters
and varies the other one in order to evaluate the algo-
rithm performance when this parameter increases. We
evaluated 100 test cases for each type of problem and
each value of the variable parameter.

Table 3: Number of constraint checks using Backtrack-
ing filtered with Arc-Consistency in problems classes
<5,¢,10 >.

BT-AC Mod+BT-AC
problems constraint constraint
checks checks
< 5,3,10 > 2275.5 798.5
< 5,5,10 > 14226.3 2975.2
<5,7,10 > 355374 5236.7
<5,9,10 > 50315.7 5695.5
< 5,11,10 > 65334 5996.3
< 5,13,10 > 80384 6283.5
< 5,15,10 > 127342 8598.6

The number of constraint checks using BT filtered by
arc-consistency(as a preprocessing) (BT-AC) and BT-
AC using our model (Mod+BT-AC) is presented in Ta-
ble 3. On the left side of the table, we present the num-
ber of constraint checks in problems where the number
of constraints was increased from 3 to 15 and the num-
ber of variables and the domain size were set at 5 and

Table 4: Number of constraint checks using Backtrack-
ing filtered with Arc-Consistency in problems classes
< 3,5,d >.

BT-AC Mod+BT-AC
problems constraint constraint
checks checks
<3,5,5> 78.9 17.7
< 3,5,10 > 150.3 33.06
< 3,515 > 196.3 41.26
<3,5,20 > 260.5 55.1
< 3,5,25 > 344.8 68.9
< 3,5,30 > 424.6 85.9
<3,5,35> 550.4 110.1

10, respectively: < 5,¢,10 >. The results show that the
number of constraint checks were reduced in all cases.
On the right side of the table, we present the number
of constraint checks in problems where the domain size
was increased from 5 to 35 and the number of variables
and the number of constraints were set at 3 and 5, re-
spectively: < 3,5,d >. The results were similar and
the number of constraint checks were also reduced in
all cases.

Conclusion and Future work

In this paper, we present a distributed model for solv-
ing non-binary CSPs, in which a preprocessing agent
is committed to ordering the constraints by a sample
in finite population so that the tightest constraints are
studied first. Then, a set of block agents are incremen-
tally and concurrently committed to building partial
solutions until a global solution is found. Thus, incon-
sistent tuples can be found earlier with the correspond-
ing savings in constraint checking. Also, hard problems
can be solved more efficiently overall in problems where
all solutions are required.

As future work, we are working on a distributed model
in which the preprocessing agent can be removed due
to the fact that block agents can dynamically exchange
constraints. Thus, the set of constraints are initially
and randomly partitioned in k groups. Each of them
will be managed by a block agent. However, the number
of block agents can be enlarged or reduced depending
on the problem topology. If this number must be en-
larged, new agents must be inserted into the system,
while if this number must be reduced, some of the ex-
isting agents would be evicted.

References

Abdennadher, S. 1999. Constraint handling rules:
Applications and extensions: Invited talk. 12th Inter-
national Conference on Applications of Prolog.

Bartak, R. 1999. Constraint programming: In pursuit
of the holy grail. in Proceedings of WDS99 (invited
lecture), Prague, June.

Dechter, R., and Meiri, I. 1994. Experimental evalua-
tion of preprocessing algorithms for constraints satis-
faction problems. Artificial Intelligence 68:211-241.

Freuder, E. 1982. A sufficient condition for backtrack-
free search. Journal of the ACM 29:24-32.

Frost, D., and Dechter, R. 1995. Look-ahead value
orderings for constraint satisfaction problems. In Proc.
of IJCAI-95 572-578.

Geelen, P. 1992. Dual viewpoint heuristic for binary
constraint satisfaction problems. In proc. of Furopean
Conference of Artificial Intelligence (ECAI’92) 31-35.

Haralick, R., and G., E. 1980. Increasing tree effi-
ciency for constraint satisfaction problems. Artificial
Intelligence 14:263-314.

Kumar, V. 1992. Algorithms for constraint satisfac-
tion problems: a survey. Artificial Intelligence Maga-
zine 1:32-44.

Liu, J. 2001. Autonomous agents and multi-agent sys-
tems: Explorations in learning, self-organization, and
adaptative computation. World Scientific, Singapore.

Sadeh, N., and Fox, M. 1990. Variable and value or-
dering heuristics for activity-based jobshop scheduling.
In proc. of Fourth International Conference on FExpert
Systems in Production and Operations Management

134-144.

Tsang, E. 1993. Foundation of Constraint Satisfac-
tion. London and San Diego: Academic Press.

Wooldridge, M., and Jennings, R. 1995. Agent theo-
ries, arquitectures, and lenguajes: a survey. Intelligent
Agents 1-22.

Yokoo, M.; Durfee, E. H.; Ishida, T.; and Kuwabara,
K. 1998. The distributed constraint satisfaction prob-
lem: Formalization and algorithms. Knowledge and
Data Engineering 10(5):673-685.

Yokoo, M. 1995. Asynchronous weak-commitment
search for solving distributed constraint satisfaction
problems. Proc. of the First International Conference

on Principles and Practice of Constraint Programming
88-102.

