
A Planning Tool for Minimizing Reshuffles in Container Terminals

Miguel A. Salido, Oscar Sapena, Mario Rodriguez, Federico Barber
Instituto de Automática e Informática Industrial

Universidad Politécnica de Valencia.
Valencia, Spain

Abstract

One of the more important problems in container termi-
nal is related to the Container Stacking Problem. A con-
tainer stack is a type of temporary store where containers
await further transport by truck, train or vessel. The main
efficiency problem for an individual stack is to ensure easy
access to containers at the expected time of transfer. Since
stacks are ’last-in, first-out’, and the cranes used to relocate
containers within the stack are heavily used, the stacks must
be maintained in a state that minimizes on-demand reloca-
tions. In this paper, we present a new domain-dependent
planning heuristic for finding the best configuration of con-
tainers in a bay. Thus, given a set of outgoing containers,
our planner minimizes the number of relocations of contain-
ers in order to allocate all selected containers in an appro-
priate order to avoid further reshuffles.

1 Introduction

Loading and offloading containers on the stack is per-
formed by cranes. In order to access a container which is
not at the top of its pile, those above it must be relocated.
This reduces the productivity of the cranes.

Maximizing the efficiency of this process leads to sev-
eral requirements. First, each incoming container should
be allocated a place in the stack which should be free and
supported at the time of arrival. Second, each outgoing con-
tainer should be easily accessible, and preferably close to its
unloading position, at the time of its departure. In addition,
the stability of the stack puts certain limits on, for exam-
ple, differences in heights in adjacent areas, the placement
of empty and ’half’ containers and so on.

Since the allocation of positions to containers is cur-
rently done more or less manually, this has convinced us
that it should be possible to achieve significant improve-
ments of lead times, storage utilization and throughput us-
ing appropriate and improved techniques.

Figure 1. A container yard (courtesy of Hi-
Tech Solutions)

Figure 1 shows a container yard. A yard consists of sev-
eral blocks, and each block consists of 20-30 yard-bays [6].
Each yard-bay contains several (usually 6) rows. Each row
has a maximum allowed tier (usually tier 4 or tier 5 for full
containers). Figure 2 shows a transfer crane that is able to
move a container within a stacking area or to another loca-
tion on the terminal. For safety reasons, it is usually prohib-
ited to move the transfer crane while carrying a container
[7], therefore these movements only take place in the same
yard-bay.

When an outside truck delivers an outbound container to
a yard, a transfer crane picks it up and stacks it in a yard-bay.
During the ship loading operation, a transfer crane picks up
the container and transfers it to a truck that delivers it to a
quay crane.

In container terminals, the loading operation for export
containers is carefully pre-planned by load planners. For
load planning, a containership agent usually transfers a load
profile (an outline of a load plan) to a terminal operating
company several days before a ship’s arrival. The load pro-



Figure 2. A Rubber-tired gantry crane (cour-
tesy of Kalmar Industries).

file specifies only the container group, which is identified by
container type (full or empty), port of destination, and size
to be stowed in each particular ship cell. Since a ship cell
can be filled with any container from its assigned group, the
handling effort in the marshalling yard can be made easier
by optimally sequencing export containers in the yard for
the loading operation. In sequencing the containers, load
planners usually pursue two objectives:

1. Minimizing the handling effort of quay cranes and yard
equipment.

2. Ensuring the vessel’s stability.

The output of this decision-making is called the ”load
sequence list”. In order to have an efficient load sequence,
storage layout of export containers must have a good con-
figuration. The main focus of this paper is optimally re-
allocating outgoing containers for the final storage layout
from which a load planner can construct an efficient load
sequence list. In this way, the objective is therefore to plan
the movement of the cranes so as to minimize the number
of reshuffles of containers.

Given a layout, the user selects the set of containers that
will be moved to the vessel. Our tool is able to organize
the layout in order to allocate these containers at the top of
the stacks in order to minimize the number of relocations.
Thus a solution of our problem is a layout where all out-
going containers can be available without carrying out any
reshuffle.

2 The problem modeled as an AI planning
problem

A classical AI planning problem can defined by a tuple
〈A, I,G〉, where A is a set of actions with preconditions
and effects, I is the set of propositions in the initial state,
and G is a set of propositions that hold true in any goal
state. A solution plan to a problem in this form is a sequence
of actions chosen from A that when applied transform the
initial state I into a state of which G is a subset.

The container stacking problem is a slight modification
of the Blocks World planning domain [9], which is a well-
known domain in the planning community. This domain
consists of a finite number of blocks stacked into towers
on a table large enough to hold them all. The positioning
of the towers on the table is irrelevant. The Blocks World
planning problem is to turn an initial state of the blocks into
a goal state, by moving one block at a time from the top of a
tower onto another tower (or on a table). The optimal Blocks
World planning problem is to do so in a minimal number of
moves.

This problem is closed to the container stacking problem,
but there are some important differences:

• The number of towers is limited in the container stack-
ing problem: a yard-bay contains usually 6 rows, so it
is necessary to include an additional constraint to limit
the number of towers on the table to 6.

• The height of a tower is also limited. The effect of
limiting the number of levels in a tower on the number
of required relocations to reach the goal configuration
[8].

• The main difference is in the problem goal specifica-
tion. In the Blocks World domain the goal is to get the
blocks arranged in a certain layout, specifying the fi-
nal position of each block. In the container stacking
problem the goal state is not defined as accurately, so
many different layouts can be a solution for a problem.
The goal is that the most immediate containers to load
are in the top of the towers, without indicating which
containers must be in each tower.

We can model our problem by using the standard en-
coding language for classical planning tasks called PDDL
(Planning Domain Definition Language) [4].

2.1 The container stacking domain

The main elements in a domain specification are (1) the
types of objects we need to handle, (2) the types of propo-
sitions we use to describe the world, (3) the actions we can
perform to modify the state of the world and (4) the function



to optimize which is the number of relocations movements.
For our proposals, we are going to consider two separate do-
mains, D1 and D2, with a different complexity degree. In
the first domain D1, all containers have the same properties
and the objective is to place a selected subset of contain-
ers, which must be loaded into the next vessel, on top of the
stacks. In the second domain D2, four subsets of containers
are selected according to their departure time: contF, contE,
contM, contL. contF is the first set of containers to leave, the
next ones are contE, then contM and the last ones contL. In
Figure 3 they are identified by means of different colors:
red, light gray, dark gray and black, respectively. The red
ones (contF containers) are the first ones to be loaded into
the next vessel and, as it can be observed in the final lay-
out in the figure, they are located on top of the stacks to
facilitate their loading.

Figure 3. Initial state example (left), and final
layout achieved (right) in the domain D2.

3 A domain-dependent planning heuristic for
solving the container stacking problem

Since the container stacking problem can be formalized
in PDDL format, we can use a general planner to solve our
problem instances. Currently we can found several general
planners which work well in many different domains, such
as LPG-TD [3], MIPS-XXL [2] and SGPlan [1]. However,
and due to the high complexity of the domain we are han-
dling, these planners are not able to find good plan solutions
efficiently. LPG-TD, for example, spends too much time in
the preprocessing stages, so it takes a long time to provide
a solution. On the contrary, MIPS-XXL and SGPlan can
compute a solution rapidly, but the quality of the obtained
solution is not good enough, including some additional re-
location movements to achieve the goal configuration.

We have implemented a local search domain-
independent planner which can solve quite efficiently
many problem instances. This planner has several
interesting properties for the container stacking problem:

• It is an anytime planning algorithm [10]. This means
that the planner can found a first, probably suboptimal,

Algorithm 1: Pseudo-code of the domain-dependent
heuristic function

Data: s: state to evaluate
Result: h, heuristic value of s
h = 0;
if ∃ x - container / holding(x) ∈ s then

if goal-container(x) then
h = 0.1;

else
h = 0.5;

end
end
for each row r in the yard-bay do

∆h = 0;
for x - container / at(x, r) ∈ s ∧ goal-container(x)
do

if @ y - container / goal-container(y) ∧ on(y,
x) ∈ s then

∆h = max(∆h, numContainersOn(x));
end

end
h += ∆h;

end

solution quite rapidly and that this solution is being
improved while time is available.

• The planner is complete, so it will always find a solu-
tion if exists.

• The planner is optimal. It guarantees finding the opti-
mal plan if there is time enough for computation.

This planner follows an enforced hill-climbing [5] ap-
proach with some modifications:

• We apply a best-first search strategy to escape from
plateaux. This search is guided by a combination of
two heuristic functions and it allows the planner to es-
cape from a local minima very efficiently.

• If a plateau exit node is found within a search limit
imposed, the hill-climbing search is resumed from the
exit node. Otherwise, a new local search iteration is
started from the best open node (the one with the best
heuristic value).

This planner solves many problem instances but it can
take too much time to find a solution in the hardest prob-
lems (usually when the number of containers is high and
many reshuffles are required to achieve a goal layout). To
improve the planning performance we have designed a new
heuristic function specific for this domain. This heuristic
computes an estimate of the number of container move-
ments that must be carried out to reach a goal state (see



Algorithm 1). Replacing the traditional heuristic function,
based on a relaxed planning graph [5], by this domain-
dependent heuristic function we outstandingly improve the
planner performance: it solves many more problems and
finds better quality plans with considerably less search ef-
fort. The plan is returned by the planner as a totally ordered
sequence of actions that the transfer crane must carry out to
achieve our objective.

3.1 Heuristic improvement

The main goal in the container stacking problem is to
minimize the number of reshuffles required to reach a valid
final layout. However, several different layouts can be usu-
ally achieved making the same number of reshuffles and
some of them can be more interesting than the rest accord-
ing to other important questions:

• It can be interesting to minimize the distance of the
goal containers to the right side of the yard-bay, where
the transfer crane is located. Achieving this we can
spend considerably less time during the truck loading
operations.

• It also could be interesting to balance the heights of the
stacks to increase the containers stability.

These additional optimization functions have been eas-
ily incorporated in our planner by defining the heuristic
function as a linear combination of two functions: h(s) =
α ∗ h1(s) + β ∗ h2(s), where:

• h1(s) is the main heuristic function, which estimates
the number of movements required to reach the goal
layout (outlined in Algorithm 1). Since this is the main
optimization function, α value should be significantly
higher than β.

• h2(s) is the secondary function we want to optimize.
This can be, for example, the sum of the distances of
the selected containers to the right side of the yard-bay,
which can be computed as Algorithm 2 shows.

The benefits of using this combined heuristic function
can be observed in Figure 4 and Figure 5. In the first one we
want only to minimize the number of reshuffles, i.e. h(s) =
h1(s). In the second one, we also want to minimize the
distance of the selected containers to the forklift truck, so
we have set h(s) = 9 ∗ h1(s) + h2(s). As a result, none of
the selected containers (the red ones) are placed in the most
left rows, reducing the required time to load the truck.

4 Evaluation

In this section, we have evaluated the minimum num-
ber of reshuffles needed to allocate all selected containers

Algorithm 2: Pseudo-code to calculate the distance
Data: s: state to evaluate
Result: d, distance value of s
d = 0;
for each row r in the yard-bay do

for x - container / at(x, r) ∈ s ∧ goal-container(x)
do

d = d + (numRows(s) −r);
end

end

Figure 4. Obtained plan with the initial
domain-dependent heuristic.

Figure 5. Obtained plan with the distance
domain-dependent heuristic.

at the top of the stacks or under another selected containers
in such a way that no reshuffles is needed to load outgoing
containers.

The experiments were performed on random instances.
A random instance is characterized by the tuple < n, s >,
where n is the number of containers and s is the number
of selected containers. Each instance is a random configu-
ration of all containers distributed along the six stack with
4 or 5 tiers. We evaluated 100 test cases for each type of
problem.

In Table 1, we present the average running time (in
milliseconds) to achieve a solution in both the domain-
independent heuristic, based on a relaxed planning graph
[5], and our domain-dependent heuristic in problems <
n, 4 >. Thus, we fixed the number of selected containers
to 4 and we increased the number of containers n from 15



to 20. It can be observed that our new domain-dependent
heuristic is able to find a solution in a few milliseconds,
meanwhile the domain-independent heuristic needs some
more time for finding the first solution.

Table 1. Running time in problems < n, 4 >.
Instance A Domain Independent Our New Domain Dependent

Heuristic Heuristic
< 15, 4 > 180 6
< 17, 4 > 320 10
< 19, 4 > 533 15
< 20, 4 > 1210 40

In Table 2, we present the average sum of distances be-
tween the selected containers and the right side of the layout
in both our domain-independent heuristic and our domain-
dependent heuristic with distance optimization for problems
< n, 4 >. As mentioned above, we fixed the number of se-
lected containers to 4 and we increased the number of con-
tainers n from 13 to 19. It can be observed that the heuristic
for distance optimization helps finding solution plans that
place the selected containers closer to the right side of the
yard-bay.

Table 2. Avg. distance in problems < n, 4 >.
Instance without Heuristic distance with Heuristic distance

< 13, 4 > 8.15 7.45
< 15, 4 > 10.05 8.90
< 17, 4 > 10.70 9.55
< 19, 4 > 10.85 8.40

5 Conclusions and Further Works

This paper presents the modelling of the container stack-
ing problem form the Artificial Intelligence point of view.
We have developed a domain-dependent planning tool for
finding an appropriate configuration of containers in a bay.
Thus, given a set of outgoing containers, our planner mini-
mizes the number of necessary reshuffles of containers in
order to allocate all selected containers at the top of the
stacks or under another selected containers in such a way
that no further reshuffles are needed to load them.

The initial heuristic function proposed to guide the
search has been also improved to allow the optimization of
secondary interesting functions as the containers’ distance
to the right side of the yard-bay, in order to reduce the re-
quired time during the loading operations. We have also
presented an expanded version of the domain which allow
to organize all the containers in the yard-bay according to
their departure time. As expected, our domain-dependent
tool outperforms the existing domain-independent planners,
allowing to obtain high quality plans in few milliseconds.

In further works, we will focus our attention in the de-
velopment of a more complex domain-dependent planning
heuristic to manage new hard and soft constraints.

Acknowledgment

This work is partially supported by the research projects
TIN2007-67943-C02-01 (Min. de Educacion y Cien-
cia, Spain-FEDER), P19/08 (Min. de Fomento, Spain-
FEDER), ACOMP/2009/178 Generalitat Valenciana, and
by the Technical University of Valencia.

References

[1] Y. Chen, C.W. Hsu, and B.W. Wah, ‘SGPlan: Subgoal
partitioning and resolution in planning’, IPC-4 Book-
let (ICAPS), (2004).

[2] S. Edelkamp, ‘Taming numbers and durations in the
model checking integrated planning system’, Journal
of Artificial Intelligence Research (JAIR), 20, 195–
238, (2003).

[3] A. Gerevini, A. Saetti, and I. Serina, ‘Planning
through stochastic local search and temporal action
graphs in LPG’, Journal of Artificial Intelligence Re-
search (JAIR), 20, 239–290, (2003).

[4] M. Ghallab, A. Howe, C. Knoblock, D. McDermott,
A. Ram, M. Veloso, D. Weld, and D. Wilkins, ‘PDDL
- the planning domain definition language’, AIPS-98
Planning Committee, (1998).

[5] J. Hoffman and B. Nebel, ‘The FF planning system:
Fast planning generation through heuristic search’,
Journal of Artificial Intelligence Research, 14, 253–
302, (2001).

[6] Kap Hwan Kim, Young Man Park, and Kwang-Ryul
Ryu, ‘Deriving decision rules to locate export contain-
ers in container yards’, European Journal of Opera-
tional Research, 124, 89–101, (2000).

[7] Yusin Lee and Nai-Yun Hsu, ‘An optimization model
for the container pre-marshalling problem’, Comput-
ers & Operations Research, 34(11), 3295 – 3313,
(2007).

[8] M.A. Salido, O. Sapena, M. Rodriguez, and F. Barber,
‘A planning-based approach for allocating containers
in maritime terminals.’, CAEPIA’09: Thirteenth Span-
ish Conference for Artificial Intelligence, (2009).

[9] J. Slaney and S. Thibaux, ‘Blocks world revisited’, Ar-
tificial Intelligence, 125, 119–153, (2001).

[10] S. Zilberstein and S.J. Russell, ‘Optimal composition
of real-time systems’, Artificial Intelligence, 82(1-2),
181–213, (1996).


