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Abstract

Railway Scheduling is considered to be a difficult and
time-consuming task. This is due to real railway net-
works can be modelled as Constraint Satisfaction Prob-
lems (CSPs), but they require a huge number of vari-
ables and constraints. The general CSP is known to be
NP-complete; however, distributed models may reduce
the exponential complexity by dividing the problem into
a set of subproblems. In this work, we present several
proposals to distribute the railway scheduling problem
into a set of sub-problems as independent as possible.
The first technique carries out a partition over the con-
straint network, meanwhile the second distributes the
problem by trains and the third technique divides the
problem by means of contiguous stations.

Introduction

Train timetabling is a difficult and time-consuming task, par-
ticularly in the case of real networks, where the number of
constraints and the complexity of constraints grow drasti-
cally. A feasible train timetable should specify the departure
and arrival time of each train to each location of its jour-
ney, in such a way that the line capacity and other opera-
tional constraints are taken into account. Traditionally, train
timetables are generated manually by drawing trains on the
time-distance graph. The train schedule is generated from a
given starting time and is manually adjusted so that all con-
straints are met. High priority trains are usually placed first
followed by lower priority trains. It can take many days to
develop train timetables for a line, and the process usually
stops once a feasible timetable has been found. The result-
ing plan of this procedure may be far from optimal.

The literature of the 1960s, 1970s, and 1980s relating to
rail optimization was relatively limited. Compared to the
airline and bus industries, optimization was generally over-
looked in favor of simulation or heuristic-based methods.
However, Cordeau et al. (Cordeau, Toth, & Vigo 1998) point
out greater competition, privatization, deregulation, and in-
creasing computer speed as reasons for the more prevalent
use of optimization techniques in the railway industry. Our
review of the methods and models that have been published
indicates that the majority of authors use models that are
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based on the Periodic Event Scheduling Problem (PESP)
introduced by Serafini and Ukovich (Serafini & Ukovich
1989). The PESP considers the problem of scheduling as
a set of periodically recurring events under periodic time-
window constraints. The model generates disjunctive con-
straints that may cause the exponential growth of the com-
putational complexity of the problem depending on its size.
Schrijver and Steenbeek (Schrijver & Steenbeek 1994) have
developed CADANS, a constraint programming- based al-
gorithm to find a feasible timetable for a set of PESP con-
straints. The scenario considered by this tool is different
from the scenario that we used; therefore, the results are not
easily comparable. Nachtigall and Voget (Nachtigall & Vo-
get 1997) also use PESP constraints to model the cyclic be-
havior of timetables and to consider the minimization of pas-
senger waiting times as the objective function. Their solv-
ing procedure starts with a solution that is obtained in a way
similar to the one that timetable designers in railway com-
panies use. This initial timetable is then improved by us-
ing a genetic algorithm. In our problem, the waiting time
for connections is not taken into account because we only
consider the timetabling optimization for a single railway
line. The train scheduling problem can also be modeled as
a special case of the job-shop scheduling problem (Silva de
Oliveira (Silva de Oliveira 2001), Walker et al. (Walker &
Ryan 2005)), where train trips are considered as jobs that are
scheduled on tracks that are regarded as resources. The ma-
jority of these works consider the scheduling of new trains
on an empty network. However, railway companies usually
also require the optimization of new trains on a line where
many trains are already in circulation (that is, trains that
have a fixed timetable). With this main objective, Lova et
al. (Lova et al. 2006) propose a scheduling method based
on reference stations where the priority of trains, in the case
of conflict, changes from one iteration to another during the
solving process.

Our goal is to model the railway scheduling problem as a
Constraint Satisfaction Problems (CSPs) and solve it using
constraint programming techniques. However, due to the
huge number of variables and constraints that this problem
generates, a distributed model is developed to distribute the
resultant CSP into a semi-independent subproblems such as
the solution can be found efficiently.

The overall goal of a long-term collaboration between our



group at the Polytechnic University of Valencia (UPV) and
the National Network of Spanish Railways (RENFE) is to
offer assistance to help in the planning of train scheduling,
to obtain conclusions about the maximum capacity of the
network, to identify bottlenecks, etc.

In parallel computing, many researchers are working on
graph partitioning (Schloegel, Karypis, & Kumar 2003),
(Karypis & Kumar 1998). The main objective of these
techniques is to divide the graph into a set of regions such
that each region has roughly the same number of nodes and
the sum of all edges connecting different regions is mini-
mized. Fortunately, many heuristics may solve this prob-
lem efficiently. For instance, graphs with over 14000 nodes
and 410000 edges can be partitioned in under 2 seconds
(Karypis & Kumar 1995). Graph partitioning can also be
applied to constraint satisfaction problem. Thus, we can use
ideas about graph partitioning, when dealing with railway
scheduling problem, to distribute the problem into a set of
sub-problems.

In this work, we propose several ways to distribute the
railway scheduling problem. It is partitioned into a set of
subproblems by means of graph partitioning, by means of
types of trains and by means of contiguous constraints.

In the following section, we summarize some definitions.
In section 3, we study three models to distribute the railway
scheduling problem. In section 4, we present the distrib-
uted model to be solved by the DCSP. An evaluation among
different models is carried out in section 5. Finally we sum-
marizes the conclusions and future work in section 6.

Definitions

This section presents CSPs in a slightly non-standard form,
which will be convenient for our purposes, and will unify
works from constraint satisfaction communities.

Definition 1: A CSP consists of:

e aset of variables X = {1, 29, ..., 2}

e cach variable x; € X has a set D; of possible values (its
domain)

e a finite collection of constraints C' = {c1, ca, ..., cp } Te-
stricting the values that the variables can simultaneously
take.

A solution to a CSP is an assignment of values to all the
variables so that all constraints are satisfied; a problem is
satisfiable or consistent when it has a solution at least.

State: one possible assignment of all variables.

Partition : A partition of a set C'is a set of disjoint subsets
of C' whose union is C. The subsets are called the blocks of
the partition.

A running map : contains information regarding railway
topology (stations, tracks, distances between stations, traffic
control features, etc.) and the schedules of the trains that use
this topology (arrival and departure times of trains at each
station, frequency, stops, crossings, etc,).

Distributed CSP: A distributed CSP (DCSP) is a CSP in
which the variables and constraints are distributed among
automated agents (Yokoo & Hirayama 2000).

Each agent has some variables and attempts to deter-
mine their values. However, there are interagent constraints
and the value assignment must satisfy these interagent con-
straints. In our model, there are k agents 1,2, ..., k. Each
agent knows a set of constraints and the domains of vari-
ables involved in these constraints.

Definition 2: A block agent a; is a virtual entity that
essentially has the following properties: autonomy, social
ability, reactivity and pro-activity (Wooldridge & Jennings
1995).

Block agents are autonomous agents. They operate their
subproblems without the direct intervention of any other
agent or human. Block agents interact with each other by
sending messages to communicate consistent partial states.
They perceive their environment and changes in it, such as
new partial consistent states, and react, if possible, with
more complete consistent partial states.

Definition 3: A multi-agent system is a system that con-
tains the following elements:

1. An environment in which the agents live (variables, do-
mains, constraints and consistent partial states).

2. A set of reactive rules, governing the interaction between
the agents and their environment (agent exchange rules,
communication rules, etc).

3. Asetof agents, A = {aq,aq, ..., ax}.

Constraints in the Railway Scheduling Problem

There are three groups of scheduling rules in our railway
scheduling problem: traffic rules, user requirements rules
and topological rules. A valid running map must satisfy the
above rules. These scheduling rules can be modelled using
the following constraints, where variable T°A; j, represents
that train ¢ arrives at station & and the variable T'D; ;, means
that train ¢ departs from station k:

1. Traffic rules guarantee crossing and overtaking opera-
tions. The main constraints to take into account are:

e Crossing constraint: Any two trains going in opposite
directions must not simultaneously use the same one-
way track.

TAi,A < TDj,A or TAj,B < TD@B

The crossing of two trains can be performed only on
two-way tracks and at stations, where one of the two
trains has been detoured from the main track (Figure
1).

o Overtaking constraint: Any two trains (7; and 7)) go-
ing at different speeds in the same direction can only
overtake each other at stations.

TDi,A < TDj7A — TAi)B < TA]*7B

The train being passed is detoured form the main track
so that the faster train can pass the slower one (see Fig-
ure 1).

o Expedition time constraint. There exists a given time
to put a detoured train back on the main track and exit
from a station.



Recep(mn Time

_-Crossing
Detoured train

R E@ M

Incoming train

Station

Time

Expedition Time

Figure 1: Constraints related to crossing and overtaking in
stations

e Reception time constraint. There exists a given time
to detour a train from the main track so that crossing or
overtaking can be performed.

2. User Requirements: The main constraints due to user
requirements are:

o Type and Number of trains going in each direction to
be scheduled.

e Path of trains: Locations used and Stop time for com-
mercial purposes in each direction.

e Scheduling frequency. Train departure must satisfy
frequency requirements in both directions. This con-
straint is very restrictive because, when crossings are
performed, trains must wait for a certain time interval at
stations. This interval must be propagated to all trains
going in the same direction in order to maintain the es-
tablished scheduling frequency. The user can require
a fixed frequency, a frequency within a minimum and
maximum interval, or multiple frequencies.

e Departure interval for the departure of the first trains
going in both the up and down directions.

e Maximum slack. This is the maximum percentage §
that a train may delay with respect to the minimum
journey time.

3. Railway infrastructure Topology and type of trains to
be scheduled give rise to other constraints to be taken into
account. Some of them are:

e Number of fracks in stations (to perform techni-
cal and/or commercial operations) and the number of
tracks between two locations (one-way or two-way).
No crossing or overtaking is allowed on a one-way
track,

e Time constraints, between each two contiguous sta-
tions,

e Added Station time constraints for technical and/or
commercial purposes.

The complete set of constraints, including an objective
function, transform the CSP into a constraint satisfaction
and optimization problem (CSOP), where the main objec-
tive function is to minimize the journey time of all trains.
Variables are frequencies and arrival and departure times of
trains at stations. Constraints are composed by user require-
ments, traffic rules, and topological constraints.

The complete CSOP is presented in Figure 2. Let’s sup-
pose a railway network with r stations, » trains running in
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Figure 2: Formal Model of the Railway Scheduling Prob-
lem.

the down direction, and m trains running in the up direc-
tion. We assume that two connected stations have only one
line connecting them. T'ime; ;_(x4+1) is the journey time of
train ¢ to travel from station &k to k4 1; T'S; j, and C'S; j, rep-
resent the technical and commercial stop times of train ¢ in
station k, respectively; and ET; and RT; are the expedition
and reception time of train ¢, respectively.

Partition Proposals

Due to specific properties in the railway scheduling problem,
several models can be adopted to distribute the problem.

Partition Proposal 1

The first way to distribute the problem is carried out
by means of a graph partitioning software called METIS
(METIS ), for the purpose of this distribution, the model
constraints are converted into binary constraints, this is triv-
ial and the result is a binary CSP. METIS provides two pro-
grams pmetis and kmetis for partitioning an unstructured
graph into k equal size parts. In this way, the railway
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Figure 3: Distributed models: From Graph Partitioning to
Train Partitioning and Station Partitioning.

scheduling problem can be modelled as a constraint net-
work. This network can be partitioned in semi-independent
subproblems by means of METIS. However, this software
does not take into account additional information about the
railway infrastructure or the type of trains to guide the par-
tition, so the generated clusters may not be the most appro-
priate and the results are not appropriate. To improve the
partition procedure, we extract additional information from
the railway topology to obtain better partitions such as par-
tition proposal 2 and 3.

Partition Proposal 2

The second model is based on distributing the original rail-
way problem by means of train type. Each agent is commit-
ted to assign values to variables regarding a train or trains
to minimize the journey travel. Depending on the selected
number of partitions, each agent will manage one o more
trains. Figure 4 shows a running map with 20 partition, each
agent manages one train. This partition model has two im-
portant advantages: Firstly, this model allow us to improve
privacy. Currently, due to the policy of deregulation in the
European railways, trains from different operators work in
the same railway infrastructure. In this way, the partition
model gives us the possibility of partition the problem such
as each agent is committed to a operator. Thus, different
operators maintain privacy about strategic data. Secondly,
this model allow us to manage efficiently priorities between
different types of trains (regional trains, high speed trains,
freight trains). In this way, agents committed to priority
trains (high speed trains) will firstly carry out value assign-
ment to variables, in order to achieve better journey travels

Partition Proposal 3

The third model is based on distributing the original railway
problem by means of contiguous stations. Due to deregula-
tion of European railways operators, long journeys may be
scheduled. However, long journeys involve large number of
stations at different countries with different railway policies.
Therefore, a logical partition of the railway network can be
carried out by means on regions (contiguous stations). To
carry out this type of partition, it is important to analyze the

Figure 4: Distributed Railway Scheduling Problem. Pro-
posal 2.

railway infrastructure and detect restricted regions (bottle-
necks). To balance the problem, each agent is committed to
a different number of stations. An agent can manage many
stations if they are not restricted stations, whereas an agent
can manage only few stations if they are bottlenecks. Fur-
thermore, the agents committed with bottleneck have prefer-
ences to assign values to variables due to their domains are
reduced (variable ordering).

Thus, the running map to be scheduled between two cities
is decomposed in several and shorter running maps. Figure
5 (up) shows a running map to be scheduled. The set of sta-
tions will be partitioned in block of contiguous stations and
a set of agents will coordinate to achieve a global solution
(Figure 5 (down)). Thus, we can obtain important results
such as railway capacity, consistent timetable, etc.

The Distributed Model

In the specialized literature, there are many works about dis-
tributed CSPs. In (Yokoo & Hirayama 2000), Yokoo et al.
present a formalization and algorithms for solving distrib-
uted CSPs. These algorithms can be classified as either
distributed stochastic search methods, synchronous back-
tracking or asynchronous backtracking (Yokoo & Hirayama
2000).

Our model can be considered as a synchronous model. It
is meant to be a framework for interacting agents to achieve
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Figure 5: Distributed Railway Scheduling Problem. Pro-
posal 3.

a consistent state. The main idea of our multi-agent model is
based on (Salido, Giret, & Barber 2003) but partitioning the
problem in % subproblems as independent as possible, clas-
sifying the subproblems in the appropriate order and solving
them concurrently.

Preprocessing
Agent
P 2

Partition

c(1): blockl .
c(2):block2 Constraint

c(k):blockk

Block Time steps

Agents

S11 S12 Sq3 | O | Sqt
$11+S21 | S12+S22 | | e ﬁ

: .

1 = 1
— = — = — =

U Problem Solutions H

Figure 6: Multi-agent model.

In all our proposals, the problem is partitioned in % blocks
or clusters in order to be studied by agents called block
agents. Furthermore, a partition agent is committed to clas-
sify the subproblems in the appropriate order depending on
the selected proposal. For instance, if Metis is selected to
partition the problem, the partition agent must classify the
subproblems such as the most interrelated problem is stud-
ied first.

Once the constraints are divided into k blocks by a pre-
processing agent, a group of block agents concurrently man-
ages each block of constraints. Each block agent is in charge
of solving its own subproblem by means of a search algo-
rithm. Each block agent is free to select any algorithm to
find a consistent partial state. It can select a local search
algorithm, a backtracking-based algorithm, or any other, de-
pending on the problem topology. In any case, each block
agent is committed to finding a solution to its particular sub-
problem. This subproblem is composed by its CSP subject
to the variable assignment generated by the previous block
agents. Thus, block agent 1 works on its group of con-
straints. If block agent 1 finds a solution to its subproblem,
then it sends the consistent partial state to block agent 2, and
both they work concurrently to solve their specific subprob-
lems; block agent 1 tries to find other solution and block
agent 2 tries to solve its subproblem knowing that its com-
mon variables have been assigned by block agent 1. Thus,
block agent j, with the variable assignments generated by
the previous block agents, works simultaneously with the
previous block agents, and tries to find a more complete
consistent state using a search algorithm. Finally, the last
block agent k, working simultaneously with block agents
1,2,...(k — 1), tries to find a consistent state in order to find
a problem solution.

Figure 6 shows the multi-agent model, in which the pre-
processing agent carries out the network partition and the
block agents (a;) are committed to concurrently finding par-
tial problem solutions (s;;). Each block agent sends the par-
tial problem solutions to the following block agent until a
problem solution is found (by the last block agent). For ex-
ample, state: s11 + S21 + ... + Sk 1S a problem solution. The
concurrence can be seen in Figure 6 in Time step 6 in which
all block agents are concurrently working. Each block agent
maintains the corresponding domains for its new variables.
The block agent must assign values to its new variables so
that the block of constraints is satisfied. When a block agent
finds a value for each new variable, it then sends the consis-
tent partial state to the next block agent. When the last block
agent assigns values to its new variables satistying its block
of constraints, then a solution is found.

Evaluation

In this section, we carry out an evaluation between our dis-
tributed model and a centralized model. Furthermore, we
evaluate the behavior of three proposed partition models.
To this end, we have used a well-known CSP solver called
CON’FLEX' which uses Forward Checking (FC) algorithm.

't can be found in: http://www-bia.inra.fr/T/conflex/ Logi-
ciels/adressesConflex.html.



Table 1: < n,20,120 >: 20 stations, 120 minutes fre-

quency.
Trains (n) | Variables | Constraints
1 80 107
2 160 234
3 240 379
4 320 550
5 400 742
6 480 953
7 560 1186
8 640 1442
9 720 1717
10 800 2010

Table 2: < 5,s,120 >: 5 trains, 120 minutes frequency.

Stations (s) | Variables | Constraints
10 200 527
20 400 742
30 600 1178
40 800 1608
50 1000 2073
60 1200 2555

This empirical evaluation was carried out over a real rail-
way infrastructure that joins two important Spanish cities
(La Coruna and Vigo). The journey between these two cities
is currently divided by 40 stations. In our empirical evalua-
tion, each set of random instances was defined by the 3-tuple
< n,s, f >, where n was the number of periodic trains in
each direction, s the number of stations and f the frequency.
The problems were randomly generated by modifying these
parameters.

Tables 1 and 2 show the parameters used to evaluate the
behavior of the centralized model and the distributed model
with the proposal partitions. We can observe that the com-
plexity increased when the number of trains and stations
increased. All instances maintain a frequency f = 120
minutes.

Table 1 shows the number of variables and the number
of constraints generated when the number of trains in each
direction increased from 1 to 10 in a railway infrastruc-
ture with 20 stations and a frequency of 120 minutes <
n, 20,120 >.

Table 2 shows the number of variables and the number of
constraints generated when the number of stations increased
from 10 to 60 in a running map with 5 train in each direction
and a frequency of 120 minutes < 5,s,120 >. Because
the real railway infrastructure maintains 40 stations, we have
virtually eliminated and added stations to carried out this
evaluation.

General graph partitioning applications work well in gen-
eral graphs. However, in the railway scheduling problem,
we did not obtain good results using these softwares. We
evaluate the partition proposal 1 by using METIS in several

instances of Table 1. However, the obtained results were
even worse in the distributed model than in the centralized
model. We studied the partitions generated by METIS and
we observed that the journey of a train is partitioned in sev-
eral clusters, and each cluster was composed by tracks of
trains in opposite directions. This cluster is easy to solve but
very difficult to propagate to other agents. Furthermore, the
following partition proposals make the contrary, that is, they
never join tracks of trains in opposite directions.

So, we can conclude that the problem is very dependent of
the partition that we carry out, and a general partition based
on low connectivity is not always the best solution.

Figure 7 shows the running time of the instances pre-
sented in Table 1 meanwhile Figure 8 shows the running
time of the instances presented in Table 2. In both Figures,
the partition model selected was partition proposal 2, where
the number of partition/agents was equal to the number of
trains. In both figures, we can observe that the running time
increased when the number of trains increased (Figure 7)
and when the number of stations increased (Figure 8). How-
ever, in both cases, the distributed model maintained better
behavior than the centralized model.
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Figure 7: Running Time when the number of trains in-
creased.

The partition proposal 2 was the best of the partition pro-
posals, where we can schedule many trains in large railway
infrastructure. However, how many partitions must divide
the railway problem? If we select a large number of parti-
tions, each subproblem is very easy, but the efficiency de-
creased due to communication messages. If we select a low
number of partitions, each subproblem may be also difficult
to solve. So, an appropriate number of partitions must be
studied to solve the problem efficiently.

Figure 9 shows the running time with different partitions
in problems where we fix the frequency (120 minutes), the
number of stations (20) and the number of trains in each
direction was increased from 5 to 10. Each instance was
solved by the distributed model with different number of
partitions (8,10,12,14,16,18,20 partitions). We can observe
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the direct relation between the number of trains and the num-
ber of partitions. Thus, a agent was committed to schedule
a train. If a agent was committed to schedule several trains,
the efficiency decreased. Similar results happened when a
train was scheduled by several agents.

The partition proposal 3, based on distributing the rail-
way problem by means of contiguous stations was evaluated
using the instances presented in Table 3.

This table shows the number of variables and the num-
ber of constraints generated when the number of trains in
each direction increased from 1 to 10 in a railway infrastruc-
ture with 10 stations and a frequency of 120 minutes <
n, 10,120 >.

Figure 10 shows the running time of the centralized model
and the distributed model, of the instances presented in Table
3 with a fixed number of partitions (6 partitions). It can be
observed that the distributed model maintained a better be-
havior than the centralized model in all instances even with

Table 3: < n,10,120 >: 10 stations, 120 minutes fre-

quency.
Trains (n) Variables | Constraints

1 40 78

2 80 157

3 120 241

4 160 378

5 200 527

6 240 675

7 280 859

8 320 1078

9 360 1288
10 400 1515

a fixed number of partitions. However, in this type of distri-
bution proposal, determining the appropriate number of par-
titions is difficult. It depends on the number of stations, the
distance between them, the inclination of tracks, the number

of tracks between stations, etc.
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Figure 10: Running Time in problem with 6 partitions.

Conclusion and Future work

In this paper, we present a distributed model for solving the
railway scheduling problem, in which several proposals are
developed to distribute the railway scheduling into a set of
sub-problems as independent as possible. Then, a set of
block agents are incrementally and concurrently committed
to building partial solutions until a global solution is found.
The evaluation section shows the railway scheduling prob-
lem can be solved more efficiently in a distributed way. We
are working on developing new heuristics to solve the dis-
tributed model in a more efficient way. Furthermore, it is
necessary to built up a formal relation between the railway
topology and the appropriate number of partitions.
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