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Abstract Nowadays many real problems can be modelled as Constraint Satisfac-
tion Problems (CSPs). A search algorithm for constraint programming
requires an order in which variables and values should to be considered.
Choosing the right order of variables and values can noticeably improve
the efficiency of constraint satisfaction.

Furthermore, the order in which constraints are studied can im-
prove efficiency, particularly in problems with non-binary constraints.
In this paper, we present a preprocess heuristic called Constraint Order-
ing Heuristic (COH) that studies the constrainedness of the scheduling
problem and mainly classifies the constraints so that the tightest ones
are studied first. Thus, constrainedness can be known in advance and
overall inconsistencies can be found earlier and the number of constraint
checks can significantly be reduced.

Keywords: Heuristic Search, Constraint ordering, Non-binary Constraints, Con-
strainedness.
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1. Introduction
Nowadays, many real problems can be efficiently modelled as Con-

straint Satisfaction Problems (CSPs) and solved using constraint pro-
gramming techniques. Some problems can be modelled naturally using
non-binary constraints [26, 19, 8]. Although, researchers have tradition-
ally focused on binary constraints [24], the need to address issues regard-
ing non-binary constraints has recently started to be widely recognized
in the constraint satisfaction literature. Thus, to define heuristics to
solve non-binary CSPs becomes relevant.

One approach to solving CSPs is to use a depth-first backtrack search
algorithm [5]. While the worst-case complexity of backtrack search is ex-
ponential, several heuristics to reduce its average-case complexity have
been proposed in the literature [6]. However, determining which al-
gorithms are superior to others remains difficult. Theoretical analysis
provides worst-case guarantees which often do not reflect average per-
formance. For instance, a backtracking-based algorithm that incorpo-
rates features such as variable ordering heuristics will often in practice
have substantially better performance than a simpler algorithm without
this feature [17], and yet the two share the same worst-case complexity.
Similarly, one algorithm may be better than another on problems with
a certain characteristic, and worse on another category of problem. Ide-
ally, we would be able to identify this characteristic in advance and use
it to guide our choice of algorithm.

Many of the heuristics that improve backtracking-based algorithms
are based on variable ordering and value ordering [20, 2], due to the
additivity of the variables and values. However, constraints are also
considered to be additive, that is, the order of imposition of constraints
does not matter, all that matters is that the conjunction of constraints
be satisfied [2].

Thus, a real problem can be modelled as a CSP, and using some of
the current ordering heuristics, it can be solved in a more efficient way
by some of the backtracking-based search algorithms (Figure 1).

In spite of the additivity of constraints, only a few works have be
done on binary constraint ordering mainly for arc-consistency algorithms
[25, 16, 10], but little work has be done on non-binary constraint ordering
(for instance in disjunctive constraints [22]), and only some heuristic
techniques classify the non-binary constraints by means of the arity.
However, less arity does not imply a tighter constraint. Moreover, when
all non-binary constraints have the same arity, or these constraints are
classified as hard and soft constraints, these techniques are not useful.
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In this paper, we propose a heuristic technique called Constraint Or-
dering Heuristic (COH) that can easily be applied to any backtracking-
based search algorithm. COH studies the constrainedness of the problem
and mainly classifies the constraints so that the tightest ones are studied
first. This is based on the first-fail principle, which can be explained as:
”To succeed, try first where you are more likely to fail”.

In this way, the tightest constraints are selected first for constraint
checking. Thus, the search space is pruned soon and inconsistent tuples
can be found earlier because it is not necessary to check these incon-
sistent tuples with the rest of the constraints with the corresponding
savings in constraint checking.

In the following section, we formally define constraint satisfaction
problems and describe two well-known ordering heuristic method/techniques.
In section 3, we describe the Constraint Ordering Heuristic. In section
4, we present the computational complexity. An application of COH to
Railway Scheduling Problem is presented in section 5. Section 6 presents
the results of the evaluation. Finally, in section 7, we present our con-
clusions.

2. Definition and Algorithms
Briefly, a constraint satisfaction problem (CSP) consists of:

a set of variables X = {x1, x2, ..., xn}
each variable xi ∈ X has a set Di of possible values (its domain)

a finite collection of constraints C = {c1, c2, ..., ck} restricting the
values that the variables can simultaneously take.

A solution to a CSP is an assignment of values to all the variables
so that all constraints are satisfied; a problem with a solution is termed
satisfiable or consistent. The objective in a CSP may be to determine:

whether a solution exists, that is, if the CSP is consistent

all solutions, many solutions, or only one solution, with no prefer-
ence as to which one

an optimal, or a good solution by means of an objective function
defined in terms of certain variables.

In some problems it is desirable to find all solutions in order to give
the user the ability to search the design space for the best solution,
particularly when various parameters are difficult to model [9]. Some
techniques such as value ordering are not valid to solve this type of
problems.
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Two ordering heuristics for CSPs are analysed in [20, 2]: variable
ordering and value ordering. Let’s briefly look at these two heuristics.

2.1 Variable Ordering
The experiments and analyses by several researchers have shown that

the ordering in which variables are assigned during the search may have
substantial impact on the complexity of the search space explored. The
ordering may be either a static ordering, or dynamic ordering. Examples
of static ordering heuristics are minimum width [12] and maximum degree
[7], in which the order of the variables is specified before the search
begins, and it is not changed thereafter. An example of dynamic ordering
heuristic is minimum remaining values [17], in which the choice of next
variable to be considered depends on the current state of the search.

Dynamic ordering is not very useful for all search algorithms, e.g.,
with simple backtracking, during the search, there is no many extra
information available that could be used to make a different choice of
ordering from the initial ordering. However, with forward checking, the
current state includes the domains of the variables as they have been
pruned by the current set of instantiations. Therefore, it is possible to
base the choice of the next variable on this information.

2.2 Value Ordering
Comparatively little work has been done on algorithms for value order-

ing even for binary CSPs [14, 13]. The basic idea behind value ordering
algorithms is to select the value for the current variable which is most
likely to lead to a solution. Again, the order in which these values are
considered can have substantial impact on the time necessary to find
the first solution. However, if all solutions are required or the problem
is not consistent, then the value ordering does not make any difference.
A different value ordering will rearrange the branches emanating from
each node of the search tree. This is an advantage if it ensures that a
branch which leads to a solution is searched earlier than a branch which
leads to a dead-end. For example, if the CSP has a solution, and if a
correct value is chosen for each variable, then a solution can be found
without any backtracking.

Suppose we have selected a variable to instantiate: how should we
choose which value to try first? It may be that none of the values will
succeed. In that case, every value for the current variable will eventually
have to be considered and the order does not matter. On the other hand,
if we can find a complete solution based on the past instantiations, we



A Non-binary Constraint Ordering Heuristic For Constraint Satisfaction Problems5

want to choose a value which is likely to succeed and unlikely to lead to
a conflict.

3. Constraint Ordering Heuristic (COH)
Currently, several constraint satisfaction techniques have been devel-

oped to directly manage non-binary CSPs due to transforming tech-
niques have many drawbacks. Some main drawbacks are:

Transforming a non-binary into a binary CSP produces a signifi-
cant increase in the problem size, so the transformation may not
be practical [3, 18] particulary in large real problems.

A forced binarization generates unnatural formulations, which cause
extra difficulties for CSP solver interfaces with human users [4].

As current techniques manage non-binary constraints in a natural
way [4], new heuristics can be applied to these constraints to reduce the
search space. As we pointed out in introduction some of these heuristics
classify the non-binary constraints by means of the arity. However, when
all non-binary constraints have the same arity (maximum arity), these
techniques are not useful.

In this section, we present a heuristic technique called Constraint
Ordering Heuristic (COH) for two different purposes:

1 to study the constrainedness of the problem. We introduce a pa-
rameter (τ) that measures the constrainedness of a problem. This
parameter represents the probability of a problem being feasible. A
value of τ = 0 corresponds to an over-constrained problem and no
states are expected to be solutions. A value of τ = 1 corresponds
to an under-constrained problem and every state is a solution.

2 to classify the non-binary constraints, independently of the arity
so that the tightest constraints are studied first. Inconsistencies
can then be found earlier and the number of constraint checks can
be significantly reduced.

3.1 Specification of COH
COH is a preprocess heuristic based on the sampling from a finite

population, as in statistics, where there is a population, and a sample
is chosen to represent this population. In our context, the population
is composed of the points (states) lying within the convex hull of all
initial stated generated by means of the Cartesian product of variable
domain bounds. The sample is composed by s(n, d, e) points distributed
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by a simple random or systematic sampling where s is a function that
depends on the number of variables (n), domain size (d) and level of
precision (e).

As in statistic, the user selects the desired precision by the size of the
sample s(n, d, e). Generally, as larger the size is, better the classification
is. Yamade in [27] provides a simplified formula to calculate sample
sizes. This formula in our context can be viewed as:

s(n, d, e) := d dn

1 + dn · e2
e (1)

where n is the number of variables, d is the maximum domain size
and e is the level of precision. When this formula is applied to the four-
queen problem (see section 3.1.2), with a 75% confidence level, we get
Equation (2).

s(4, 4, 0.25) := d 256
1 + 256 · 0.252

e = 16 (2)

Figure 2 represents the graphic of the simplified formula for propor-
tion presented by Yamane. This curve has a logarithmic appearance by
independence of the population size and the level of precision. Figure 2
shows the curve where 44 = 256 is the population size and 75% is the
confidence level. The sample size is 16 as we will see in section 3.1.2.

Depending on the desired level of precision, the sample size will be
bigger of shorter, but with acceptable level of precision (between 75%
and 85%) the sample size is polinomial with the number of variables and
domain size (n · d and 1

2n · d2 respectively).
After the sample is taken, for each constraint ci each point in the

sample is projected over the variables contained in ci and then the con-
sistency of the resulting tuple is checked. Thus, each constraint ci is
labeled with pi: ci(pi), where pi = sti/s(n, d, e)) represents the propor-
tion of possible states, that is, the tightness of the constraint.

We present the pseudo-code of COH below.
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Constraint Ordering Heuristic

Inputs: A set of n variables, X1, ..., Xn;

For each Xi, a set Di of possible values (the domain)

A set of constraints, C1, ..., Ck.

Outputs: A set of labels corresponding with the tightness of each

constraint, {p1, ..., pk}.
1.- From the entire number of points generated by the Cartesian

Product of the variable domain bounds, COH selects a well

distributed sample with s(n) points.

2.- With the selected sample of points (s(n, d, e)), COH studies

how many points sti : sti ≤ s(n, d, e) satisfy each constraint ci.

ci is labelled with pi such that pi = sti/s(n, d, e).

3.- COH obtains a set of labels that represents the tightness of

each constraint, {p1, ..., pk}

Once each constraint is labelled with its tightness, COH uses this
information for two different purposes abovementioned:

Given {p1, ..., pk}, we introduce a new parameter called τ that
measures the constrainedness of the problem. This parameter rep-
resents the probability of a problem being feasible. This parameter
lies in the range [0, 1]. A value of τ = 0 corresponds to an over-
constrained and no state is expected to be a solution (〈Sol〉 = 0).
A value of τ = 1 corresponds to an under-constrained and every
state is expected to be a solution (〈Sol〉 =

∏
v∈V dv).

Thus, given the set of probabilities {p1, ..., pk}, the number of so-
lutions can be computed as:

〈Sol〉 := (
∏

v∈V

dv)× (
∏

ci∈C

(pci)) (3)

This equation is equivalent to the obtained in [15]. However, our
definition of constrainedness is given by the following equation:

τ :=
∏

ci∈C

(pci) (4)

τ is a parameter that measures the probability that a randomly
selected state is a solution, that is, the probability this selected
state satisfies the first constraint (p1), the second constraint (p2)
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and so forth, the probability this state satisfies the last constraint
(pk). Thus, this parameter lies in the range [0, 1] that represents
the constrainedness of the problem.

Once, we know the constrainedness of the problem, we can solve
the problem with an appropriate CSP solver. For instance, if the
problem is under-constrained, an easy heuristic can be applied for
solving it. However, if the problem is hard to solve, a complete
solver must be applied for solving it.

Given {p1, ..., pk}, COH classifies the constraints in ascending order
of the labels pi so that the tightest constraints are classified first
(Cord1, Cord2, ..., Cordk). Therefore, COH translates the initial non-
binary problem into an ordered non-binary problem so that it can
be studied by a CSP solver (see Figure 3).

3.1.1 Example 1:(Continuous Problem). Let’s assume a
continuous problem with two variables (n = 2) x1, x2 : [0, 4], and three
constraints (k = 3): c1 : 3x1 + 2x2 ≤ 14, c2 : 2x1 − 0.25x2 ≤ 5, and
c3 : x1 − x2 ≤ −3.75 (see Figure 4).

COH checks how many points (from a given sample: s(n, d, e) = n2 =
4 points) satisfy each constraint and classifies them afterwards. The
selected points are (0,0), (0,4),(4,0),(4,4) and the following results are
obtained:

st1 = 3 st2 = 2, st3 = 1
p1 = 3/4 = 0.75, p2 = 2/4 = 0.50, p3 = 1/4 = 0.25

c1 : (0.75) c3 : (0.25)
c2 : (0.50) −−−−−−→

ordering c2 : (0.50)
c3 : (0.25) c1 : (0.75)

Figure 4, shows the behaviour of our CSP solver Hyperpolyhedron
Search Algorithm (HSA) [21]. HSA is a CSP solver that manages non-
binary constraints by means of Polytopes, in which faces represent the
problem constraints and vertices represent the extreme solutions. If HSA
carries out the consistency study in the order of imposition of constraints
(option 1) (c1, c2, c3), HSA will generate 6 new vertices. However, if HSA
runs the constraint ordering heuristic, which classifies the constraints in
ascending order (option 2) (c3, c2, c1), HSA will generate only two new
vertices with the corresponding time reduction.

Table 1 shows the number of constraint checks in the same prob-
lem executed using Backtracking (BT) and Backtracking with COH
(BT+COH). BT checks all constraints in each non-valid instantiation
while BT+COH only checks the tightest one (c3). Thus, to study the
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problem consistency (one solution), BT has made 15 constraint checks
while BT+COH only 7 constraint checks. However, if all solutions are
required, BT will make 75 constraint checks and BT+COH will make
only 27 constraint checks.

3.1.2 Example 2: (The 4-Queens Problem). This well-
known problem is an example of discrete problem with four variables,
and seven constraints.

Figure 5 shows the initial CSP and the possible solutions (2,4,1,3)
and (3,1,4,2) obtained using BT and BT+COH. COH checks how many
tuples (from a given sample: s(n, d, e) = 16 tuples (see equation (2))
{(1, 1), (1, 2), · · · , (4, 3), (4, 4)}) satisfy each constraint and classifies them
afterwards. We can observe that some constraints are tighter than oth-
ers (c1, c4, c6 satisfy less valid tuples). BT must check 224 constraints to
obtain both solutions, while BT+COH must only check 168. It can be
observed that BT+COH studies first the tightest constraints: c1, c4, c6.
These constraints are enough to obtain both solutions and the following
only must be checked to be consistent.

(2, 4, 1, 3) ← c1 : (2, 4), c4 : (4, 1), c6 : (1, 3)
(3, 1, 4, 2) ← c1 : (3, 1), c4 : (1, 4), c6 : (4, 2)

In section 6, we present a more exhaustive evaluation of the n-queens
problem.

4. Analysis of COH
COH selects a sample composed of s(n, d, e) points, so the spatial

cost is O(s(n, d, e)). COH checks the consistency of the sample with
each non-binary constraint, so its temporal cost is O(ks(n, d, e)). Then,
COH classifies the set of constraints in ascending order. Its tempo-
ral complexity is O(klogk). Thus, the temporal complexity of COH is
O(max{ks(n, d, e), klogk}).

5. Application of COH to Railway Scheduling
Problem

Train scheduling has been a significant issue in the railway industry.
Numerous approaches and tools have been developed to compute railway
scheduling. We summarize the application of COH into our constraint-
based train scheduling tool1 [1], which is a project in collaboration with
the National Network of Spanish Railways (RENFE). We formulate train
scheduling as constraint optimization problems. COH has been inserted
into our heuristics to speed up and direct the search towards suboptimal
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solutions in periodic train scheduling problems. The feasibility of our
problem-oriented heuristics was confirmed with experimentation using
real-life data. The results show that our techniques enable MIP solvers
such as LINGO and ILOG Concert Technology (CPLEX c©) to terminate
earlier with good solutions.

The railway scheduling problem can be described as a constraint op-
timization problem, where the main objective function is to minimize
the journey time of all trains. Variables are frequencies, arrival and
departure times of trains at stations and binary auxiliary variables gen-
erated for modelling disjunctive constraints. Constraints are composed
by user requirements, traffic rules, and topological constraints. These
constraints are composed by the parameters defined by user interfaces
and database accesses.

The formal mathematical model is presented in Model 1. Let’s sup-
pose a railway network with r stations, n trains running in the down
direction, and m trains running in the up direction. We assume that two
connected stations have only one line connecting them. TiAk represents
that train i arrives at station k; TiDk means that train i departs from
station k; Timeik−(k+1) is the journey time of train i to travel from sta-
tion k to k + 1; TSik and CSik represent the technical and commercial
stop times of train i in station k, respectively; and ETi and RTi are the
expedition and reception time of train i, respectively.

The main complexity of the problem derives in solving the MIP prob-
lem due to the binary (integer) variables. If we are able to assign values
to these integer variables, the linearized problem can be solved more
efficiently. COH carries out a constraint partition in two different sets
of constraints: constraints with integer variables and constraints with
continuous variables. In both sets of constraints, COH studies the con-
strainedness of the subproblems and classifies the constraints in the ap-
propriate order. The first set of constraints are composed by constraints
where integer variables are involved. These constraints correspond to
’crossing constrains’ (6.1)(6.2), ’expedition time constrains’ (7.1)(7.2)
and ’reception time constrains’ (8.1)(8.2). These constraints (ordered by
COH) are solved by our heuristics by means of topological techniques.
The constrainedness of the subproblem given by COH is useful for our
heuristics to direct the search.

In the next section, we present the advantage of inserting COH in our
heuristics.
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(1) Min
∑i=n

i=1
(TiAr − TiD1) +

∑i=m

j=1
(TjA1 − TjDr);

Subject To
/frequency constraint ∀i = 1..n,∀k = 1..r
(2) Ti+1Dk − TiDk = Frequency;
/Time Constrains ∀i = 1..n, ∀k = 1..r
(3.1) TiAk+1 − TiDk = Timeik−(k+1);
(3.2) TjAk − TiDk+1 = Timeik−(k+1);
/Stations Time Constrains ∀i = 1..n,∀k = 1..r
(4) TiDk − TiAk − TSik = CSik;
/Constrains to limit journey time ∀i = 1..n,∀j = 1..m
(5.1) TiAr − TiD1 ≤ (1 + δ

100
) ∗ Timei1−r;

(5.2) TjA1 − TjDr ≤ (1 + δ
100

) ∗ T imejr−1;
/Crossing Constrains ∀i = 1..n,∀j = 1..m,∀k = 1..r
(6.1) TjAk − TiDk <= 86400 ∗ Yi−j;k−(k+1);
(6.2) TiAk+1 − TjDk+1 <= 86400 ∗ (1− Yi−j;k−(k+1));
/Expedition time constrains ∀i = 1..n,∀j = 1..m,∀k = 1..r
(7.1) TjAk−TiDk−86400∗ (Xi−j−Yi−j;k−(k+1) +Yi−j;(k+1)−(k+2)−1)+ETi <= 0;
(7.2) TiAk−TjDk−86400∗ (Xi−j−Yi−j;k−(k+1) +Yi−j;(k+1)−(k+2)−2)+ETj <= 0;
/Reception time constrains ∀i = 1..n, ∀j = 1..m, ∀k = 1..r
(8.1) TiAk−TjAk−86400∗ (Xi−j−Yi−j;k−(k+1) +Yi−j;(k+1)−(k+2)−1)+RTi <= 0;
(8.2) TjAk−TiAk−86400∗ (Xi−j−Yi−j;k−(k+1) +Yi−j;(k+1)−(k+2)−2)+RTj <= 0;
/Binary Constraints
Xi−j ; ∀i = 1..n,∀j = 1..m
Yi−j;k−(k+1); ∀i = 1..n,∀j = 1..m,∀k = 1..r

Model 1: Formal Mathematical Model of the Railway Scheduling
Problem.

6. Evaluation of COH
In this section, we compare the performance of COH with some well-

known CSP solvers: Chronological Backtracking (BT), Generate&Test
(GT), Forward Checking (FC) and Real Full Look Ahead (RFLA) im-
plemented in a tool called CON’FLEX 2, because they are the most
appropriate techniques for observing the number of constraint checks.

As we have pointed out in introduction determining which algorithms
are superior to others remains difficult. Algorithms and heuristics have
often been compared by observing their performance on benchmark
problems, such as the n-queens puzzle, or on suites of random instances
generated from a simple, uniform distribution. The advantage of using a
benchmark problem is that if it is an interesting problem (to someone),
then information about which algorithm works well on it is also interest-
ing. The drawback is that if an algorithm beats to any other algorithm
on a single benchmark problem, it is hard to extrapolate from this fact.
An advantage of using random problems is that there are many of them,
and researchers can design carefully controlled experiments and report
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averages and other statistics. A drawback of random problems is that
they may not reflect real life situations.

This empirical evaluation was carried out with both different types of
problems: benchmark problems and random problems. Here, we mainly
analyzed the number of constraints checks as a measure of efficiency. In
many cases, the number of variables, the domain size and the number
of constraints is low to analyze the number of constraint check or the
number of constraint check saving.

Benchmark problems
The n-queens problem is a classical search problem to analyse the

behaviour of algorithms. In previous section, the 4-queens problem was
internally studied.

The 4-queens problem is the simplest instance of the n-queens problem
with solutions. The problem is to place four queens on a 4×4 chessboard
so that no two queens can capture each other. That is, no two queens
are allowed to be placed on the same row, the same column, or the same
diagonal. In the general n-queens problem, a set of n queens is to be
placed on an n× n chessboard so that no two queens attack each other.

In Table 2, we present the amount of constraint check saving in the n-
queens problem using Generate and Test with COH (GT+COH), Back-
tracking with COH (BT+COH), Forward Checking with COH (FC+COH)
and Real Full Look Ahead with COH (RFLA+COH). Here, our objec-
tive is to find all solutions. The results are proportionally extended up
to 200 queens. The results show that the amount of constraint check
saving was significant in GT+COH and BT+COH due to the fact that
COH classified the constraints in the appropriate order, so that the tight-
est constraints were checked first, and inconsistent tuples were discarded
earlier. Furthermore, the amount of constraint check saving was also sig-
nificant in FC+COH and RFLA+COH in spite of being more powerful
algorithms than BT and GT.

France and Thornley, in [11], present a benchmark about a continuous
optimization problem (see Figure 6). BT+COH needed 199 constraints
checks to solve the problem, while BT needed 340 constraints checks.

In this section, we also compare the performance of COH inserted in
one of our heuristics for filtering railway optimization problems. To this
end, the size of the sample was s(n, d, e) = n2, where n was the number
of trains in each direction. These problems were finally solved using
well-known tools such as CPLEX and LINGO.

This empirical evaluation was carried out on a real railway infrastruc-
ture that joins two important Spanish cities (”La Coruña” and ”Vigo”).
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The journey between these two cities is currently divided by 40 stops
between stations (23) and halts (17).

In this empirical evaluation, each set of instances was defined by the
3-tuple < n, s, f >, where n was the number of trains in each direction,
s the number of stations/halts and f the frequency. The problems were
generated by modifying these parameters. Thus, each part of the table
shown sets two of the parameters and varies the other one in order to
evaluate the algorithm performance when this parameter increases. It
must be taken into account that runtime of the form ”> xh.” represents
that the problem did not finish in x hours and the best solution found
up to date is presented in the journey time column.

Heuristic 1 is also called complete. This heuristic carries out a filtering
over the set of constraints from the formal mathematical model presented
in Model 1. Many constraints of type (6) (7) and (8) can be removed
according to their departure times and maximum slacks. If a train going
in the down direction arrives at the destination before a train going in the
up direction departs, then both trains will not cross each other. Thus,
a huge number of constraints and integer variables we can eliminated.

Heuristic 2 is a metaheuristic based on heuristic 1. This heuristic car-
ries out a search over the binary variables. Once many integer variables
have been removed by heuristic 1, a new filtering process on the reduced
problem can eliminate other integer variables by means of local search.
Instead of assigning a random station as a crossing station between two
opposite trains, heuristic 2 performs a linearized execution where the
integer variables have been transformed into continues ones. Thus, the
crossing between two trains may not be assigned in stations but on a
track between two stations. This will be the initial point to start the
search to find the station where the crossing will finally be performed.

Heuristic 2+COH is a similar version of Heuristic 2. Heuristic 2+COH
separates the original formulation (MIP problem) into two different sub-
problems: First, the crossings are solved and then the running maps are
calculated. Thus, the problem constraints are classified so that most
restricted constraints are studied first. Furthermore, the study of cross-
ings will be partitioned into a set of subproblems so that the solution
of each subproblem will generate a traffic pattern. The partition is car-
ried out through the stations that take part in the running map. Each
block of the partition is composed by contiguous stations so that each
traffic pattern represents the running map corresponding to each block
of stations.

In Table 3 (a), we present the runtime and the journey time in prob-
lems where the number of trains was increased from 5 to 75, and the
number of stations/halts and the frequency were set at 40 and 90, respec-
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tively: < n, 40, 90 >. The results show as the number of trains increased,
the runtime of heuristic 1 and 2 (without COH) was worse. Heuristic
1 obtained the optimal solution for 5,10,15 and 20 trains. However for
50 and 75 trains, heuristic 1 was aborted in 5 hours and the best solu-
tions are similar than obtained by heuristic 2+COH. However heuristic
2+COH had a lower runtime, due to COH classified the tightest con-
straints first (with integer variables). This heuristic is independent of
the number of trains due to symmetry. Figure 7 shows the system in-
terface executing our heuristic 2+COH with the instance < 10, 40, 90 >.
The first window shows the user parameters, the second window presents
the best solution obtained at that point, the third window presents data
about the best solution found, and finally the last window shows the
obtained running map.

Table 3 (b) shows the runtime and the journey time in problems
where the number of stations was increased from 10 to 60, and the
number of trains and the frequency were set at 10 and 90, respectively:
< 10, s, 90 >. In this case, only stations were included to analyze the
behavior of the techniques. It can be observed that heuristic 2+COH
was better than the others obtaining optimal solutions for 10,20 and 40
stations and better solutions for 30 and 60 stations. Up to 30 stations
heuristic 2 had better behaviour than heuristic 1 (complete heuristic). It
is important to note the difference between the instance < 10, 40, 90 >
of the Table 3 (a) and the instance < 10, 40, 90 > in Table 3 (b). They
represent the same instance; however in Table 3 (b) we only used sta-
tions (no halts, where crossing is not possible), so the number of possible
crossing between trains was much larger. This item reduced the journey
time from 2:22:08 to 2:20:22, but the number of combinations increased
the running time from 3” to 6”.

In Table 3 (c), we present the runtime and the journey time in prob-
lems where the frequency was decreased from 140 to 60 and the number
of trains and the number of stations were set at 20 and 40, respectively:
< 20, 40, f >. As the frequency decreased, the process solving become
harder. The quality of the solutions depends mainly of the network
topology. For this reason, heuristic 2+COH obtained better journey
times with frequencies of 100 and 75 minutes, and worse journey time
with other frequencies but in lower runtime.

In general, Heuristic 2+COH had good journey times in a reduced
runtime over many instances of Table 3. This is, due to, COH has
identified the bottlenecks of the problem by the constrainedness of the
problem. Once, the bottlenecks have been solved, the problem is easily
solved.
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Random problems
As we pointed out, benchmark sets are used to test algorithms for

specific problems, but in recent years, there has been a growing interest
in the study of the relation among the parameters that define an instance
of CSP in general (i.e., the number of variables, domain size and arity
of constraints). Therefore, the notion of randomly generated CSPs has
been introduced to describe the classes of CSPs. These classes are then
studied using empirical methods.

In this case, each set of random constraint satisfaction problems was
defined by the 3-tuple < n, c, d >, where n was the number of variables,
c the number of constraints and d the domain size. The problems were
randomly generated by modifying these parameters. We considered all
constraints as global constraints, that is, all constraints had maximum
arity in order to analyze deeper the amount of constraint checks. As
in the previous evaluation, each of the tables shown sets two of the
parameters and varies the other one in order to evaluate the algorithm
performance when this parameter increases. We evaluated 100 test cases
for each type of problem and each value of the variable parameter.

Table 4 presents an evaluation of our parameter τ that measures the
constrainedness of the random instance. Thus, we can evaluate our es-
timator with the real one in order to obtain the percentage of error.
Thus, Table 4 presents the average real constrainedness by obtaining all
solutions, our estimator τ choosing a sample of s(n, d, e) = 7n2 states,
the number of possible states, the average number of possible solutions,
the average number of estimate solutions using τ and the error percent-
age. For example in problems with 5 variables, each with 5 possible
values and 5 constraints < 5, 5, 5 >, the number of possible states is
dn = 55 = 3125, the average number of solutions is 125, so the actual
constrainedness is 0.04. With a sample of 7n2 = 175 states, we obtain
an average number of 6.64 solutions. Thus, our parameter τ = 0.038
and the number of estimate solutions of the entire problem is 118.7. In
this way, the error percentage is only 0.2%.

Following, in tables 5, 6, 7 and 8, we study the constraints checking
by selecting a sample of s(n, d, e) = n · d random states.

In Table 5, we present the number of constraint checks in problems
solved with BT and BT+COH, where the number of constraints was
increased from 3 to 15 and the number of variables and the domain size
were set at 3 and 20, respectively: < 3, c, 20 >. The results show that
the number of constraint checks was significantly reduced in BT+COH
in consistent problems (S) as well as in non-consistent problems (F). It
must be taken into account that BT must check 138915 constraints in
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non-consistent (F) problems with 15 constraints, while BT+COH must
only check 9761, due to the tightest constraints remained the problem
non-consistent.

In Table 6, we present the number of constraint checks in problems
where the number of constraints was increased from 3 to 15 and the num-
ber of variables and the domain size were set at 5 and 10, respectively:
< 5, c, 10 >. In this case the arc-consistency filtering algorithm was
applied before BT and BT+COH in order to observe the behaviour of
COH in previously filtered problems. Therefore, this table presents the
evaluation of BT-AC and BT-AC+COH. In this case, we only present
the consistent problems, because most of the non-consistent problems
were detected by the arc-consistency algorithm. The results show that
the number of constraint checks were reduced in all cases.

In Table 7, we present the number of constraint checks in problems,
solved with BT and BT+COH, where the domain size was increased
from 5 to 35 and the number of variables and the number of constraints
were set at 3 and 5, respectively: < 3, 5, d >. As the size of the domain
increased, the number of constraint checks also increased in consistent
problems (S) as well as in non-consistent problems (F).

Finally, in Table 8, we present the evaluation of BT-AC and BT-
AC+COH in problems where the domain size was increased from 5 to
35 and the number of variables and the number of constraints were set
at 3 and 5 respectively: < 3, 5, d >. As in the above tables, the number
of constraint checks was reduced when COH classified the constraints.

7. Conclusion and future work
In this paper, we present a heuristic technique called Constraint Or-

dering Heuristic (COH) that can be applied to any backtracking-based
search algorithm to solve real problems. This heuristic studies the con-
strainedness of the problem and mainly classifies the constraints so that
the tightest ones are studied first. Thus, inconsistent tuples can be found
earlier with the corresponding savings in constraint checking. Also, hard
problems can be solved more efficiently overall in problems where many
(or all) solutions are required. Furthermore, this heuristic technique has
also been modelled by a multi-agent system [23] in which agents are
committed to solve their own subproblems.

For future work, we are working on a combination of COH with a
variable ordering heuristic in order to manage efficiently more complex
problems.
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Notes
1. More information can be found in http://www.dsic.upv.es/users/ia/gps/MOM

2. Backtracking, Generate and Test, Forward Checking and Real Full Look Ahead were
obtained from CON’FLEX, which is a C++ solver that can handle non-binary constraint
with discrete and continuous domains. It can be found in: http://www-bia.inra.fr/T/conflex/
Logiciels/adressesConflex.html.
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Figure Captions:
Figure 1: Constraint Ordering
Figure 2: The Yamane’s simplified formula for proportions in the 4-

queens problem.
Figure 3: From non-ordered constraint to ordered constraint.
Figure 4: Constraint Ordering Heuristic using HSA.
Figure 5: 4-queens Problem with Constraint Ordering Heuristic.
Figure 6: A continuous optimization problem solved using BT and

BT+COH.
Figure 7: System Interface solving and plotting instance <10,40,90>.
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Figure 2. The Yamane’s simplified formula for proportions in the 4-queens problem.
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Figure 7. System Interface solving and plotting instance <10,40,90>.
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Table 1. Number of constraint checks using Backtracking (BT) and Backtracking
with COH (BT+COH)

Backtracking Backtracking+COH

instantiations c1 c2 c3 c1 c2 c3

(0, 0) checked checked checked - - checked
(0, 1) checked checked checked - - checked
(0, 2) checked checked checked - - checked
(0, 3) checked checked checked - - checked
(0, 4) checked checked checked checked checked checked

(0, 4) Solution Solution
... checked checked checked checked

Table 2. Number of constraint check saving using our model with GT , BT, FC and
RFLA in the n-queens problem.

GT+COH BT+COH FC+COH RFLA+COH

queens Constraint Constraint Constraint Constraint
Check Saving Check Saving Check Saving Check Saving

5 2.1× 104 2.4× 102 150 110
10 4.1× 1011 3.9× 107 1.4× 105 9.3× 104

20 1.9× 1026 3.6× 1018 9.6× 1014 6.03× 1011

50 2.4× 1070 3.6× 1052 3.1× 1044 1.6× 1032

100 2.1× 10143 2.1× 10106 4.5× 1093 1.8× 1066

150 5.2× 10219 3.7× 10161 6.8× 10142 2.1× 10100

200 9.4× 10295 8.7× 10219 9.9× 10198 2.2× 10134
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Table 3. Runtime and journey time in different problem instances.

CPLEX LINGO TOPOLOGICAL

(a) < n,40,90> Heuristic 1 Heuristic 2 Heuristic 2 Heuristic 2+COH

Trains runtime journey runtime journey runtime journey runtime journey
time time time time

5 6” 2:19:48 4” 2:29:33 6” 2:30:54 2” 2:21:54
10 337” 2:20:19 8” 2:26:04 12” 2:31:37 3” 2:22:08
15 601” 2:20:29 12” 2:26:18 19” 2:31:51 3” 2:22:08
20 1065” 2:20:34 16” 2:26:25 25” 2:31:58 3” 2:22:08
50 > 5h. 2:20:43 43” 2:31:09 1098” 2:32:11 7” 2:22:08
75 > 5h. 2:22:04 > 1h. 2:32:14 1590” 2:32:14 11” 2:22:08

(b) <10,s,90>

10 3” 0:25:06 2” 0:25:06 4” 0:25:06 1” 0:25:06
20 303” 1:04:11 5” 1:04:11 8” 1:04:11 2” 1:04:11
30 > 1h. 1:45:38 6” 1:45:08 14” 1:45:38 3” 1:45:08
40 2131” 2:20:10 56” 2:23:36 21” 2:24:36 6” 2:20:22
60 > 3h. 3:33:15 217” 3:39:30 180” 3:40:30 15” 3:30:58

(c) <20,40,f >

140 15” 2:16:19 15” 2:20:18 24” 2:16:19 4” 2:18:35
120 156” 2:16:17 14” 2:16:17 23” 2:18:47 4” 2:18:55
100 > 5h. 2:22:55 15” 2:23:10 28” 2:22:55 4” 2:19:09
90 1065” 2:20:34 15” 2:26:25 28” 2:31:58 4” 2:22:08
75 > 1h. 2:29:18 > 1h. - 25” 2:24:16 6” 2:23:30
60 > 1h. 2:21:23 > 1h. - > 1h. - 46” 2:32:11

Table 4. Random instances < n, c, d >, n:variables, c:constraints and d :domain size

Problems real cons- Parameter Number of Number of Number of %
trainedness τ States Solutions Estimated Sol. Error

< 3, 5, 5 > 0.09 0.07 125 11.2 8.7 2%
< 3, 5, 10 > 0.05 0.043 1000 50 43 0.7%
< 3, 10, 5 > 0.024 0.013 125 3 1.6 1.12%
< 5, 5, 5 > 0.04 0.038 3125 125 118.7 0.2%
< 5, 10, 5 > 0.008 0.01 3125 25 31.2 0.19%
< 5, 10, 10 > 0.0045 0.0034 100000 453 340 0.1%
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Table 5. Number of constraint checks in problems < 3, c, 20 >

Backtracking Backtracking+COH

problems Result constraint checks constraint checks

< 3, 3, 20 > S 5190.5 1832.1
< 3, 3, 20 > F 27783 9761

< 3, 5, 20 > S 12902.9 2990.8
< 3, 5, 20 > F 46305 9761

< 3, 7, 20 > S 21408.3 3253.2
< 3, 7, 20 > F 64827 9761

< 3, 9, 20 > S 32423.8 4256.5
< 3, 9, 20 > F 83349 9761

< 3, 11, 20 > S 44452.4 4214.3
< 3, 11, 20 > F 101871 9761

< 3, 13, 20 > S 52339.2 4938.5
< 3, 13, 20 > F 120393 9761

< 3, 15, 20 > S 60352.9 5250.7
< 3, 15, 20 > F 138915 9761

Table 6. Number of constraint checks in consistent problems using backtracking fil-
tered with arc-consistency

Backtracking-AC Backtracking-AC+COH

problems Result constraint checks constraint checks

< 5, 3, 10 > S 2275.5 798.5
< 5, 5, 10 > S 14226.3 2975.2
< 5, 7, 10 > S 35537.4 5236.7
< 5, 9, 10 > S 50315.7 5695.5
< 5, 11, 10 > S 65334 5996.3
< 5, 13, 10 > S 80384 6283.5
< 5, 15, 10 > S 127342 8598.6
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Table 7. Number of constraint checks in problems < 3, 5, d >

Backtracking Backtracking+COH

problems Result constraint checks constraint checks

< 3, 5, 5 > S 244.1 55.82
< 3, 3, 5 > F 1080 236

< 3, 5, 10 > S 2544.2 527.8
< 3, 5, 10 > F 6655 1324

< 3, 5, 15 > S 6947.2 1489.4
< 3, 5, 15 > F 20480 4286

< 3, 5, 20 > S 12260.3 2642.1
< 3, 5, 20 > F 46305 10143

< 3, 5, 25 > S 16835.1 3567.1
< 3, 5, 25 > F 87880 17876

< 3, 5, 30 > S 29608.6 5984.1
< 3, 5, 30 > F 148955 29911

< 3, 5, 35 > S 40384.7 8276.9
< 3, 5, 35 > F 233280 46856

Table 8. Number of constraint checks in consistent problems with backtracking fil-
tered with arc-consistency

Backtracking-AC Backtracking-AC+COH

problems Result constraint checks constraint checks

< 3, 5, 5 > S 93.9 32.7
< 3, 5, 10 > S 180.3 63.06
< 3, 5, 15 > S 241.3 86.26
< 3, 5, 20 > S 320.5 105.1
< 3, 5, 25 > S 419.8 143.9
< 3, 5, 30 > S 514.6 175.9
< 3, 5, 35 > S 655.4 215.1


