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Abstract. Concurrent languages allow us to specify and simulate com-
plex systems where many individual components run in parallel and
communicate via message passing and synchronizations. However, these
systems often pose additional difficulties to their comprehension and de-
velopment due to the complexity imposed by the non-deterministic exe-
cution order of processes and to the restrictions imposed on this order by
synchronizations. Two of the most extended used languages of this kind
are CSP and Petri nets. Both models have been successfully used in the
industry and many verification, simulation and analysis techniques exist
for them. While CSP is very expressive and many techniques devoted to
verify CSP specifications exist, Petri nets are specially interesting for sim-
ulation because they allow us to graphically animate specifications step
by step. In this work, we formally define a transformation that allows us
to automatically transform a CSP specification into an equivalent Petri
net. This is the first approach that generates the Petri net as a side-effect
of an instrumented semantics. The main advantage of this new approach
is that the Petri net generated is very similar (structurally) to the CSP
specification.

Keywords: Concurrent programming, Semantics, CSP, Petri nets.

1 Introduction

The increasing complexity of distributed and multiprocessor systems is making
the industry to invest in concurrent languages that allow us to model many het-
erogeneous components able to interact in parallel and that can be automatically
verified thanks to the development of modern techniques for the analysis and
verification of such languages.

Two of the most important concurrent languages are the Communicating
Sequential Processes (CSP) [5, 14] and the Petri nets [11, 13]. CSP is a very ex-
pressive process algebra with a big collection of tools for the specification and
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verification of complex systems. In fact, CSP is currently one of the most ex-
tended concurrent languages and it is being successfully used in many industrial
projects. Complementarily, Petri nets are particularly useful for the simulation
and animation of concurrent specifications. They can be used to graphically an-
imate a specification and observe the synchronization of components step by
step.

In this work we define a fully automatic transformation that allows us to
transform a CSP specification into an equivalent Petri net (i.e., the sequences of
observable events produced are exactly the same). This result is very interesting
because it allows CSP developers not only to graphically animate their specifi-
cations through the use of the equivalent Petri net, but it also allows them to
use all the tools and analysis techniques developed for Petri nets.

Our transformation is based on an instrumentation of the CSP’s operational
semantics. Roughly speaking, we define an algorithm that explores all computa-
tions of a CSP specification by using the instrumented semantics. The execution
of the semantics produces as a side-effect the Petri net associated to each com-
putation, and thus the final Petri net is produced incrementally.

The rest of the paper has been organized as follows. Section 2 overviews
previous approaches to the transformation of CSP into Petri nets. In Section 3
we recall CSP and Petri nets. Section 4 presents an algorithm able to generate
a Petri net equivalent to a given CSP specification. To obtain the Petri net, the
algorithm uses an instrumentation of the standard operational semantics of CSP
which is also introduced in this section. Finally, Section 5 concludes.

2 Related work

The transformation of CSP to Petri nets is an old objective of the community of
concurrent programming languages. It not only has a clear practical utility, but
it also has a wide theoretical interest because both concurrent models are very
different, and establishing relations between them allows us to extend results
from one model to the other. However, the problem of transforming a CSP spec-
ification into an equivalent Petri net is complex due to the big differences that
exist between both formalisms. For this reason, many of the previous approaches
have been criticized because it is hardly possible to see a relation between the
generated Petri net and the CSP specification (i.e., when a transition of the Petri
net is fired, it is not even clear to what CSP process corresponds this transition).
In this respect, the transformation presented here is particularly interesting be-
cause the Petri net is generated directly from the operational semantics in such
a way that each syntactic element of the CSP specification has a representation
in the Petri net. Hence, it is very easy to map the animation of the Petri net to
the CSP specification.

There are two major research lines aimed at transforming CSP to Petri nets.
The first line is based on traces describing the behaviour of the system. In [9],
starting from a trace-based representation of the behaviour of the system, ac-
cording to a subset of the Hoare’s theory where no sequential composition with
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recursion is allowed, a Stochastic Petri net model is built in a modular and sys-
tematic way. The overall model is built by modelling the system’s components
individually, and then putting them together by means of superposition. The
second line of research includes all methodologies that translate CSP specifica-
tions into Petri nets. One of the first works translating CSP to Petri nets was
[1], where distributed termination is assumed but nesting of parallel commands
is not allowed. In [3], a CSP-like language is considered and translated into a
subclass of Pr/T nets with individual tokens, where neither nesting of parallel
commands is allowed nor distributed termination is taken into account. Other
papers in this area are [12] that considers a subset of CCSP (the union of Mil-
ner’s CCS[10] and Hoare’s CSP[5]), and [2] which provides full CSP with a truly
concurrent and distributed operational semantics based on C/E Systems. There
are also some works [15, 8] that translate the CSP specifications into Stochastic
or Timed Petri nets in order to perform real-time analysis and performance eval-
uation. As in our work, all these papers do not allow recursion of nested parallel
processes because the set of places of the generated Petri net would be infinite.
In some way, our new semantics-based approach opens a third line of research
where the transformation is directed by the semantics.

3 CSP and Petri nets

3.1 The syntax and semantics of CSP

In order to make the paper self-contained, this section recalls CSP’s syntax and
semantics. For concretion, and to facilitate the understanding of the following
definitions and algorithm, we have selected a subset of CSP that is sufficiently
expressive to illustrate the method, and it contains the most important operators
that produce the challenging problems such as deadlocks, non-determinism and
parallel execution.

Domains : M, N . . . ∈ Names P, Q . . . ∈ Procs a, b . . . ∈ Σ
(Process names) (Processes) (Events)

S ::= D1 . . . Dm (Entire specification)
D ::= N = P (Process definition)
P ::= M | a → P | P u Q | P 2 Q | P ||

X⊆Σ

Q | STOP

Fig. 1. Syntax of CSP specifications

Figure 1 summarizes the syntax constructions used in CSP [5] specifications.
A specification is a finite collection of definitions. The left-hand side of each
definition is the name of a different process, which is defined in the right-hand
side (abbrev. rhs) by means of an expression that can be a call to another process
or a combination of the following operators:
Prefixing (a → P ) Event a must happen before process P .
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Internal choice (P u Q) The system (e.g., non-deterministically) chooses to
execute one of the two processes P or Q.
External choice (P 2 Q) It is identic to internal choice but the choice comes
from outside the system (e.g., the user).
Synchronized parallelism (P ||

X⊆Σ

Q) Both processes are executed in parallel

with a set X of synchronized events. In absence of synchronizations both pro-
cesses can execute in any order. Whenever a synchronized event a ∈ X happens
in one of the processes, it must also happen in the other at the same time. When-
ever the set of synchronized events is not specified, it is assumed that processes
are synchronized in all common events. A particular case of parallel execution is
interleaving (represented by |||) where no synchronizations exist (i.e., X = ∅).
Stop (STOP ) Synonym of deadlock: It finishes the current process.

Example 1. The following simple CSP specification represents an astronaut that
gets a medal from NASA if she succeeds in a space mission:

MAIN = (ASTRONAUT ‖
{success}

NASA)

ASTRONAUT = mission→ MISSION

MISSION = (fail→ STOP) 2 (success→ STOP)
NASA = success→ medal→ STOP

We now recall the standard operational semantics of CSP as defined by
Roscoe [14]. It is presented in Fig. 2 as a logical inference system. A state
of the semantics is a process to be evaluated called the control. In the follow-
ing, wlog we assume that the system starts with an initial state MAIN, and the
rules of the semantics are used to infer how this state evolves. When no rules
can be applied to the current state, the computation finishes. The rules of the
semantics change the states of the computation due to the occurrence of events.
The set of possible events is Στ = Σ ∪ {τ}. Events in Σ are visible from the
external environment, and can only happen with its co-operation (e.g., actions
of the user). Event τ is an internal event that cannot be observed from outside
the system and it happens automatically as defined by the semantics.

In order to perform computations, we construct an initial state and (non-
deterministically) apply the rules of Fig. 2. Their intuitive meaning is the fol-
lowing: (Process Call) The call to process N is unfolded and rhs(N) is added to
the control.
(Prefixing) When event a occurs, process P is added to the control.
(Internal Choice 1 and 2) The system (non-deterministically), with the occurrence
of τ , selects one of the two processes P or Q which is added to the control.
(External Choice 1, 2, 3 and 4) The occurrence of τ develops one of the processes.
The occurrence of an event e ∈ Σ is used to select one of the two processes P
or Q and the control changes according to the event.
(Synchronized Parallelism 1 and 2) When a non-synchronized event happens, one
of the two processes P or Q evolves accordingly.
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(Process Call) (Prefixing) (Internal Choice 1) (Internal Choice 2)

N
τ−→ rhs(N) (a → P )

a−→ P (P uQ)
τ−→ P (P uQ)

τ−→ Q

(External Choice 1) (External Choice 2) (External Choice 3) (External Choice 4)

P
τ−→ P ′

(P ¤ Q)
τ−→ (P ′ ¤ Q)

Q
τ−→ Q′

(P ¤ Q)
τ−→ (P ¤ Q′)

P
e−→ P ′

(P ¤ Q)
e−→ P ′

e ∈ Σ
Q

e−→ Q′

(P ¤ Q)
e−→ Q′

e ∈ Σ

(Synchronized Parallelism 1) (Synchronized Parallelism 2) (Synchronized Parallelism 3)

P
e−→ P ′

(P ||
X

Q)
e−→ (P ′ ||

X

Q)
e ∈ Στ\X Q

e−→ Q′

(P ||
X

Q)
e−→ (P ||

X

Q′)
e ∈ Στ\X P

e−→ P ′ Q
e−→ Q′

(P ||
X

Q)
e−→ (P ′ ||

X

Q′)
e ∈ X

Fig. 2. CSP’s operational semantics

(Synchronized Parallelism 3) When a synchronized event (e ∈ X) happens, it is
required that both processes synchronize; P and Q are executed at the same
time and the control becomes P ′ ||

X

Q′.

3.2 Labeled Petri nets

In this section, we recall some basic concepts of Petri nets needed along the
paper:

Definition 1. (Petri Net) A Petri net [11, 13] is a tuple N = (P, T, F ), where
P is a finite set of places, T is a finite set of transitions, such that P ∩ T = ∅
and P ∪T 6= ∅ and F is a finite set of weighted arcs representing the flow relation
F : P × T ∪ T × P → N. A marking of a Petri net is a function M : P → N.
A marked Petri net is a pair (N, M0) where M0 is a marking of the Petri net
called an initial marking.

Definition 2. (Labeled Petri Net) A labeled Petri net [4, 11, 13] is a 6-tuple
N = (〈P, T, F 〉,M0,P, T ,LP ,LT ), where 〈P, T, F 〉 is a Petri net, M0 is the
initial marking, P is a place alphabet, T is a transition alphabet, LP is a
labeling function LP : P → P and LT is a labeling function LT : T → T .

In the following, we will use labeled ordinary Petri nets where all of its arc
weights are 1, LP is a partial function and LT is a total function. The notion of
firing sequence is used in the paper according to the generally accepted definition
[4, 11, 13]. For the sake of concreteness, we often use the notation pα (tβ) to
denote the place p (transition t) whose label is α ∈ P (β ∈ T ), i.e., LP (p) = α
(LT (t) = β); or also to assign label α (β) to place p (transition t).

An example of Petri net is drawn in Fig. 3.
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 τ
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Fig. 3. PN associated to the specification of Example 1

4 An algorithm to transform CSP to Petri nets

This section introduces an algorithm able to generate a Petri net that produces
the same sequences1 of visible events as a given CSP specification. The algorithm
uses an instrumented operational semantics of CSP which (i) generates as a side-
effect a Petri net associated to the computation performed with the semantics;
(ii) it controls that no infinite loops are executed; and (iii) it ensures that the
execution is deterministic.

Algorithm 1 controls that the semantics is executed repeatedly in order
to deterministically execute all possible computations—of the original (non-
deterministic) specification—and the Petri net is constructed incrementally with
each execution of the semantics. The key point of the algorithm is the use of a
stack that records the actions that can be performed by the semantics. In partic-
ular, the stack contains tuples of the form (rule, rules) where rule indicates the
rule that must be selected by the semantics in the next execution step, and rules
is a set with the other possible rules that can be selected. The algorithm uses the
stack to prepare each execution of the semantics indicating the rules that must
be applied at each step. For this, function UpdStack is used; it basically avoids to
repeat the same computation with the semantics. When the semantics finishes,
the algorithm prepares a new execution of the semantics with an updated stack.
This is repeated until all possible computations are explored (i.e., until the stack
is empty).

The semantics in Fig. 2 can be non-terminating due to infinite computations.
Therefore, the instrumentation of the semantics incorporates a loop-checking
mechanism to ensure termination.

The instrumented semantics used by Algorithm 1 is shown in Fig. 4. It is an
operational semantics where a state is a tuple (P, p,N , C, (S, S0),∆), where P is
the process to be evaluated (the control), p is the last place added to the Petri
net N , C is the set of already performed process calls and it is used to avoid
infinite unfolding of the same process. (S, S0) is a tuple with two stacks (where
the empty stack is denoted by []) that contains the rules to apply and the rules
applied so far, and ∆ is a set of references used to draw synchronizations in N .
The basic idea of the Petri net construction is to generate the Petri net associated
1 In CSP terminology, these sequences are the so-called traces (see, e.g., chapter 8.2

of [14]). In Petri nets they correspond to transition firing sequences (see, e.g., [11]).
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Algorithm 1 General Algorithm
Build the initial state of the semantics: state = (MAIN, p0,N , ∅, ([], []), ∅)
where N = (〈{p0}, ∅, ∅〉, M0,P, T ,LP ,LT ), M0(p0) = 1, P = Names ∪ {2},
T = Στ ∪ {‖, C1, C2}.
repeat

repeat
Run the rules of the semantics with the state state

until no more rules can be applied
Get the new state state = ( , ,N , , ([], S0), )
state=(MAIN, p0,N , ∅, (UpdStack(S0), []), ∅)

until UpdStack(S0) = []
return N
where function UpdStack is defined as follows:

UpdStack(S) =





(rule, rules\{rule}) : S′ if S = ( , rules) : S′ and rule ∈ rules
UpdStack(S′) if S = ( , ∅) : S′

[] if S = []

to the current control and connect this net to the last place added to N . The set
C is called the context. It is a collection of the already evaluated process calls
and is used as a loop-checking mechanism to avoid infinite unfolding. C is a set
of pairs (P ′, p′) where P ′ is a process name that is represented in the Petri net
with the place p′.

Given a labeled Petri net N = (〈P, T, F 〉,M,P, T ,LP ,LT ) and the current
reference p ∈ P , we use the notation N [p 7→ ta 7→ p′] either as a condition
on N (i.e., N contains transition ta), or also to introduce a transition t and a
place p′ into N producing the net N ′ = (〈P ′, T ′, F ′〉,M ′,P, T ,LP ,LT ) where
P ′ = P ∪ {p′}, T ′ = T ∪ {ta}, F ′ = F ∪ {(p, ta), (ta, p′)}, ∀p ∈ P : M ′(p) =
M(p) ∧M ′(p′) = 0 and LT (ta) = a where a ∈ T .

An explanation for each rule of the semantics follows:
(Process Call) This rule basically decides whether process P must be unfolded
or not. This is done with function LoopCheck. If the process has been previously
unfolded (thus, C must contain a pair (P, )), then we are in a loop, and P
is marked as a loop with the special symbol ª. This label is later used by
rule (Synchronized Parallelism 4) to decide whether the process should be unfolded
again. If P has not been previously unfolded, then rhs(P ) becomes the new
control. Observe that the new Petri net N ′ contains a place pP that represents
the process call and a transition tτ that represents the occurrence of event τ . No
event can synchronize in this rule, thus ∆ is empty.

Function LoopCheck, used to prevent infinite unfolding, is defined below.

LoopCheck(P, p,N,C)=
{
(ª(P ), p′′,N ′∪{t 7→p′|(P, p′)∈C ∧ t 7→p∈N}) if ∃(P, )∈C
(rhs(P ), p′′,N ′) otherwise

where N ′ = N [pP 7→ tτ 7→ p′′].
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(Process Call)

(P, p,N , C, (S, S0), )
τ−→ (P ′, p′,N ′, {(P, p′)} ∪ C, (S, S0), ∅)

(P ′, p′,N ′) = LoopCheck(P, p,N , C)

(Prefixing)

(a → P, p,N , C, (S, S0), )
a−→ (P, p′,N [p 7→ ta 7→ p′], C, (S, S0), {(p, ta, p′)})

(Choice)

(P2Q, p,N , C, (S, S0), )
τ−→ (P ′, p′,N ′, C, (S′, S′0), ∅)

(P ′, p′,N ′, (S′, S′0)) = SelectBranch(P2Q, p,N , (S, S0))

(Synchronized Parallelism 1)

(P1, p′1,N ′, C′1, (S′, (SP1, rules) : S0), )
e−→ (P ′, p′′1 ,N ′′, C′′1 , (S′′, S′0), ∆)

(P1‖
X

labP2, p,N , C, (S′ : (SP1, rules), S0), )
e−→ (P ′ ‖

X
lab′P2, p,N ′′, C, (S′′, S′0), ∆)

e ∈ Στ\X

(N ′, p′1, C′1, p′2, C′2) = InitBranches(N , p1, C1, p2, C2, p, C)∧
lab = (p1, C1, p2, C2, Υ ) ∧ lab′ = (p′′1 , C′′1 , p′2, C′2, Υ )

(Synchronized Parallelism 2)

(P2, p′2,N ′, C′2, (S′, (SP2, rules) : S0), )
e−→ (P ′, p′′2 ,N ′′, C′′2 , (S′′, S′0), ∆)

(P1‖
X

labP2, p,N , C, (S′ : (SP2, rules), S0), )
e−→ (P1‖

X
lab′P ′, p,N ′′, C, (S′′, S′0), ∆)

e ∈ Στ\X

(N ′, p′1, C′1, p′2, C′2) = InitBranches(N , p1, C1, p2, C2, p, C)∧
lab = (p1, C1, p2, C2, Υ ) ∧ lab′ = (p′1, C′1, p′′2 , C′′2 , Υ )

(Synchronized Parallelism 3)
Left Right

(P1‖
X

labP2, p,N , C, (S′ : (SP3, rules), S0), )
e−→ (P1′ ‖

X
lab′P2′, p,Ns, C, (S′′′, S′′0 ), ∆)

e ∈ X

(N ′, p′1, C′1, p′2, C′2) = InitBranches(N , p1, C1, p2, C2, p, C) ∧
lab = (p1, C1, p2, C2, Υ ) ∧ lab′ = (p′′1 , C′′1 , p′′2 , C′′2 , •) ∧

Left = (P1, p′1,N ′, C′1, (S′, (SP3, rules) : S0), )
e−→ (P1′, p′′1 ,N ′′, C′′1 , (S′′, S′0), ∆1) ∧

Right = (P2, p′2,N ′′, C′2, (S′′, S′0), )
e−→ (P2′, p′′2 ,N ′′′, C′′2 , (S′′′, S′′0 ), ∆2) ∧

Ns = (N ′′′ ∪ {(p 7→ te 7→ p′) | (p, , p′) ∈ (∆1 ∪∆2)})\{(p 7→ t 7→ p′) | (p, t, p′) ∈ (∆1 ∪∆2)} ∧
∆ = {(p, te, p′) | (p, , p′) ∈ (∆1 ∪∆2)}
(Synchronized Parallelism 4)

(P1‖
X

(p1,C1,p2,C2,Υ )P2, p,N , C, (S′ : (SP4, rules), S0), )
τ−→ (P ′, p,N ′, C, (S′, (SP4, rules) : S0), ∅)

(P ′,N ′) = LoopControl(P1‖
X

(p1,C1,p2,C2,Υ )P2,N )

(Synchronized Parallelism 5)

(P1‖
X

(p1,C1,p2,C2,Υ )P2, p,N , C, ([(rule, rules)], S0), )
e−→ (P, p,N ′, C, (S′, S′0), ∆)

(P1‖
X

(p1,C1,p2,C2,Υ )P2, p,N , C, ([], S0), )
e−→ (P, p,N ′, C, (S′, S′0), ∆)

e ∈ Στ

rule ∈ AppRules(P1‖
X

P2) ∧ rules = AppRules(P1‖
X

P2)\{rule}

Fig. 4. An instrumented operational semantics that generates a Petri net

(Prefixing) This rule adds to N a transition ta that represents the occurrence of
event a. ta is connected to the current place p and to a new place p′. The new
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control is P . The new set ∆ contains the tuple (p, ta, p′) to indicate that event
a has occurred and it must be synchronized when required by (Synch. Parallelism

3).
(Choice) The only sources of non-determinism are choice operators (different
branches can be selected for execution) and parallel operators (different order
of branches can be selected for execution). Therefore, every time the semantics
executes a choice or a parallelism, they are made deterministic thanks to the
information in the stack S. In the case of choices, both internal and external can
be treated with a single rule. No event can synchronize in this rule, thus ∆ is
empty. Function SelectBranch is used to produce the new control P ′ and the
new tuple of stacks (S′, S′0), by selecting a branch with the information of the
stack. Note that, for simplicity, the lists constructor “:” has been overloaded,
and it is also used to build lists of the form (A : a) where A is a list and a is the
last element:

SelectBranch(P2Q, p,N , (S, S0)) =



(P, p′,N [p2 7→ tC1 7→ p′], (S′, (C1, {C2}) :S0)) if S = S′ : (C1, {C2})
(Q, p′,N [p2 7→ tC2 7→ p′], (S′, (C2, ∅) :S0)) if S = S′ : (C2, ∅)
(P, p′,N [p2 7→ tC1 7→ p′], ([], (C1, {C2}) :S0)) otherwise

If the last element of the stack S indicates that the first branch of the choice
(C1) must be selected, then P is the new control. If the second branch must be
selected (C2), the new control is Q. In any other case the stack is empty, and
thus this is the first time that this choice is evaluated. Then, we select the first
branch (P is the new control) and we add (C1, {C2}) to the stack S0 indicating
that C1 has been chosen, and the remaining option is C2. This function creates
a new transition for each branch (tC1 and tC2) that represents the τ event.
(Synchronized Parallelism 1 and 2) The stack determines what rule to use when
a parallelism operator is in the control. If the last element in the stack is SP1,
then (Synchronized Parallelism 1) is used. If it is SP2, (Synchronized Parallelism 2) is
used.

In a parallelism, both parallel processes can be intertwiningly executed until a
synchronized event is found. Therefore, places and transitions for both processes
can be added interweaved to the Petri net. Hence, the semantics needs to know
in every state the references to be used in both branches. This is done by labeling
parallelism operators with a tuple of the form (p1, C1, p2, C2, Υ ) where p1 and
p2 are respectively the last places added to the left and right branches of the
parallelism. C1 and C2 are the current contexts of the left and right branches
of the parallelism; and Υ is a place of the Petri net used to decide when to
unfold a process call (in order to avoid infinite loops). This tuple is initialized
to (•, ∅, •, ∅, •) for every parallelism that is introduced in the computation. The
set ∆ is passed down unchanged so that another rule can use it if necessary.
These rules develop the branches of the parallelism until they are finished or
until they must synchronize. They use function InitBranches to introduce the
parallelism into the Petri net the first time it is executed and only if it has not
been introduced in a previous computation.
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After executing function InitBranches, we get a new graph and new references
and contexts for each branch.

InitBranches(N , p1, C1, p2, C2, p, C) ={
(N [p 7→ t‖ 7→ p′1, p 7→ t‖ 7→ p′2], p

′
1, C, p′2, C) if p1 = •

(N , p1, C1, p2, C2) otherwise

Observe that the parallelism operator is represented in the Petri net with a
transition t‖. This transition is connected to two new places (p′1 and p′2), one for
each branch.
(Synchronized Parallelism 3) It is applied when the last element in the stack is
SP3. It is used to synchronize the parallel processes. In this rule, Υ is replaced by
•, meaning that a synchronization edge has been drawn and the loops could be
unfolded again if it is needed. All the events that have been executed in this step
must be synchronized. Therefore, all the events occurred in the subderivations
of P1 (∆1) and P2 (∆2) are mutually synchronized. Note that this is done in
the Petri net by removing the transitions that were added in each subderivation
({(p 7→ t 7→ p′) | (p, t, p′) ∈ (∆1 ∪∆2)}) and connecting all of them with a single
transition te.
(Synchronized Parallelism 4) This rule is applied when the last element in the stack
is SP4. It is used when none of the parallel processes can proceed (because they
already finished, deadlocked or were labeled withª). When a process is labeled
as a loop with ª, it can be unlabeled to unfold it once2 in order to allow the other
processes to continue. This happens when the looped process is in parallel with
other process and the later is waiting to synchronize with the former. In order
to perform the synchronization, both processes must continue, thus the loop is
unlabeled. This task is done by function LoopControl. It decides whether the
branches of the parallelism should be further unfolded or they should be stopped
(e.g., due to a deadlock or an infinite loop):

LoopControl(P ‖
X

(p1,C1,p2,C2,Υ )Q,N ) =




(ª(P ′ª ‖
X

(p′1,C′1,p′2,C′2,•)Q′ª),N ) if P ′= ª(P ′ª) ∧Q′= ª(Q′ª)

(ª(P ′ª ‖
X

(p′1,C′1,p′2,C′2,•)STOP),N ) if P ′= ª(P ′ª) ∧ (Q′=STOP ∨ (Q′ 6= ª( )∨Υ=p′2))

(P ′′ª ‖
X

(p′1,C′1,p′2,C′2,p′2)Q
′,N ′) if P ′= ª(P ′ª) ∧Q′ 6=STOP ∧Q′ 6= ª( ) ∧ Υ 6=p′2

∧ (P ′′ª,N ′)=DelEdges(P ′ª,N , p′1)

(STOP,N ) otherwise
where (P ′, p′1, C

′
1, Q

′, p′2, C
′
2) ∈ {(P, p1, C1, Q, p2, C2), (Q, p2, C2, P, p1, C1)}.

DelEdges(P,N , p) =



(P ′1 ‖
X

(p1,C1,p2,C2,Υ )P
′
2,N ′′) if P =P1 ‖

X
(p1,C1,p2,C2,Υ )P2∧

(P ′1,N ′)=DelEdges(P1,N , p1) ∧ (P ′2,N ′′)=DelEdges(P2,N ′, p2)

(rhs(P ),N\{t 7→ p′′ ∈ N|t 7→ p′ 7→ t′ 7→ p ∈ N ∧ p′′ 6= p′}) otherwise

2 Only once because it will be labeled again by rule (Process Call) when the loop is
repeated.
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When one of the branches has been labeled as a loop, there are three options:
(i) The other branch is also a loop. In this case, the whole parallelism is marked
as a loop, and Υ is put to •. (ii) Either it is a loop that has been unfolded
without drawing any synchronization (this is known because Υ is equal to the
reference of the other branch), or the other branch already terminated (i.e., it
is STOP). In this case, the parallelism is also marked as a loop, and the other
branch is put to STOP (this means that this process has been deadlocked). Also
here, Υ is put to •. (iii) If we are not in a loop, then we allow the parallelism
to proceed by unlabeling the looped branch. Here, function DelEdges is used
to unfold the looped process calls, and to remove the edges introduced by rule
(Process Call) that connect those process calls that were looped. In the rest of the
cases STOP is returned representing that this is a deadlock, and thus, stopping
further computations.
(Synchronized Parallelism 5) This rule is used when the stack is empty. It basically
analyzes the control and decides what are the applicable rules of the semantics.
This is done with function AppRules which returns the set of rules R that can
be applied to a synchronized parallelism P ‖

X

Q:

AppRules(P ‖
X

Q) =





{SP1} if τ ∈ FstEvs(P )
{SP2} if τ 6∈ FstEvs(P ) ∧ τ ∈ FstEvs(Q)
R if τ 6∈ FstEvs(P ) ∧ τ 6∈ FstEvs(Q) ∧ R 6= ∅
{SP4} otherwise

where





SP1 ∈ R if ∃e ∈ FstEvs(P ) ∧ e 6∈ X
SP2 ∈ R if ∃e ∈ FstEvs(Q) ∧ e 6∈ X
SP3 ∈ R if ∃e ∈ FstEvs(P ) ∧ ∃e ∈ FstEvs(Q) ∧ e ∈ X

Essentially, AppRules decides what rules are applicable depending on the
events that could happen in the next step. These events can be inferred by using
function FstEvs. In particular, given a process P , function FstEvs returns the
set of events that can trigger a rule in the semantics using P as the control.

FstEvs(P ) =



{a} if P = a → Q

∅ if P = ªQ ∨ P = STOP

{τ} if P = M ∨ P =Q2R ∨ P =(STOP‖
X

STOP)

∨ P =(ª Q‖
X

ªR) ∨ P =(ª Q‖
X

STOP) ∨ P =(STOP‖
X

ªR)

∨ (P =(ª Q‖
X

R) ∧ FstEvs(R)⊆X) ∨ (P =(Q‖
X

ªR) ∧ FstEvs(Q)⊆X)

∨ (P =Q‖
X

R ∧ FstEvs(Q)⊆X ∧ FstEvs(R)⊆X∧ ⋂
M∈{Q,R}

FstEvs(M)=∅)
E otherwise, where P = Q‖

X

R ∧
E = (FstEvs(Q) ∪ FstEvs(R))\{e | e ∈ X∧
((e ∈ FstEvs(Q) ∧ e 6∈ FstEvs(R)) ∨ (e 6∈ FstEvs(Q) ∧ e ∈ FstEvs(R))}
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Therefore, rule (Synchronized Parallelism 5) prepares the stack allowing the
semantics to proceed with the correct rule.

Example 2. Consider again the specification of Example 1. Due to the choice
operator, this specification can produce two different sequences of events, namely
〈mission fail〉 and 〈mission success medal〉. Clearly, the same sequences are
produced by the Petri net generated by Algorithm 1 (shown in Fig. 3). In order to
generate the Petri net, the algorithm performs two iterations; the first iteration
generates the white nodes of Fig. 3 and grey nodes are generated in the second
one.

Example 3 (Example revisited (computing step by step)). Now we show step by
step how the execution of Algorithm 1 produced the Petri net in Fig. 3 from the
CSP specification of Example 1.

This CSP specification, due to the choice operator, can produce two differ-
ent sequences of events, namely 〈mission fail〉 and 〈mission success medal〉.
Therefore, Algorithm 1 obtains two computations, called respectively First it-
eration and Second iteration in Fig. 5. In this figure, for each state, we show
a sequence of rules applied from left to right to obtain the next state. We first
execute the semantics with the initial state (MAIN, p0,N0, ∅, ([], []), ∅) and get the
computation First iteration. This computation corresponds to the execution
of the left branch of the choice with the occurrence of event fail. The final
state is State8 = (STOP, p1,N7, C1, ([], S8), ∅). Note that the stack S8 contains a
pair (C1, {C2}) to denote that the left branch of the choice has been executed.
Then, the algorithm calls function UpdStack and executes the semantics again
with the new initial state State9 = (MAIN, p0,N7, ∅, (S9, []), ∅) and it gets the
computation Second iteration. After this execution the final Petri net (N10)
has been computed. Figure 3 shows the Petri net generated where white nodes
were generated in the first iteration; and grey nodes were generated in the second
iteration.

For those readers interested in the complete sequence of rewriting steps per-
formed by the semantics, we provide in Fig. 6 the complete derivations of the
semantics that the algorithm fired. Each computation step is labeled with the
applied rule.

5 Conclusions

This work introduces an algorithm to automatically build a Petri net which pro-
duces the same sequences of observable events that a given CSP specification.
The algorithm uses an instrumentation of the standard CSP’s operational se-
mantics to explore all possible computations of a specification. The semantics
is deterministic because the rule applied in every step is predetermined by the
initial configuration. Therefore, the algorithm can execute the semantics several
times to iteratively explore all computations and hence, generate the whole Petri
net. The Petri net is generated even for non-terminating specifications due to the
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First iteration

State0 = (MAIN, p0,N0, ∅, ([], []), ∅) (PC)

where N0 = (〈{p0}, ∅, ∅〉, M0,P, T ,LP ,LT ), M0(p0) = 1,

P = Names ∪ {2, STOP}, T = Στ ∪ {‖, C1, C2}

State1 = (ASTRONAUT ‖
{success}

(•,∅,•,∅,•)NASA, p1,N1, C1, ([], []), ∅) (SP5)(SP1)(PC)

where N1 = N0[pMAIN 7→ tτ 7→ p1],LP (p0) = MAIN and C1 = {(MAIN, p1)}

State2 = ((mission→ MISSION) ‖
{success}

lab2NASA, p1,N2, C1, ([], S2), ∅) (SP5)(SP2)(PC)

where N2 = N1[p1 7→ t‖ 7→ p2, p1 7→ t‖ 7→ p3, pASTRONAUT 7→ tτ 7→ p4],

LP (p2) = ASTRONAUT, lab2 = (p4, C2, p3, C1, •),
C2 = {(ASTRONAUT, p2)} ∪ C1 and S2 = [(SP1, ∅)]

State3 = ((mission→ MISSION) ‖
{success}

lab3rhs(NASA), p1,N3, C1, ([], S3), ∅) (SP5)(SP1)(Pref)

where rhs(NASA) = (success→ medal→ NASA),N3 = N2[pNASA 7→ tτ 7→ p5],

LP (p3) = NASA, lab3 = (p4, C2, p5, C3, •),
C3 = {(NASA, p3)} ∪ C1 and S3 = (SP2, ∅) : S2

State4 = (MISSION ‖
{success}

lab4rhs(NASA), p1,N4, C1, ([], S4), ∆1) (SP5)(SP1)(PC)

where N4 = N3[p4 7→ tmission 7→ p6], lab4 = (p6, C2, p5, C3, •),
S4 = (SP1, ∅) : S3 and ∆1 = {(p4, tmission, p6)}

State5 = (rhs(MISSION) ‖
{success}

lab5rhs(NASA), p1,N5, C1, ([], S5), ∅) (SP5)(SP1)(Choice)

where rhs(MISSION) = (fail→ STOP)2(success→ STOP),

N5 = N4[pMISSION 7→ tτ 7→ p6],LP (p6) = MISSION, lab5 = (p7, C4, p5, C3, •),
C4 = {(MISSION, p6)} ∪ C2 and S5 = (SP1, ∅) : S4

State6 = ((fail→ STOP) ‖
{success}

lab6rhs(NASA), p1,N6, C1, ([], S6), ∅) (SP5)(SP1)(Pref)

where N6 = N5[p2 7→ tC1 7→ p8],LP (p7) = 2, lab6 = (p8, C4, p5, C3, •)
and S6 = [(C1, {C2}), (SP1, ∅)] : S5

State7 = (STOP ‖
{success}

lab7rhs(NASA), p1,N7, C1, ([], S7), ∆2) (SP5)(SP4)

where N7 = N6[p8 7→ tfail 7→ p9], lab7 = (p9, C4, p5, C3, •),
S7 = (SP1, ∅) : S6 and ∆2 = {(p8, tfail, p9)}

State8 = (STOP, p1,N7, C1, ([], S8), ∅) where S8 = (SP4, ∅) : S7

Fig. 5. An example of computation with Algorithm 1

use of a loop detection mechanism controlled by the semantics. This semantics is
an interesting result because it explicitly relates the CSP model with the Petri
net. The way in which the semantics has been instrumented can be used for
other similar purposes with slight modifications. For instance, the same design
could be used to generate other graph representations of a computation [6, 7].
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This is the first approach that generates the Petri net as a side-effect of an
instrumented semantics. The main advantage of this new approach is that the
Petri net generated is very similar (structurally) to the CSP specification.

On the practical side, we have implemented a tool called CSP2PN which
is able to automatically generate a Petri net equivalent to a CSP specification.
This tool implements the algorithm described in this paper. However, in the
implementation the algorithm is much more complex because it contains some
improvements that significantly speed up the Petri net construction. The most
important improvement is to avoid repeated computations. This is done by: (i)
state memorization: once a state already explored is reached the algorithm stops
this computation and starts with another one; and (ii) skipping already per-
formed computations: computations do not start from MAIN, they start from the
next non-deterministic state in the execution (this is provided by the information
of the stack).

The implementation, source code and several examples are publicly available
at: http://users.dsic.upv.es/ jsilva/CSP2PN/
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Second iteration

State9 = (MAIN, p0,N7, ∅, (UpdStack(S8), []), ∅) = (MAIN, p0,N7, ∅, (S9, []), ∅) (PC)

where S9 = [(C2, ∅), (SP1, ∅), (SP1, ∅), (SP1, ∅), (SP2, ∅), (SP1, ∅)]

State10 = (ASTRONAUT ‖
{success}

(•,∅,•,∅,•)NASA, p1,N7, C10, (S9, []), ∅) (SP1)(PC)

where LP (p0) = MAIN and C10 = {(MAIN, p1)}

State11 = (rhs(ASTRONAUT) ‖
{success}

lab11NASA, p1,N7, C10, (S10, [(SP1, ∅)]), ∅) (SP2)(PC)

where rhs(ASTRONAUT) = (mission→ MISSION),LP (p2) = ASTRONAUT,

lab11 = (p4, C11, p3, C10, •), C11 = {(ASTRONAUT, p2)} ∪ C10 and

S10 = [(C2, ∅), (SP1, ∅), (SP1, ∅), (SP1, ∅), (SP2, ∅)]

State12 = (rhs(ASTRONAUT) ‖
{success}

lab12rhs(NASA), p1,N7, C10, (S11, S12), ∅) (SP1)(Pref)

where rhs(NASA) = (success→ medal→ NASA),LP (p3) = NASA,

lab12 = (p4, C11, p5, C12, •), C12 = {(NASA, p3)} ∪ C10,

S11 = [(C2, ∅), (SP1, ∅), (SP1, ∅), (SP1, ∅)] and S12 = [(SP2, ∅) : (SP1, ∅)]

State13 = (MISSION ‖
{succes}

lab13rhs(NASA), p1,N7, C10, (S13, S14), ∆1) (SP1)(PC)

where lab13 = (p6, C11, p5, C12, •), S13 = [(C2, ∅), (SP1, ∅), (SP1, ∅)],
S14 = (SP1, ∅) : S12 and ∆1 = {(p4, tmission, p6)}

State14 = (rhs(MISSION) ‖
{success}

lab14rhs(NASA), p1,N7, C10, (S15, S16), ∅) (SP1)(Choice)

where rhs(MISSION) = ((fail→ STOP)2(success→ STOP)),LP (p6) = MISSION,

lab14 = (p7, C13, p5, C12, •), C13 = {(MISSION, p6)} ∪ C11,

S15 = [(C2, ∅), (SP1, ∅)] and S16 = (SP1, ∅) : S14

State15 = ((success→ STOP) ‖
{success}

lab15rhs(NASA), p1,N8, C10, ([], S17), ∅) (SP5)(SP3)(Pref)(Pref)

where N8 = N7[p2 7→ tC2 7→ p10],LP (p7) = 2,

lab15 = (p10, C13, p5, C12, •) and S17 = [(C2, ∅), (SP1, ∅)] : S16

State16 = (STOP ‖
{success}

lab16 (medal→ STOP), p1,N9, C10, ([], S18), ∆) (SP5)(SP2)(Pref)

where N9 = N8[p10 7→ tsuccess 7→ p11, p5 7→ tsuccess 7→ p12],

lab16 = (p11, C13, p12, C12, •), S18 = (SP3, ∅) : S17 and

∆ = {(p10, tsuccess, p11)} ∪ {(p5, tsuccess, p12)}

State17 = (STOP ‖
{success}

lab17STOP, p1,N10, C10, ([], S19), ∆′) (SP5)(SP4)

where lab17 = (p11, C13, p13, C12, •), S19 = (SP2, ∅) : S18 and

∆′ = {p11, tmedal, p13}

State18 = (STOP, p1,N10, C10, ([], S20), ∅)
where S20 = (SP4, ∅) : S19 =

[(SP4, ∅), (SP2, ∅), (SP3, ∅), (C2, ∅), (SP1, ∅), (SP1, ∅), (SP1, ∅), (SP2, ∅), (SP1, ∅)]

State19 = (MAIN, p0,N10, ∅, (UpdStack(S20), []), ∅) = (MAIN, p0,N10, ∅, ([], []), ∅)

Fig. 5. An example of computation with Algorithm 1 (cont.)
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Fig. 6. A computation with the instrumented semantics in Fig. 4
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Fig. 6. A computation with the instrumented semantics in Fig. 4 (cont.)
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Fig. 6. A computation with the instrumented semantics in Fig. 4 (cont.)
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Fig. 6. A computation with the operational semantics in Fig. 4 (cont.)


