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Abstract
Algorithmic debugging is a semi-automatic debugging technique which is based on the answers of an oracle
(usually the programmer) to a series of questions generated automatically by the algorithmic debugger. The
technique typically traverses a record of the execution�the so-called execution tree�which only captures
the declarative aspects of the execution and hides operational details. In this work we review and compare
the most important algorithmic debuggers of di�erent programming paradigms. In the study we analyze
the features incorporated by current algorithmic debuggers, and we identify some features not supported
yet by any debugger. We then compare all the debuggers giving rise to a map of the state of the practice
in algorithmic debugging.
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1 Introduction
Algorithmic debugging [19] (also called declarative debugging) is a semi-automatic
debugging technique which is based on the answers of an oracle (typically the pro-
grammer) to a series of questions generated automatically by the algorithmic debug-
ger. These answers provide the debugger with information about the correctness of
some (sub)computations of a given program; and the debugger uses them to guide
the search for the bug until the portion of code responsible for the buggy behavior
is isolated.

Typically, algorithmic debuggers have a front-end which produces a data struc-
ture representing a program execution�the so-called execution tree (ET) 3 [16]�;
and a back-end which uses the ET to ask questions and process the oracle's answers
to locate the bug. Sometimes, the front-end and the back-end are not independent

1 This work has been partially supported by the EU (FEDER) and the Spanish MEC/MICINN under
grants TIN2005-09207-C03-02, TIN2008-06622-C03-02, and Acción Integrada HA2006-0008.
2 Email:{dcheda,jsilva}@dsic.upv.es
3 Depending on the programming paradigm, the execution tree is called di�erently, e.g., Proof Tree, Com-
putation Tree, Evaluation Dependence Tree, etc. We use ET to refer to any of them.
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(e.g., in Buddha where the ET is generated to main memory when executing the
back-end), or they are intertwiningly executed (e.g., in Freja where the ET is built
lazily while the back-end is running).

Depending on the programming paradigm used (i.e., logic, functional, impera-
tive...) the nodes of the ET contain di�erent information: an atom or predicate
that was proved in the computation (logic paradigm); or an equation which con-
sists of a function call (functional or imperative paradigm), procedure call (im-
perative paradigm) or method invocation (object-oriented paradigm) with com-
pletely evaluated arguments and results, etc. The nodes can also contain addi-
tional information about the context of the question. For instance, they can con-
tain constraints (constraint paradigm), attributes values (object-oriented paradigm),
or global variables values (imperative paradigm). As we want to compare debug-
gers from heterogeneous paradigms�in order to be general enough�we will sim-
ply refer to all the information in an ET's node as question, and will avoid the
atom/predicate/function/method/procedure distinction unless necessary.

(0) main = sort [3,1,2]

(1) sort [] = []
(2) sort (x:xs) = insert x (sort xs)

(3) insert x [] = [x]
insert x (y:ys)

(4) | x <= y = (x:ys)
(5) | x > y = (y:insert x ys)

Fig. 1. Buggy de�nition of insort.

Once the ET is built, the debugger basically traverses it by using some search
strategies [19,10,14,1,13], and asking the oracle whether each question found during
the traversal of the ET is correct or not. Given a program with a wrong behavior,
this technique guarantees that, whenever the oracle answers all the questions, the
bug will eventually be found. If there exists more than one bug in the program,
only one of them will be found with each debugging session. Of course, once the
�rst bug is removed, algorithmic debugging may be applied again in order to �nd
another bug. Let us illustrate the process with an example.

Starting algorithmic debugging session

main = [1,3] ? NO
sort [3,1,2] = [1,3] ? NO
sort [1,2] = [1] ? NO
sort [2] = [2] ? YES
insert 1 [2] = [1] ? NO

Bug found in function "insert", rule (4)

Fig. 2. Debugging session for insort.



Fig. 3. ET of the program in Fig. 1.

Example 1.1 Consider the erroneous de�nition of the insertion sort algorithm
shown in Fig. 1. The bug is located in function insert at rule (4). The cor-
rect right-hand side of the rule (4) should be (x:y:ys). In Fig. 2 we can see an
algorithmic debugging session for the program 1. First, the program is run and
the ET�shown in Fig. 3, with the buggy node colored in gray�is generated by the
debugger. Then, the debugging session starts at the root node of the tree. Following
a top-down, left-to-right traversal of the ET, the oracle answers all the questions.
Because the result of function insert at node (5) is incorrect and this node does
not have any children, then the bug is located at this node.

The main contributions of this paper are the following: (i) We have identi�ed and
de�ned several functional requirements that an algorithmic debugger should imple-
ment. The collection of requirements presented is language-independent. Therefore,
it constitutes a functional requirements speci�cation to implement an algorithmic
debugger. (ii) We have compared all current algorithmic debuggers taking into ac-
count their current functionality. Until now there was not a survey on algorithmic
debugging implementations. The evaluation of the debuggers with respect to the re-
quirements has shown what features each current algorithmic debugger o�ers. (iii)
We have empirically evaluated the scalability of some debuggers by testing them
with a set of selected benchmarks. This evaluation allowed us to also compare the
average of the memory usage of each debugger.

2 A Comparison of Algorithmic Debuggers
2.1 Algorithmic Debuggers

The �rst part of our study consisted in the selection of the debuggers that were going
to participate in the study. We found thirteen algorithmic debuggers, and we selected
all of them except those immature enough to be used in practice (see Section 4.1).
Our objective was not to compare algorithmic debugging-based techniques, but to
compare mature and usable implementations. Therefore, we have evaluated each
debugger according to its last implementation, not to its last report/article/thesis
description.

The debuggers included in the study are the following:



Buddha: Buddha 4 [18] is an algorithmic debugger for Haskell 98 programs.
DDT: DDT 5 [2] is part of the multiparadigm language TOY's distribution.It uses
agraphical user interface (GUI), implemented in Java (i.e., it needs the Java Run-
time Environment to work).

Freja: Freja 6 [16] is a debugger for Haskell, result of Henrik Nilsson's thesis. It is
able to debug a subset of Haskell; unfortunately, it is not maintained anymore.

Hat-Delta: Hat-Delta 7 [4] belongs to Hat, a set of debugging tools for Haskell. In
particular, it is the successor of the algorithmic debugger Hat-Detect.

B.i.O.: B.i.O. (Believe in Oracles) 8 is a debugger integrated in the Curry compiler
KICS, and can work as an algorithmic debugger.

Mercury's Algorithmic Debugger: Mercury's compiler 9 has a debugger inte-
grated with both a procedural debugger and an algorithmic debugger [13].

Münster Curry Debugger: The Münster Curry compiler 10 [12] includes an al-
gorithmic debugger.

Nude: The NU-Prolog Debugging Environment (Nude) 11 [15] integrates a collec-
tion of debugging tools for NU-Prolog programs.

2.2 Usability Features

After selecting the debuggers to be compared, we wanted to identify discriminating
features and dimensions to use in the comparison. To do so, we extensively tested
the debuggers with a set of benchmarks from the No�b-buggy benchmarks collection
[22] in order to check all the possibilities o�ered by the debuggers. We also identi�ed
some desirable properties of declarative debuggers that are not implemented by any
debugger. Some of them have been proposed in related bibliography and others are
introduced here. The desirable features of an algorithmic debugger are:

2.2.1 Multiple Search Strategies
One of the most important metrics to measure the performance of a debugger is the
time spent to �nd the bug. In the case of algorithmic debuggers it is q ∗ t where q

is the number of questions asked and t is the average time spent by the oracle to
answer a question [21].

Di�erent strategies (see, e.g., Single Stepping [19], Divide & Query [19,8], Top-
Down [10], Top-Down Zooming [14], Heaviest First [1], Subterm Dependency Track-
ing [13] and Dynamic Weighting Search [20]) have arisen to minimize both the num-
ber of questions and the time needed to answer the questions. Firstly, the number
of questions can be reduced by pruning the ET (e.g., the strategy Divide and Query
[19] prunes near half of the ET after every answer). Secondly, the time needed to

4 http://www.cs.mu.oz.au/∼bjpop/buddha
5 http://toy.sourceforge.net
6 http://www.ida.liu.se/∼henni
7 http://www.haskell.org/hat
8 http://www.informatik.uni-kiel.de/prog/mitarbeiter/bernd-brassel/projects/
9 http://www.cs.mu.oz.au/research/mercury
10http://danae.uni-muenster.de/∼lux/curry/
11http://www.cs.mu.oz.au/∼lee/papers/nude/



answer the questions can be reduced by avoiding complex questions, or by producing
a series of questions which are semantically related (i.e., consecutive questions refer
to related parts of the computation). For instance, the strategy Top-Down Zooming
tries to ask questions related to the same recursive (sub)computation [14]. A survey
of algorithmic debugging strategies can be found in [21].

Therefore, the e�ectiveness of the debugger is strongly dependent on the num-
ber, order, and complexity of the questions asked. Surprisingly, many algorithmic
debuggers do not implement more than one strategy thus the programmer is forced
to follow a rigid and prede�ned order of questions.

2.2.2 Accepted Answers
Algorithmic debugging strategies are based on the fact that the ET can be pruned
using information provided by the oracle. Given a question associated to a node n

in the ET, the debugger should be able to accept the following answers from the
oracle:
• �Yes� to indicate that the node is correct or valid. In this case, the debugger prunes
the subtree rooted at n, and the search continues with the next node according
to the selected strategy.

• �No� when the node is wrong or invalid. This answer prunes all the nodes of the
ET except the subtree rooted at n, and the search strategy continues with a node
in this subtree.

• �Inadmissible� [17] that allows the user to specify that some argument in
the atom/predicate or function/method/procedure call associated to the ques-
tion should not have been computed (i.e., it violates the preconditions of the
atom/predicate/function/method/procedure). Answering �Inadmissible� to a
question redirects the search for the bug in a new direction related to the nodes
which are responsible for the inadmissibility. That is, those nodes that could have
in�uenced the inadmissible argument [23].

• �Don't Know� to skip a question when the user cannot answer it (e.g., because it
is too di�cult).

• �Trusted� to indicate that some module, argument or predi-
cate/function/method/ procedure in the program is trusted (e.g., because it
has been already tested). All nodes related to a trusted module, argument or
predicate/function/method/procedure should also be automatically trusted.

2.2.3 Tracing Subexpressions
A �No� or an �Inadmissible� answer is often too imprecise. When the programmer
knows exactly which part of the question is wrong, she could mark a subexpression
as wrong. This avoids many useless questions which are not related to the wrong
subexpression. For instance, Mercury's debugger [13] uses subexpression information
to enhance bug search.

Tracing subexpressions has two main advantages. First, it reduces the search
space because the debugger only explores the part of the ET related to the wrong
subexpression. Second, it makes the debugging process more understandable, be-



cause it gives the user some control over the bug search.

2.2.4 Tree Compression
Tree compression is a technique used to remove redundant nodes from the ET [4].

(1) append [] y = y
(2) append (x:xs) y = x:append xs y

Fig. 4. De�nition of append function.

2 2 2 2 1 2 1

Fig. 5. ET of append [1,2,3,4] [5,6] and its associated compressed tree.

Let us illustrate the technique with an example. Consider the function de�nition
in Fig. 4, and its associated ET for the call �append [1,2,3,4] [5,6]� in Fig. 5
(left). The function append makes three recursive calls to rule (2) and, �nally,
one call to the base case in rule (1). Clearly, there are only two rules that can
be buggy: rules 1 and 2. Therefore, the ET can be compressed as depicted in
Fig. 5 (right). With this ET, the debugger will only ask at most two questions. Tree
compression allows us to remove unnecessary questions before starting the debugging
session, hence, it should be implemented by all the debuggers as a postprocess to
the computation of the ET.

2.2.5 Memoization
The debugger should not ask the same question twice. This can be easily done
by memoizing the answers of the programmer. Memoization can be done intra- or
inter-session.

2.2.6 Graphical User Interface
A GUI can speed up the debugging session, because it allows the user to freely
explore the ET and mark nodes independently of (or in parallel with) the running
strategy. Graphical features such as collapsing subcomputations of the ET can be
very useful.

2.2.7 Undo Capabilities
Not only the program can be buggy. Also the debugging session itself could be buggy,
e.g., when the programmer answers a question incorrectly. Therefore, the debugger
should allow the programmer to correct wrong answers. For instance, a desirable
feature is allowing the user to undo the last answer and return to the previous state.
Despite it seems to be easy to implement, surprisingly, most algorithmic debuggers
lack of an undo command; and the programmer is forced to repeat the whole session
when she does a mistake with an answer.

Some debuggers drive buggy debugging sessions in a di�erent manner. For in-
stance, Freja uses the answers maybe yes and maybe no in addition to yes and no.
They are equal to their counterparts except that the debugger will remember that



no de�nitive answer has been given, and return to those questions later unless the
bug has been found through other answers �rst.

2.2.8 ET Exploration
Algorithmic debugging can become too rigid when it is only limited to questions
generation. Sometimes, the programmer has an intuition about the part of the ET
where the bug can be. In this situation, letting the programmer to freely explore
the ET could be the best strategy. It is desirable to provide the programmer with
the control over the ET exploration when she wants to direct the search for the bug.

2.2.9 Trusting
Programs usually reuse code already tested (e.g., external functions, modules...).
Therefore, when debugging a program, this code should be trusted. Trusting can be
done at the level of modules, questions or arguments. And it can be done statically
(by including annotations or �ags when compiling) or dynamically (The program-
mer answers a question with �Trusted" and all the questions referring to the same
atom/predicate/function/method/procedure are automatically set �Correct").

2.2.10 Scalability
One of the main problems of current algorithmic debuggers is their low scalability.
The ETs produced by real programs can be huge (indeed gigabytes) and thus it does
not �t in main memory.

Nevertheless, many debuggers store the ET in main memory; hence, they produce
a �memory over�ow" exception when applied to real programs. Current solutions
include storing the ET in secondary memory (e.g., [4]) or producing the ET on
demand (e.g., [16,13]).

A mixture between main and secondary memory would be desirable. It would
be interesting to load a cluster of nodes in main memory and explore them until
a new cluster is needed. This solution would take advantage of the speed acquired
by working on main memory (e.g., keeping the possibility to apply strategies on the
loaded cluster) while being able to store huge ETs in secondary memory.

A new approach developed in the debugger B.i.O. changes time by space: They
do not need to store an ET because they reexecute the program once and again to
generate the next question. As they consider a lazy language, they �rst execute the
program and record a �le with step counts specifying how much the subcomputations
have been evaluated. This �le is later used by the back-end to reexecute the program
eagerly once and again in order to produce the questions as they are required.

3 Functionality Comparison
Table 3 presents a summary of the available functionalities of the studied algorithmic
debuggers. Every column gathers the information of one algorithmic debugger. The
meaning of the rows is the following:
• Implementation Language: Language used to implement the debugger.
• Target Language: Debugged language.



• Strategies: Algorithmic debugging strategies supported by the debugger: Top
Down (TD), Divide & Query (DQ), Hat-Delta's Heuristics (HD), Mercury's Divide
& Query (MD), and Subterm Dependency Tracking (SD).

• DataBase/Memoization: Is a database used to store answers for future debug-
ging sessions (inter-session memory)? Are questions remembered during the same
session (intra-session memory)?

• Front-End : Is it integrated into the compiler or is it standalone? Is it an inter-
preter/compiler or is it a program transformation?

• Interface: Interface used between the front-end and the back-end. If the front-end
is a program transformation, then it speci�es the data structure generated by the
transformed program. Whenever the data structure is stored into the �le system,
brackets specify the format used. Here, DDT exports the ET in two formats:
XML or a TXT. Hat-Delta uses an ART (Augmented Redex Trail) with a native
format. B.i.O. generates a list of step counts (see Section 2.2.10) which is stored
in a plain text �le.

• Execution Tree: When the back-end is executed, is the ET stored in the �le system
or in main memory? This row also speci�es which debuggers produce the ET on
demand.

• Accepted Answers: Yes (YE), No (NO), Don't Know (DK), Inadmissible (IN),
Maybe Yes (MY), Maybe Not (MN), and Trusted (TR).

• Tracing Subexpressions: Is it possible to specify that a (sub)expression is wrong?
• ET Exploration: Is it possible to explore the ET freely?
• Tree Compression: Does the debugger implement the tree compression technique?
• Undo: Is it possible to undo an answer?
• Trusting : Is it possible to trust modules (Mo), functions (Fu) and/or arguments
(Ar)?

• GUI : Has the debugger a graphical user interface?
• Version: Evaluated version of the debugger.

4 E�ciency Comparison
We studied the growing rate of the internal data structure stored by the debuggers.
This information is useful to know the scalability of each debugger and, in particular,
their limitations with respect to the ET's size.

The study has proved that several debuggers are not usable with real programs
because they run out of memory with long running computations. The main reason
is that many of them store their ET in memory, and the size of the ET produces
a memory over�ow as soon as the computation is not medium-size. While the
Münster Curry Debugger has the lowest growing rate in the size of its ET, the most
scalable debugger is Hat-Delta which successfully passed more benchmarks. The
main advantages of the ART used by Hat-Delta is that it is stored in secondary
memory, and it shares data structures between di�erent nodes.

In this experiment we have only considered those debuggers which already have a
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stable version and which are still maintained: Buddha, DDT, Hat-Delta and Münster
Curry debugger. We have omitted Mercury`s debugger from this study because the
collection of benchmarks used in the study are pure functional programs; and their
translation to Mercury produced signi�cant di�erences in the size and the structure
of the ET which made it incomparable to the others.

In order to compare the growing rate of the ET's size of each debugger, we
selected some benchmarks from the no�b-buggy suite [22] and we created other
benchmarks which are particularly useful for algorithmic debugging because they
allow us to produce algorithmic debugging sessions with series of both huge and tiny
questions. They also allow us to compare the debuggers with broad and long ETs.
All these benchmarks together with the experiment results are publicly available at:

http://www.dsic.upv.es/�jsilva/algdeb

It is important to note that in this part of the study our objective was not to
compare the debuggers against real programs. This is useless, because with the same
ET, independently of its size, all the debuggers �nd the bug with the same number
of questions (if they use the same strategy). Our objective was to study the behavior
of the debuggers when handling di�erent kinds of ETs. In particular, we produced
deep, broad, balanced and unbalanced ETs with di�erent sizes of nodes. With the
experiment we were able to know how e�cient the debuggers are when storing the
ET in memory, and how scalable they are when the size of this ET grows up.

Once we collected the benchmarks for the experiment, we reprogrammed them
for all the targeted languages of the debuggers. Finally, we tested the debuggers
with a set of increasing input data in order to be able to graphically represent the
growing rate of the size of the ET.

Since each debugger handles the ET in a di�erent way, we had to use a di�erent
method in each case to measure their size:
• Hat-Delta stores the ART into a �le and traverses it during the debugging process.
Then, we considered the size of the whole ART rather than the size of the implicit
ET. Since the ART is used for other purposes than algorithmic debugging (e.g.,
tracing) it contains more information than needed.

• DDT saves ETs in two formats: TXT and XML. For our purpose, we used the
size of the XML because this is the �le loaded by the tool to make the debugging
process.

• Münster Curry Debugger generates the ET in main memory. But we applied a
patch�provided by Wolfgang Lux�that allows us to store the ET in a text �le.

• Buddha also generates the whole ET in main memory. In this case, we used a shell
script to measure the physical memory used by the data structures handled by the
debugger. It might produce a slightly unfair advantage in that in-memory repre-
sentation of the ET is likely to be more compact than any other representation
stored on disk.
Figure 6 shows the results of one of the experiments. It shows the size of the

ET produced by four debuggers when debugging the program merge-sort. X-axis



represents the number of nodes in the ETs; Y-axis represents the ET's size in Kb;
and Z-axis shows the debuggers. In this example we can see that Hat and Buddha
supported big ETs without problems. However, DDT and the Münster Curry De-
bugger were not able to manage ETs with more than (approximately) two and ten
thousand nodes respectively. DDT was out of memory and crashed. The Münster
Curry Debugger needed a lot of time to generate big ETs, and we stopped it after 6
hours running.

It is important to note that we selected on purpose some benchmarks that process
big data structures. The reason is that the size of the nodes is strongly dependent
on the size of its data structures, and we wanted to study the growing rate with
both small and big input data.

Fig. 6. Growing rate of declarative debuggers for merge-sort.

Fig. 7. Growing rate of declarative debuggers for factorial.



Fig. 8. Growing rate of declarative debuggers for length.

Fig. 9. Linear tendency graph of the growing rate of the ET's size.

Figures 7 and 8 show respectively the results obtained with the program factorial
and length. They show two extreme cases: while, in factorial the impact of the input
data over the size of the ET's nodes is not signi�cant, in length it is very signi�cant
(we used lists up to one thousand elements).

Combining all the experiments, we computed the average linear tendency of the
ET's size growing rate. It is depicted in Fig. 9.

4.1 Other Debuggers

We did not include in our study those debuggers which do not have a stable version
yet. This is the case, for instance, of the declarative debuggers for Java described in
[3] and [7]. We contacted with the developers of the Java Interactive Visualization



Environment (JIVE) [6] and the next release will integrate an algorithmic debugger
called JavaDD [7]. This tool uses the Java Platform Debugger Architecture to
examine the events log of the execution and produce the ET.

We neither considered the debugger GADT [5] (which stands for Generalized
Algorithmic Debugging and Testing). Despite it was quite promising because it
included a testing and a program slicing phases, its implementation was abandoned
in 1992.

The Prolog's debugger GIDTS (Graphical Interactive Diagnosis, Testing and
Slicing System) [9] integrated di�erent debugging methods under a unique GUI.
Unfortunately, it is not maintained anymore, and thus, it was discarded for the
study.

Other debuggers that we discarded are the declarative debugger of the language
Escher [11], because it is not maintained since 1998; and the declarative debugger
GraDE [1] for the logic programming language Gödel which was abandoned.

We are aware of new versions of the studied debuggers which are currently under
development. We did not include them in the study because they are not being
distributed yet, and thus, they are not part of the current state of the practice.
There are, however, two cases that we want to note:
(i) Hat-Delta: The old algorithmic debugger of Hat was Hat-Detect. Hat-Delta has

replaced Hat-Detect because it includes new features such as tree compression
and also improved strategies to explore the ET. Nevertheless, some of the old
functionalities o�ered by Hat-Detect have not been integrated in Hat-Delta yet.
Since these functionalities were already implemented by Hat-Detect, surely,
the next release of Hat-Delta will include them. These functionalities are the
following:
• Strategy Top-Down,
• undo capabilities,
• new accepted answers: Maybe Yes, Maybe No, and Trusted, and
• trusting of functions.

(ii) DDT: There is a new β-version of DDT which includes many new features.
These features are the following:
• New Strategies: Heaviest First, Hirunkitti's Divide & Query, Single Stepping,
Hat-Delta's Heuristics, More Rules First, and Divide by Rules & Query,

• tree compression, and
• a database for inter-session memoization.

5 Conclusions and Future Work
The main conclusion of the study is that many techniques that have been studied
and developed on a theoretical level, have not been implemented and/or integrated
into usable algorithmic debuggers.

The functionality comparison has produced a precise description of what features
are implemented by each debugger (hence, for each language). From the description,



it is easy to see that many features which should be implemented by any algorithmic
debugger are only included in one of them. For instance, only the Mercury debugger
is able to trace subexpressions, only Hat-Delta implements tree compression, only
DDT has a GUI and only it allows the user to graphically explore the ET.

Another important conclusion is that none of the debuggers implement all the
ET exploration strategies that appear in the literature. For instance, Hirunkitti's
divide and query which is supposed to be the most e�cient strategy has not been
implemented yet.

Regarding the e�ciency comparison, one conclusion is that the main problem
of current algorithmic debuggers is not time but space. Their scalability is very
low because they are out of memory with long running computations due to the
huge growing rate of the ET. In this respect, the more scalable debugger of the
four we compared are Hat-Delta (i.e., it supported more debugging sessions than
the others) and Buddha. However, the Münster Curry Debugger presents the lower
ET's growing rate. It is surprising that much of the debuggers use a �le to store
the ET, and no debugger uses a database. The use of a database would probably
solve the problem of the ET's size. Another technology that is not currently used
and needs to be further investigated is the use of a clustering mechanism to allow
the debugger exploring (and loading) only the part of the ET (the cluster of nodes)
needed at each stage of the debugging session. Currently, no algorithmic debugger
uses this technology that could both speed up the debugging session and increase
the scalability of the debuggers.

Despite the big amount of problems we have identi�ed, we can also conclude
that there is a continuous progression in the development of algorithmic debuggers.
This can be easily checked by comparing the dates of the releases studied and their
implemented features. Also by comparing di�erent versions of the same debuggers
(for instance, from Hat-Detect to Hat-Delta many new functionalities have been
added such as tree compression and new search strategies).

The comparison presented here only took into account objective criteria that
can be validated. Subjective criteria that can be interpreted were omitted from the
study. For instance, we did not talk about how easy to use or to install the debuggers
are. This is another quirk of maturity, but we let this kind of comparison for future
work.

This paper not only compares current implementations, but it also constitutes
a guide to implement a usable algorithmic debugger, because it has established the
main functionality and scalability requirements of a real program-oriented debugger.
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