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This article surveys previous work on program slicing-based techniques. For each technique we

describe its features, its main applications and a common example of slicing using such a technique.

After discussing each technique separately, all of them are compared in order to clarify and
establish the relations between them. This comparison gives rise to a classification of techniques

which can help to guide future research directions in this field.

Categories and Subject Descriptors: F.3.1 [Theory of Computation]: Logics and meaning of
programs—specifying and verifying and reasoning about programs; D.3.1 [Software]: Program-

ming Languages—formal definitions and theory
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1. INTRODUCTION

Program slicing was originally introduced in 1984 by Mark Weiser. Since then,
many researchers have extended it in many directions and for all programming
paradigms. The huge amount of program slicing-based techniques has lead to the
publication of different surveys [Tip 1995; Binkley and Gallagher 1996; Harman
et al. 1996; Harman and Gallagher 1998; De Lucia 2001; Harman and Hierons 2001;
Binkley and Harman 2004; Xu et al. 2005] trying to clarify the differences between
them. However, each survey presents the techniques from a different perspective.
For instance, [Tip 1995; Binkley and Gallagher 1996; Harman and Gallagher 1998;
De Lucia 2001; Harman and Hierons 2001; Xu et al. 2005] mainly focus on the ad-
vances and applications of program slicing-based techniques; in contrast, [Binkley
and Harman 2004] focuses on their implementation comparing empirical results;
and [Harman et al. 1996] tries to compare and classify them in order to predict fu-
ture techniques and applications. In this work we follow the approach of [Harman
et al. 1996]. In particular, we compare and classify the techniques aiming at iden-
tifying relations between them in order to answer questions like Is one technique a
particular case of another? Is one technique more general or more expressive than
another? Are they equivalent but expressed with different formalisms?
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There is a well-developed theory and formalization of program slicing which al-
lows to formally reason about the semantic implications of different slicing tech-
niques (see e.g., [Venkatesh 1991; Giacobazzi and Mastroeni 2003; Binkley et al.
2004; Danicic et al. 2005; Binkley et al. 2006a; Binkley et al. 2006b; Ward and
Zedan 2007]). This formal framework can be used, e.g., to prove properties of a
particular technique, or of program slicing in general. For instance, Danicic et al.
[2005] used the program schemas theory [Greibach 1985] in order to demonstrate
that slices produced by standard algorithms are minimal for a class of programs.
The formalization of the techniques presented and discussed here is not the objec-
tive of this article, but this theoretical background can be a valuable complement
to this work. Therefore, interested readers that want to get deeper in a particular
technique or are interested in its theoretical foundations are referred to those works.

The article has been structured in two parts: In the first part (Section 2) we
describe all the techniques in a way similar to [De Lucia 2001]. We propose a
running example program and we extract a slice from it by applying every technique;
thus the slices produced by each technique for the same program can be compared.
In order to ensure it, because not all slicing criteria are comparable, we will produce
for each technique at least one slice generated from a slicing criterion which is
comparable to the slicing criterion used in the other techniques. The main objective
in this part is to discuss each technique separately and compare it with the others
by temporarily delimiting it and showing its peculiarities and main applications.
Here, we do not focus on how the slices are produced, but on what slices are
produced. Therefore, we will not explain the algorithms or the internal mechanisms
to produce the slices of each technique. We will rather discuss for each technique
what information is needed to produce a slice, what peculiarities has this slice with
respect to other techniques, and what are its main applications. Of course, we will
refer the interested reader to the sources where the techniques were defined and
where deeper details about their implementation can be found.

This part may be useful for a researcher (not necessarily a program slicing expert)
which is looking for a program slicing technique and she wants to know which of
the wide variety of slicing techniques better fits her necessities. To ease her search,
we summarize the goal of each technique with a single question, and list its main
applications. In the second part (Section 3) we revisit the classification introduced
by Harman et al. [1996] a decade ago and we extend it with new slicing techniques
and dimensions. The analysis provides useful information that allows us to classify
the slicing techniques and establish relations between them. In particular, we relate
all the techniques of the first part by identifying three kinds of relations between
them: generalization, superset and composition. With these relations we produce a
graph of slicing techniques where the relations between them establish a hierarchy.
With the information provided by the study we try to predict new slicing techniques
not published yet. Finally, Section 4 concludes.

2. PROGRAM SLICING TECHNIQUES

2.1 Program Slicing (Weiser, 1984)

The original ideas of program slicing come from the PhD thesis of Mark Weiser in
1979 [Weiser 1979] that were presented in the International Conference on Software
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Engineering in 1981 [Weiser 1981] and finally published in Transactions on Software
Engineering in 1984 [Weiser 1984].

Program slicing is a technique to decompose programs by analyzing their data
and control flow. Roughly speaking, a program slice consists of those program
statements which are (potentially) related to the values computed at some program
point and/or variable, referred to as a slicing criterion.

As it was originally defined:

“A slice is itself an executable program subset of the program whose
behavior must be identical to the specified subset of the original program’s
behavior”

However, the constraint of being an executable program has been sometimes
relaxed. Given a program p, slices are produced with respect to a given slicing
criterion 〈s, v〉 which specifies a statement s and a set of variables v in p. Note
that the variables in v not necessarily appear in s; consider for instance the slicing
criterion 〈18, {lines, chars, subtext}〉 for the program in Figure 1 (a). Observe that,
in this case, not all the variables appear in line 18.

As an example of slice, consider again the program in Figure 1 (a) (for the time
being the user can ignore the breakpoints marked with *) where function getChar

extracts the first character of a string. This program is an augmented version
of the UNIX “word-count” program: it takes a text (i.e., a string of characters
including ‘\n’—carriage return—and ‘\eof’—end-of-file—) and a number n, and it
returns the number of characters and lines of the text and a subtext composed
of the first n characters excluding ‘\n’. We need to augment the functionality of
“word-count” because, in the following, this will be our running example that we
will use with all the techniques in order to compare their slices produced; and for
some techniques, “word-count” is not enough to show their differences with respect
to other techniques. A slice of this program with respect to the slicing criterion
〈16, lines〉 is shown in Figure 1 (b).

Together with the running example, we will use a “running slicing criterion” that
we will use with all the techniques in order to be able to compare their slices pro-
duced with respect to similar slicing criteria. Nevertheless, the shape of the slicing
criterion changes from one technique to the other. Therefore, we cannot use the
same slicing criterion in their comparison. What we will do is to use “comparable”
slicing criteria. Intuitively, two slicing criteria s1 and s2 are comparable if for all
parameter p, such that p ∈ s1 and p ∈ s2, the value of p is the same in both slicing
criteria. In Section 3 we will precisely specify all the parameters and their values
that can be used in current slicing techniques.

2.2 Static Slicing (Weiser, 1984)

The original definition of program slicing was static [Weiser 1984], in the sense that
it did not consider any particular input for the program being sliced. Particularly,
the slice shown in Figure 1 (b) is a static slice with respect to the slicing criterion
〈16, lines〉. It is called static because it does not consider any particular execution
(i.e., it works for any possible input data).

In order to extract a slice from a program, the dependences between its state-
ments must be computed first. The Control Flow Graph (CFG) is a data structure
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*(1) read(text); (1) read(text);

(2) read(n);

(3) lines = 1; (3) lines = 1;

(4) chars = 1;

(5) subtext = "";

(6) c = getChar(text); (6) c = getChar(text);

(7) while (c != ‘\eof’) (7) while (c != ‘\eof’)

(8) if (c == ‘\n’) (8) if (c == ‘\n’)

(9) then lines = lines + 1; (9) then lines = lines + 1;

*(10) chars = chars + 1;

(11) else chars = chars + 1;

(12) if (n != 0)

*(13) then subtext = subtext ++ c;

(14) n = n - 1;

(15) c = getChar(text); (15) c = getChar(text);

(16) write(lines); (16) write(lines);

(17) write(chars);

*(18) write(subtext);

(a) Example program (b) Slice with respect to 〈16, lines〉

Fig. 1. Example of slice

Start (1) (2) (3) (4) (5) (6) (7)

(8)

(16)

(9)

(11)

(10)

(15)
(12)

(13) (14)

(17) (18) Stop

Fig. 2. Control Flow Graph of Figure 1 (a)

Start

(1) (2) (3) (4) (5) (6) (7) (16) (17) (18)

(12)

(14)

(9) (10) (11)

(13)

(8)

(15)

Fig. 3. Program Dependence Graph of Figure 1 (a)

which makes the control dependences for each operation in a program explicit. For
instance, the CFG of the program in Figure 1 (a) is depicted in Figure 2.

However, the CFG does not suffice for computing program slices because it only
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stores control dependences and data dependences are also necessary. For this rea-
son, the CFG must be annotated with data flow information by marking at each
node the set of variables defined and referenced. A detailed explanation of how
to annotate CFGs and how to extract a slice from annotated CFGs can be found
in [Binkley and Gallagher 1996]. Ottenstein and Ottenstein [1984] noted that the
Program Dependence Graph (PDG) [Kuck et al. 1981; Ferrante et al. 1987] was
the “ideal” data structure for program slicing because it allows us to build slices
in linear time on the number of nodes of the PDG.1 PDGs make explicit both the
data and control dependences for each operation in a program. In essence, a PDG
is an oriented graph where the nodes represent statements in the source code and
edges represent control and data flow dependences between statements in such a
way that they induce a partial ordering in the nodes preserving the semantics of
the program. As an example, the PDG of the program in Figure 1 (a) is depicted
in Figure 3 where solid arrows represent control dependences and dotted arrows
represent flow dependences. Here, nodes are labeled with the number of the state-
ment they represent; except node Start which represents the start of the program.
The solid arrow between nodes 7 and 8 indicates that the execution of statement 8
depends on the execution of statement 7. The same happens with the solid arrow
between statements 8 and 12; thus, transitively, the execution of statement 12 also
depends on the execution of statement 7.

Question answered: What program statements can influence these variables at this
statement?

Main applications: Program comprehension, debugging, algorithmic debugging,
dead code removal, program segmentation, program analysis, software quality as-
surance, program differencing, software maintenance, testing, program paralleliza-
tion, module cohesion analysis, partial evaluation and program integration.

2.3 Dynamic Slicing (Korel and Laski, 1988)

One of the main applications of program slicing is debugging. Often, during de-
bugging, the value of a variable v at some program statement s is observed to be
incorrect. A program slice with respect to 〈s, v〉 contains the cause of the error.

However, in such a case, we are interested in producing a slice formed by those
statements that could cause this particular error, i.e., we are only interested in one
specific execution of the program. Such slices are called dynamic slices [Korel and
Laski 1988], since they use dynamic information during the process. In general,
dynamic slices are much smaller than static ones because they contain the state-
ments of the program that affect the slicing criterion for a particular execution (in
contrast to any execution as happens with static slicing).

During a program execution, the same statement can be executed several times
in different contexts (i.e., with different values of the variables); as a consequence,
pointing out a statement in the program is not enough in dynamic slicing. A dy-
namic slicing criterion needs to specify which particular execution of the statement
during the computation is of interest; thus it is defined as 〈si, v, {a1, . . . , an}〉, where

1Although the cost of computing a slice from a PDG of N nodes is O(N), the cost of building the

PDG is O(N2). See [Ferrante et al. 1987] for details.
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i is the position of statement s in the execution history2; v is the set of variables we
are interested in, and the set {a1, . . . , an} are the initial values of the program’s in-
put. As an example, consider the input values {text = “hello world!\eof”, n = 4}
for the program in Figure 1 (a). The execution history would be:

(1, 2, 3, 4, 5, 6, 7, (8, 11, 12, 13, 14, 15, 7)12, 16, 17, 18)

where the superscript 12 indicates that the statements inside the parenthesis are
repeated twelve times in the execution history.

A dynamic slice of the program in Figure 1 (a) with respect to the slicing criterion
〈1692, {lines}, {text = “hello world!\eof”, n = 4}〉 is shown in Figure 4. Note
that this slice is much smaller than its static counterpart because here the slicer can
compute the specific control and data-flow dependences produced by the provided
input data. However, it comes with a cost: the computation of such dependences
usually implies the computation of an expensive (measured in time and space) and
complex data structure (e.g., a trace [Sparud and Runciman 1997]).

(3) lines = 1;

(16) write(lines);

Fig. 4. Dynamic slice of Figure 1 (a) w.r.t. 〈1692, {lines}, {text = “hello world!\eof”, n = 4}〉

In their definition of dynamic slicing, Korel and Laski introduced one impor-
tant novelty: their slices must follow identical paths than its associated programs.
Roughly, this means that the original program and the slice must produce the same
execution history before they reach the slicing criterion, except for the statements
not influencing the slicing criterion. Formally,

Definition 2.1 Korel and Laski’s dynamic slice [Korel and Laski 1988]. Let c =
(si, V, x) be a slicing criterion of a program p and T the trajectory of p on input x.
A dynamic slice of p on c is any executable program p′ that is obtained from p by
deleting zero or more statements such that when executed on input x, produces a
trajectory T ′ for which there exists an execution position i′ such that

(1) Front(T ′, i′) = DEL(Front(T, i), T (j) 6∈ N ′ ∧ 1 ≤ j ≤ q),
(2) for all v ∈ V , the value of v before the execution of instruction T (i) in T equals

the value of v before the execution of instruction T ′(i′) in T ′,

(3) T ′(i′) = T (i) = s,

where N ′ is a set of instructions in p′; Front(T, j) returns the first j elements of
sequence T from 1 to j inclusive; and DEL(T, π) is a filtering function which takes
a predicate π and returns the trajectory obtained by deleting from T the elements
that satisfy π.

2This notation has been used in two different ways in the literature. We use the original definition

defined in [Korel and Laski 1988] and later user for instance in [Tip 1995]. However, there is

another meaning for si which stands for “the statement s when it is executed the ith time”; it
was defined in [Agrawal and Horgan 1990] and later user for instance in [Binkley and Gallagher

1996]”.
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This property constitutes a new way to compute slices that can be combined with
many other forms of slicing (see, e.g., [Binkley et al. 2006a]) and that determines
whether dynamic slicing is subsumed or not by other forms of slicing. Therefore,
the path-aware condition should be fixed in order to compare two slicing techniques
(whatever they are). In the rest of the paper—unless the contrary is stated—we will
always consider that slicing techniques are path-unaware. Therefore, subsequent
references to dynamic slicing will really refer to path-unaware dynamic slicing (thus,
a different algorithm than the one defined by Korel and Laski, see [Agrawal and
Horgan 1990]). We refer the reader to Section 3 for a description of slicing dimen-
sions and their use to compare slicing techniques.

Question answered: For this particular execution, what program statements can
influence these variables at this statement?

Main applications: Debugging, testing and tuning compilers.

2.4 Backward Slicing (Weiser, 1984)

A program can be traversed forwards or backwards from the slicing criterion. When
we traverse it backwards (the so called backward slicing), we are interested in all
those statements that could influence the slicing criterion. In contrast, when we
traverse it forwards (the so called forward slicing), we are interested in all those
statements that could be influenced by the slicing criterion.

The original method by Weiser—described above—was static backward slicing.
The main applications of backward slicing are debugging, program differencing and
testing. As an example, the slice shown in Figure 1 (b) is a backward slice of the
program in Figure 1 (a).

Question answered: What program statements can influence these variables at this
statement?

Main applications: Program comprehension, debugging, algorithmic debugging,
dead code removal, program segmentation, program analysis, program differenc-
ing, software maintenance, testing, program parallelization, module cohesion anal-
ysis and program integration.

2.5 Forward Slicing (Bergeretti and Carré, 1985)

Forward slicing [Bergeretti and Carré 1985] allows us to determine how a mod-
ification in a part of the program will affect other parts of the program. As a
consequence, it has been used for dead code removal and for software maintenance.
In this context, Reps and Bricker were the first to use the notion of forward slice
[Reps and Bricker 1989]. However, despite backward slicing is the preferred method
for debugging, forward slicing has also been used for this purpose. In particular,
forward slicing can detect initialization errors [Gaucher 2003].

A forward static slice of our running example with respect to the previously used
slicing criterion 〈16, {lines}〉 would only contain statement (16) because lines is
not used after line 16.

A more clarifying example is the forward static slice of the program in Figure 1
(a) with respect to the slicing criterion 〈3, {lines}〉 shown in Figure 5.
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(3) lines = 1;

(9) lines = lines + 1;

(16) write(lines);

Fig. 5. Forward static slice of Figure 1 (a) with respect to 〈3, {lines}〉

Question answered: What program statements can be influenced by these variables
at this statement?

Main applications: Program differencing, debugging, program comprehension, pro-
gram analysis, dead code removal, software maintenance and testing.

2.6 Chopping (Jackson and Rollins, 1994)

In chopping [Jackson and Rollins 1994], the slicing criterion selects two sets of vari-
ables, source and sink, and then it computes all the statements in the program that
being affected by source, they affect sink. Therefore, chopping is a generalization of
both forward and backward slicing where either source or sink is empty. As noted
by Reps and Rosay [Reps and Rosay 1995], chopping is particularly useful to detect
those statements that “transmit effects” from one part of the program (source) to
another (sink).

For instance, a chop of the program in Figure 1 (a) with respect to the slicing
criterion 〈source = {(3, {lines})}, sink = {(16, {lines})}〉 is shown in Figure 5.
Similarly, a chop of the program in Figure 1 (a) with respect to the slicing criterion
〈source = {(3, {lines})}, sink = {(9, {lines})}〉 is shown in Figure 6.

(3) lines = 1;

(9) lines = lines + 1;

Fig. 6. Chop of Figure 1 (a) with respect to 〈source = {(3, {lines})}, sink = {(9, {lines})}〉

Question answered: What program statements can influence these variables at this
statement while they are influenced by these (other) variables at this other state-
ment?

Main applications: Program analysis and debugging.

2.7 Relevant Slicing (Agrawal, Horgan, Krauser and London, 1993)

A dynamic program slice only contains the program statements that actually affect
the slicing criterion. However, it is sometimes (e.g., in debugging) interesting to
include in the slice those statements that could have affected the slicing criterion.
This is the objective of relevant slicing [Agrawal et al. 1993], which computes all
the statements that potentially affect the slicing criterion.

A slicing criterion for relevant slicing is exactly the same as for dynamic slicing,
but if we compute a relevant slice and a dynamic slice with respect to the same
slicing criterion, the relevant slice is a superset of the dynamic slice because it
contains all the statements of the dynamic slice and it also contains those statements
of the program that did not affect the slicing criterion but could have affected it if
they would have changed (for instance because they were faulty).
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Let us explain it with an example: consider the previously used slicing criterion
〈1692, {lines}, {text = “hello world!\eof”, n = 4}〉. The relevant slice computed is
shown in Figure 7. It contains all the statements of the dynamic slice (see Figure 4)
and it also includes statements (6) and (8). Statement (6) could have influenced
the value of lines being redefined to “(6) c = ‘\n’;” and statement (8) could
have influenced the value of lines being redefined to “(8) if (c != ‘\n’)”.

It should be clear that the slices produced in relevant slicing can be non-executable.
The reason is that the main application of such a technique is debugging, where
the programmer is interested in those parts of the program that can contain the
bug. The statements included in the slice are those whose contamination could
result in the contamination of the variable of interest. In order to make the slice
executable preserving the behavior (including termination) of the original program
it is necessary to augment the slice with those statements that are required for the
evaluation of all the expressions included in the slice (even if this evaluation does
not influence the variable of interest).

The forward version of relevant slicing [Gyimóthy et al. 1999] can be useful in
debugging and in program maintenance. A forward relevant slice contains those
statements that could be affected by the slicing criterion (if it is redefined). There-
fore, it could be used to study module cohesion by determining what could be the
impact of a module modification over the rest of modules.

(3) lines = 1;

(6) c = getChar(text);

(8) if (c == ‘\n’)

(16) write(lines);

Fig. 7. Relevant slice of Figure 1 (a) w.r.t. 〈1692, {lines}, {text = “hello world!\eof”, n = 4}〉

Question answered: What program statements could influence these variables at
this statement if they were redefined?

Main applications: Debugging and program maintenance.

2.8 Hybrid Slicing (Gupta and Soffa, 1995)

When debugging, it is usually interesting to work with dynamic slices because they
focus on a particular execution (i.e., the one that showed a bug) of the program
being debugged; therefore, they are much more precise than static ones. However,
computing dynamic slices is very expensive in time and space due to the large
data structures (up to gigabytes) that need to be computed. In order to increase
the precision of static slicing without incurring the computation of these large
structures needed for dynamic slicing, a new technique called hybrid slicing [Gupta
and Soffa 1995] was proposed. A hybrid slice is more accurate—and consequently
smaller—than a static one, and less costly than a dynamic slice.

The key idea of hybrid slicing consists in integrating dynamic information into
the static analysis. In particular, the information provided to the slicer is a set
of breakpoints inserted into the source code that, when the program is executed,
can be activated thus providing information about which parts of the code have
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been executed. This information allows the slicer to eliminate from the slice all the
statements which are in a non-executed possible path of the computation.

For instance, consider again the program in Figure 1 (a) which contains 4 break-
points marked with ‘*’. A particular execution will activate some of the breakpoints;
this information can be used by the slicer. For instance, a possible execution could
be {1, 13, 13, 13, 10, 13, 18} which means that the loop has been entered 5 times,
and both branches of the outer if-then-else have been executed.

A hybrid slicing criterion is a triple 〈s, v, {b1, . . . , bn}〉, where s and v have the
same meaning as in static slicing and the set {b1, . . . , bn} are the sequence of break-
points activated during a particular execution of the program.

Figure 4 shows the hybrid slice of our running example with respect to the slic-
ing criterion 〈16, {lines}, {1, 13, 13, 13, 18}〉. Figure 8 shows the hybrid slice with
respect to the slicing criterion 〈17, {chars}, {1, 13, 13, 13, 18}〉.

(1) read(text);

(4) chars = 1;

(6) c = getChar(text);

(7) while (c != ’\eof’)

(8) if (c == ’\n’)

(11) then chars = chars + 1;

(15) c = getChar(text);

(17) write(chars);

Fig. 8. Hybrid slice of Figure 1 (a) with respect to 〈17, {chars}, {1, 13, 13, 13, 18}〉

Question answered: For the set of executions defined by this set of breakpoints,
what program statements can influence these variables at this statement?

Main applications: Debugging.

2.9 Intraprocedural Slicing (Weiser, 1984)

The original definition of program slicing has been later classified as intraprocedural
slicing (i.e., the slice in Figure 1 (b) is an intraprocedural slice), because the original
algorithm did not take into account information related to the fact that slices can
cross the boundaries of procedure calls. In such cases, it generates wrong criteria
which are not feasible in the control flow of the program.

It does not mean that the original definition fails to slice multi-procedural pro-
grams; it means that it loses precision in such cases.

As an example, consider the program in Figure 9. A static backward slice of this
program with respect to the slicing criterion 〈16, {x}〉 includes all the statements
of the program except (11), (12) and (13). However, it is clear that statements (3)
and (8) included in the slice cannot affect the slicing criterion. They are included in
the slice because procedure sum influences the slicing criterion, and statements (3)
and (8) can influence procedure sum. However, they cannot transitively affect the
slicing criterion. In particular, the problem of Weiser’s algorithm is that the call
sum(x,1) causes the slice to go DOWN into procedure sum, and then it goes UP
to all the calls to sum including the irrelevant call sum(lines,1). This problem is
due to the fact that Weiser’s algorithm does not keep information about the calling
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context when it traverses procedures up and down. A deep explanation about this
problem can be found in [Gallagher 2004].

This loss of precision has been later solved by another technique called interpro-
cedural slicing (see Section 2.10).

(1) program main

(2) read(text);

(3) lines = 1;

(4) chars = 1;

(5) c = getChar(text);

(6) while (c != ‘\eof’)

(7) if (c == ‘\n’)

(8) then sum(lines,1);

(9) else increment(chars);

(10) c = getChar(text);

(11) write(lines);

(12) write(chars);

(13) end

(14) procedure increment(x)

(15) sum(x,1);

(16) return

(17) procedure sum(a, b)

(18) a = a + b;

(19) return

Fig. 9. Example of multi-procedural program

Question answered: What program statements can influence these variables at this
statement?

Main applications: Program comprehension, debugging, algorithmic debugging,
dead code removal, program segmentation, program analysis, software quality as-
surance, program differencing, software maintenance, testing, program paralleliza-
tion, module cohesion analysis, partial evaluation and program integration.

2.10 Interprocedural Slicing (Horwitz, Reps and Binkley, 1988)

In 1988, Horwitz et al. noted that the program dependence graph was not appro-
priate for representing multi-procedural programs and they proposed a new depen-
dence graph representation of programs called System Dependence Graph (SDG)
[Horwitz et al. 1988]. This new representation incorporates collections of proce-
dures with procedure calls, and it allows us to produce more precise slices from
multi-procedural programs because it has information available about the actual
procedures’ calling context.

For instance, consider Program 1 in Figure 24 together with the slicing criterion
〈3, {chars}〉. An intraprocedural static slice contains exactly the same statements
(Program 1). However, it is clear that procedure increment cannot affect the
slicing criterion (in fact it is dead code). Roughly speaking, this inaccuracy is due
to the fact that the call to procedure sum makes the slice include this procedure.
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Then, all the calls to this procedure can influence it and thus, procedure increment
is also included.

In contrast, an interprocedural static slice (Program 2) uses information stored
in the system dependence graph about the calling context of procedures. Hence, it
would remove procedure increment thus increasing the precision with respect to
the intraprocedural algorithms.

In order to understand what additional information the SDG provides about
the calling context of procedures we can observe the SDG of Figure 9 shown in
Figure 10.

ENTER Main (1)

(2) (3) (4) (5) (6) (11) (12)

(7) (10)

call Sum (8) call Inc (9)

a_in = lines b_in = 1 lines = a_out x_in = chars chars = x_out

ENTER Inc (14)

x = x_in x_out = xcall Sum (15)

a_in = x b_in = 1 x = a_out

ENTER Sum (17)

a = a_in a_out = ab = b_in (18) b_out = b

control intraprocedural flow interprocedural flow call, parameter-in, parameter-out

Fig. 10. System Dependence Graph of the program in Figure 9

The SDG of Figure 10 contains all the information needed to produce precise
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interprocedural slices. As the PDG, it contains the control and flow relations of
the program; but it also contains other relations: interprocedural flow relations are
represented by bold arrows; and call, parameter in and parameter out relations
are represented by dotted arrows. Moreover, new nodes are included to represent
the values of the parameters of all procedures when entering the procedure ( in
parameters: information going DOWN) and when leaving the procedure ( out pa-
rameters: information going UP). Together with the definition of the SDG, Horwitz
et al. [1988] introduced an algorithm to produce precise interprocedural slices.

Later, Gallagher [2004] proposed an alternative solution to solve the imprecision
of Weiser’s algorithm with interprocedural programs. He showed that it is possible
to produce precise interprocedural slices by using the PDG together with a call
graph.

Figure 11 shows the interprocedural slice of the program in Figure 9 with respect
to the slicing criterion 〈16, {x}〉.

(1) program main

(2) read(text);

(4) chars = 1;

(5) c = getChar(text);

(6) while (c != ‘\eof’)

(7) if (c == ‘\n’)

(9) else increment(chars);

(10) c = getChar(text);

(14) procedure increment(x)

(15) sum(x,1);

(16) return

(17) procedure sum(a, b)

(18) a = a + b;

(19) return

Fig. 11. Interprocedural slice of Figure 9 with respect to 〈16, {x}〉

2.10.1 Object-Oriented Slicing (Larsen and Harrold, 1996).

Object-oriented programs introduce additional features such as classes, objects,
inheritance, polymorphism, instantiation, etc, which cannot be handled with stan-
dard SDGs. Therefore, in order to slice object-oriented programs the SDG must
be extended. Larsen and Harrold [1996] proposed an extension of the SDG for
object-oriented programs which can still use the standard SDG algorithm. In the
SDGs proposed by Larsen and Harrold each single class is represented by a Class
Dependence Graph (ClDG) which represents control and data dependences in a
class without knowledge of calling environments. ClDGs can be reused in presence
of inheritance. That is, derived classes are built by constructing a representation
of new methods, and reusing the representation of inherited methods.

ClDGs take into account instantiation and polymorphism. When class C1 instan-
tiates class C2 (e.g., through a declaration or by using the operator new) there is
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an implicit call to C2’s constructor which must be represented in the ClDG. Simi-
larly, polymorphic method calls introduce an additional complexity which must be
solved in the ClDGs. For instance, consider the piece of code in Figure 12 where
class Worker extends class Person:

(...)

(1) Person *p;

(2) if (x>0)

(3) then p = new Person();

(4) else p = new Worker();

(...)

Fig. 12. Object-oriented code

Under the assumption that x is a parameter of the program, it is not possible
to know at compilation-time whether p will instantiate Worker or Person. Static
analysis must consider both possibilities. To solve this situation, the ClDG uses
a special vertex called polymorphic choice vertex to represent the dynamic choice
among the possible destinations of the method calls.

Another particularity of object-oriented programs is that variable references are
often replaced with method calls that simply return the value of the variable. There-
fore, in order to allow the user to slice on the values returned by a method, the
slicing criterion is slightly generalized. A static slicing criterion for an object-
oriented program is a pair 〈s,m〉 which specifies a statement s and a variable or a
method call m. If m is a variable, it must be defined or used at s; if m is a method
call, it must be called at s.

2.10.2 Aspect-Oriented Slicing (Zhao, 2002).

Aspect-oriented programs incorporate new concepts and associated constructs
namely join points, pointcut, advice, introduction and aspect. To cope with them,
Zhao [2002] proposed a new extension of the SDG called Aspect-oriented System
Dependence Graph (ASDG).

The ASDG is constructed by constructing the SDG of the non-aspect code of the
program, constructing dependence graphs for the aspect code of the program, and
connecting the graphs by adding special vertices and arcs. The result is the ASDG
which can be used in combination with the standard SDG algorithm.

Question answered: What program statements can influence these variables at this
statement?

Main applications: Program comprehension, debugging, algorithmic debugging,
dead code removal, program segmentation, program analysis, software quality as-
surance, program differencing, software maintenance, testing, program paralleliza-
tion, module cohesion analysis, partial evaluation and program integration.

2.11 Quasi-Static Slicing (Venkatesh, 1991)

While static slicing computes slices with respect to any execution, dynamic slicing
computes slices with respect to a particular execution. However, it is sometimes
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(e.g., in program understanding) interesting to produce a slice with respect to a
particular set of executions. Quasi-static slicing [Venkatesh 1991] can be used in
those applications in which a set of the program inputs are fixed, and the rest of the
inputs is unknown. This leads to a potentially infinite set of considered executions.

A quasi-static slicing criterion is a tuple 〈s, v, {a1, . . . , am}〉 where s and v have
the same meaning as in static slicing, and the set {a1, . . . , am} is a mapping from
(some of the) input variables to values. For instance, a quasi-static slicing crite-
rion for the program in Figure 1 (a) could be 〈18, {subtext}, {n = 0}〉. The slice
computed with respect to this criterion is shown in Figure 13.

(1) read(text);

(5) subtext = "";

(18) write(subtext);

Fig. 13. Quasi-static slice of Figure 1 (a) with respect to 〈18, {subtext}, {n = 0}〉

In our running example, the slice produced with respect to the slicing criterion
〈16, {lines}, {text = “hello world!\eof”}〉 would produce the slice shown in Fig-
ure 4.

Question answered: For the set of executions in which these inputs have these
values, what program statements can influence these variables at this statement?

Main applications: Debugging and program comprehension.

2.12 Call-Mark Slicing (Nishimatsu, Jihira, Kusumoto and Inoue, 1999)

Given a dynamic slicing criterion D which is comparable to a static slicing criterion
S, the minimal slice produced for D is smaller or equal to the minimal slice produced
for S. However, when slicing real programs, the minimal slice produced for D is
generally much smaller than the minimal slice produced for S [Binkley et al. 2006a;
Takada et al. 2002].

Nevertheless, this reduction of the size comes with a cost: computing dynamic
slices with standard algorithms is much more expensive than computing their static
counterparts. The reason is that computing an execution trace is necessary to
extract the dependences between actually executed statements.

Nishimatsu et al. [1999] proposed a new slicing technique named call-mark slicing
which allows us to reduce the cost of constructing dynamic slices though reducing
their precision. The objective is to establish a compromise between static slicing
and dynamic slicing in the following sense: call-mark slices are generally smaller
than static slices, but they are less expensive to be built than dynamic slices. To do
so, this technique uses dynamic information when constructing the PDG. A call-
mark slicing criterion is exactly the same as a static slicing criterion but augmented
with a complete input. Hence, 〈s, v, {a1, . . . , an}〉, where s is a statement, v is the
set of variables we are interested in, and the set {a1, . . . , an} are the initial values
of the program’s input. The main difference between this technique and dynamic
slicing is the way of using the dynamic information. Call-mark slicing uses the
dynamic information to determine whether or not each execution/procedure call
statement in the program is executed. These call-statements are marked. Then,
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this information is used to prune the PDG by removing those statements not marked
as executed. The result is a more precise PDG which can be traversed with standard
static techniques.

As an example, if we consider the program in Figure 9 and the slicing criterion
〈13, {lines}, {text = “hello world!\eof”, n = 4}〉 we get the call-nodes of the PDG
(9) and (15) as marked. Because node (8) is not marked, this statement is removed
from the slice (despite it statically affects variable lines at statement 13). The
call-mark slice produced is shown in Figure 14. Note that in this case we where
so lucky that the call-mark slice is as accurate as the corresponding dynamic slice;
but, with real programs, this is not usually the case.

(3) lines = 1;

(11) write(lines);

Fig. 14. Call-mark slice of Figure 9 with respect to 〈13, {lines}〉

Question answered: For this particular execution, what program statements can
influence these variables at this statement?

Main applications: Debugging, program comprehension and testing.

2.13 Dependence-Cache Slicing (Takada, Ohata and Inoue, 2002)

After the first attempt with call-mark slicing to define a slicing technique which
uses dynamic information to prune the PDG, Takada et al. [2002] proposed a new
slicing technique named dependence-cache slicing which also allows us to prune the
PDG with dynamic information. Similarly to call-mark slicing, dependence-cache
slicing uses the dynamic information to build a more precise PDG. In this new
PDG (called PDGDS [Takada et al. 2002]) the data dependence relations are those
which are possible with the input data provided. Therefore, many infeasible paths
are removed from the PDG. While their objective is the same, call-mark slicing
and dependence-cache slicing are very different in the way the prune the PDG. On
the one hand, call-mark slicing deletes nodes from the PDG. On the other hand,
dependence-cache slicing deletes edges. In particular, dependence-cache slicing con-
structs the PDGDS in two steps: First, (i) a standard PDG is constructed without
adding data dependence edges; and then, (ii) a data dependence collection algo-
rithm is used to add data edges to the PDGDS which are feasible in the considered
execution.

For instance, the PDGDS of our running example constructed from the input data
text = “hello world!\eof”, n = 4 would be exactly the same as the PDG in Figure 3
but removing the data dependence edges (3)→(9), (4)→(10), (9)→(16), (10)→(11)
and (10)→(17); because statements (9) and (10) are never executed. Therefore, if
we use the slicing criterion 〈16, {lines}, {text = “hello world!\eof”, n = 4}〉 we
get the dependence-cache slice of Figure 4. Note that, in this case, deleting those
edges from the PDG is enough as to get the same precision as a dynamic slicer.

Let us now consider for the same program an extreme example where the input
data is the empty text, i.e., text = “\eof”, n = 0. The PDGDS for this example is
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shown in Figure 15. An algorithm to compute such a PDG can be found in [Takada
et al. 2002].

Fig. 15. PDGDS of the program in Figure 1 (a) constructed with respect to the input data
text = “\eof”, n = 0

An experimental comparison by [Takada et al. 2002] has shown that dependence-
cache slices are, on average, smaller than the corresponding call-mark slices. The
same experiments also show that dependence-cache slices are less expensive to be
computed.

Question answered: For this particular execution, what program statements can
influence these variables at this statement?

Main applications: Debugging, program comprehension and testing.

2.14 Simultaneous Slicing (Hall, 1995)

There are two different views for simultaneous slicing. On the one hand, the first
definition was simultaneous dynamic slicing—this technique, has been also called
union slicing [Beszédes et al. 2002] in the literature—; where a slice is computed
with respect to a set of inputs for the program and thus the slice can be computed
from the dynamic slices computed for each input. However, the construction of
such a slice does not simply reduce to the union of slices (this is not sound) and
it requires the use of more elaborated methods such as the Simultaneous Dynamic
Slice (SDS) procedure [Hall 1995]. On the other hand, Danicic and Harman [1996]
define simultaneous slicing as a generalization of program slicing in which a set of
slicing criteria is considered3. Hence, slices are computed with respect to a set of
different points rather than a set of inputs.

3Probably, Weiser already noticed that his algorithm could work with multiple points. However,

until 1996 this idea was not exploited.
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2.14.1 Simultaneous Dynamic Slicing (Hall, 1995). Similarly to quasi-static
slicing, simultaneous dynamic slicing computes a slice with respect to a partic-
ular set of executions; however, while quasi-static slicing fixes a set of the program
inputs leaving the rest unknown, in simultaneous dynamic slicing [Hall 1995] a set
of “complete” inputs is known. Thus, a simultaneous dynamic slicing criterion can
be seen as a set of dynamic slicing criteria.

A simultaneous dynamic slicing criterion has the form: 〈si, v, {I1, . . . , In}〉 where
i is the number of occurrence of statement s in the execution history, v is the
set of variables of interest and {I1, . . . , In} is a set of complete inputs for the
program. For instance, a slice of Figure 1 (a) with respect to the slicing criterion
〈1692, {lines}, {I1, I2}〉 where I1 = (text = “hello world!\eof”, n = 4) and I2 =
(text = “hello\nworld!\n \eof”, n = 0) is depicted in Figure 1 (b).

Note that, in contrast to quasi-static slicing where the set of considered executions
can be infinite, in simultaneous dynamic slicing it is always finite.

Question answered: For these particular executions, what program statements can
influence these variables at this statement?

Main applications: Program reuse, program redesign and program maintenance.

2.14.2 Simultaneous (Static) Slicing (Danicic and Harman, 1996). Although
Weiser’s algorithm is able to produce slices starting at many slicing criteria points,
the first to talk about simultaneous slicing from a static point of view were Danicic
and Harman.

In Danicic and Harman‘s definition of simultaneous slicing, a slicing criterion is
〈{(s1, v1), . . . , (sn, vn)}〉, where (si, vi), 1 ≤ n, are static slicing criteria. Therefore,
clearly, simultaneous slicing is a generalization of static slicing where a set of points
can be considered instead of only one. Following our running example, a simulta-
neous slice with respect to the slicing criterion 〈{(9, lines), (16, lines)}〉 is shown in
Figure 1 (b).

This slice has been computed by unioning the static slices for 〈9, lines〉 and
〈16, lines〉. However, although the union of static slices produces a correct slice
in practice, De Lucia et al. [2003] showed that in theory—if we rigidly fit to the
definition of slice—“unions of slices are not slices”. A sample of this theoretic
phenomenon can be found in Figures 1 and 2 of [De Lucia et al. 2003].

It should be clear that, although the work by Danicic and Harman focused on
static slicing, their definition of simultaneous slicing can be easily adapted to other
forms of slicing (see Section 3).

In 1993, Lakhotia [1993] introduced a new kind of slicing criterion in order to
compute module cohesion. The aim of his work was to collect the module’s com-
ponents which contribute to the final value of the output variables of this module.
Therefore, in this scheme, the slicing criterion is formed by a set of variables. It is
called “end slicing” because the slicing point is the end of the program. Then, an
end slicing criterion is formed by a set of variables of the program, and thus it can
be represented as a set of slicing criteria (i.e., it is a particular case of simultaneous
static slicing).

Question answered: What program statements can influence these variables at these
statements?

ACM Journal Name, Vol. V, No. N, Month 20YY.



Preparing Articles for the ACM Transactions · 19

Main applications: Program comprehension, debugging and module cohesion anal-
ysis.

2.15 Interface Slicing (Beck and Eichmann, 1993)

Interface slicing [Beck 1993; Beck and Eichmann 1993] is a slicing technique which
is applied to a module in order to extract a subset of the module’s functionality. A
module can contain many functions and procedures (in the following, components)
that can be used by the system which imports this module. The collection of
component names form the interface of the module.

When a programmer imports the module, she usually uses only a part of it. The
rest of unused components become dead code. Therefore, the basic idea of interface
slicing is to allow the programmer to produce a new module which only contains
the desired components. To do this, the programmer only has to specify which
part of the interface (i.e., which module components) she is interested in. Then,
an interface slicer produces from the original module a new module which only
contains the desired components.

An interface slicing criterion has the form 〈f〉, where f is a set of function or
procedure names of the module’s interface. For instance, consider the module of
Figure 16 (whose interface is [line−char−count, increment, sum, decrement and
rem]) and the slicing criterion 〈{rem, line−char−count}〉. The slice produced (the
new module) would be formed by line (1) and procedures rem, line− char− count,
increment and sum. increment and sum are included in the slice because they
are referenced by line− char − count.

(1) module operations (15) procedure increment(x)

(16) sum(x,1);

(2) procedure line-char-count() (17) return

(3) read(text);

(4) lines = 1; (18) procedure sum(a, b)

(5) chars = 1; (19) a = a + b;

(6) c = getChar(text); (20) return

(7) while (c != ‘\eof’)

(8) if (c == ‘\n’) (21) procedure decrement(x)

(9) then sum(lines,1); (22) rem(x,1);

(10) else increment(chars); (23) return

(11) c = getChar(text);

(12) write(lines); (24) procedure rem(a, b)

(13) write(chars); (25) a = a - b;

(14) return (26) return

Fig. 16. Module which exports five procedures

Hence, a component of the module can belong to the slice because it is part of
the desired interface, or because it is used (maybe transitively) by a desired part
of the interface. Therefore, the process of interface slicing is essentially the same
as conventional slicing but where the interesting dependences are defined between
components and global variables rather than between statements. Hence, it is the
same problem but with a bigger granularity level.
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It is important to note that each component of the slicing criterion specifies a
point in the module. In principle, interface slicing could be thought as a particular
instance of simultaneous static slicing where multiple points are implicitly specified
in the slicing criterion. In particular, each component name f could be converted
to a static slicing criterion 〈s, v〉 where s is the last statement of procedure f , and
v contains all the variables appearing in f . However, the precision of both methods
is different.

While a static slice taken from 〈s, v〉 would remove dead code appearing in f , an
interface slice produced from 〈f〉 would keep the dead code in f , because interface
slice extracts all the statements in relevant components. Hence, an interface slice
is a superset of a simultaneous static slice taken from equivalent slicing criteria.

Question answered: What parts of this module do I need to reuse these procedures?

Main applications: Reverse engineering and code reuse.

2.16 Program Dicing (Lile and Weiser, 1987)

Program dicing [Lyle and Weiser 1987] was originally defined as: “remove those
statements of a static slice of a variable that appears to be correctly computed from
the static slice of an incorrectly valued variable”. From this definition it is easy to
deduce that program dicing was originally defined for debugging. In essence, a dice
is the set difference between at least two slices; typically, one of an incorrect value
and the other of a correct value. The main idea is that after some tests we can find
some correct and incorrect outputs. The statements in a slice of an incorrect output
that do not belong to the slice of a correct output are more likely to be wrong. As a
consequence, a program dicing criterion specifies n points in the program, e.g., one
for the correct computation and n − 1 for the wrong computations. For instance,
a backward static program dicing criterion for the program in Figure 1 (a) could
be 〈(16, {lines}), {(17, {chars})}〉; its meaning is that variable lines at line 16
produced an incorrect value (its slice contains the statements 1,3,6,7,8,9,15 and 16)
whereas variable chars at line 17 produced a correct value (its slice contains the
statements 1,4,6,7,8,10,11,15 and 17). Note that only one point has been specified
for the correct computation, but a set is possible. The dice computed with respect
to this criterion is shown in Figure 5.

In contrast to program slicing where a dynamic slice is included in its correspond-
ing static slice, a dynamic dice is not necessarily included in its corresponding static
dice. Chen and Cheung [1993] investigated under what conditions a dynamic dice
is more precise than a static dice.

Question answered: What program statements can influence these variables at this
statement but they do not influence these other variables?

Main applications: Debugging.

2.17 Stop-List Slicing (Gallagher, Binkley and Harman, 2006)

Stop-list slicing [Gallagher et al. 2006] is a slicing technique similar to dicing; be-
cause both of them use variables on which the programmer is not interested to
reduce the size of the slice. Usually, programs contain two kinds of variables:
those which perform computations (e.g., output variables), and those which help to
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perform computations (e.g., auxiliary variables such as temporaries, counters and
indices). Clearly, the importance of these variables is different depending on the
purpose of the programmer. Hence, the objective of stop-list slicing is to allow the
programmer to remove from the slice those variables which are of no interest.

Stop-list slicing augments the slicing criterion with a new list of variables: the set
of variables that are considered uninteresting. Therefore, a stop-list slicing criterion
has the form 〈s, v, vsl〉 where s and v have the same meaning as in static slicing; and
vsl is the stop-list variable set, the variables of no interest. The stop-list variable set
is used to purge the dependence graph by removing all the simple assignments to
the variables in the stop-list set and all the data dependences starting from them.
Note that control dependences are not removed.

After the dependence graph is purged, the slice is computed as usual with the
standard graph reachability algorithm. Clearly, since some parts of the dependence
graph are missing, the slice produced is smaller.

As an example, a stop-list slicing criterion for our running example could be
〈16, {lines}, {c}〉 which denotes that the computation of variable c is uninteresting.
The slice produced for this criterion is shown in Figure 17.

(3) lines = 1;

(7) while (c != ‘\eof’)

(8) if (c == ‘\n’)

(9) then lines = lines + 1;

(16) write(lines);

Fig. 17. Stop-list slice of the program in Figure 1 with respect to the criterion 〈16, {lines}, {c}〉

Question answered: What program statements can influence these variables at this
statement (but I am not interested in the statements needed for the computation
of the value of this set of other variables)?

Main applications: Program comprehension and debugging.

2.18 Barrier Slicing (Krinke, 2003)

Barrier slicing was introduced by Jens Krinke [2003; 2004] as a novel form of slicing
where the programmer has more control over the construction of the slice. In par-
ticular, in this technique, the programmer can specify which parts of the program
can be traversed when constructing the slice and which parts cannot. This can be
useful in debugging. For instance, programmers often reuse code which is known
to be correct. When debugging, the programmer might want to exclude this code
from the slice (because it cannot contain the bug which she is looking for).

This ability can be used by including “barriers” in the slicing criterion. A bar-
rier is specified with a set of nodes (or edges) of the PDG that cannot be passed
during the graph traversal. Therefore, a barrier slice can be computed by stopping
the computation of the transitive closure of the program dependencies whenever
a barrier is reached. A usual barrier slicing criterion is a tuple 〈s, v, b〉 where s
and v have the same meaning as in static slicing, and b is a collection of statement
numbers denoting the barriers. For instance, in our running example we could use
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the slicing criterion 〈(16, {lines}), {8}〉 which can be interpreted as: From those ex-
ecutions that do not execute the if-then-else, what statements do influence variable
“lines” at line 16? The slice produced for this criterion is depicted in Figure 4.

Question answered: What program statements can influence these variables at this
statement from this set of other statements?

Main applications: Program comprehension, remote software trusting and debug-
ging.

2.19 Conditioned Slicing (Ning, Engberts and Kozaczynski, 1994)

Although Ning et al. [1994] were the first to work with conditioned slices; this
technique was formally defined for the first time by Canfora et al. [1994].

Similarly to simultaneous dynamic slicing and quasi-static slicing, conditioned
slicing [Canfora et al. 1994; Canfora et al. 1998] computes slices with respect to
a set of initial states of the program. The original definition proposed the use
of a condition (from the programming language notation) to specify the set of
initial states. Posteriorly, Field et al. [1995] proposed the same idea (known as
parametric program slicing or constraint slicing) based on constraints over
the initial values. Finally, De Lucia et al. [1996] proposed the condition to be
a universally quantified formula of first-order predicate logic. In this approach,
which is a generalization of the previous works, a conditioned slicing criterion is a
quadruple 〈i, F, s, v〉 where i is a subset of the input variables of the program, F
is a logic formula on i, s is a statement of the program and v is a subset of the
variables in the program.

The logic formula F identifies a set of the possible inputs of the program which
could be infinite. For instance, consider the conditioned slicing criterion 〈(text, n), F,
18, {subtext}〉 where F = (∀c ∈ text, c 6= ‘\n’ . n > 0); the conditioned slice of the
program in Figure 1 (a) with respect to this criterion is shown in Figure 18.

It should be clear that conditioned slicing is a generalization of both simultaneous
dynamic slicing and quasi-static slicing because their respective slicing criteria are
a particular case of a conditioned slicing criterion. As an advantage, conditioned
slicing allows us to specify relations between input values. For instance, condition
F above specifies that if text is a single line, then n must be higher than 0.

(1) read(text);

(2) read(n);

(5) subtext = "";

(6) c = getChar(text);

(7) while (c != ‘\eof’)

(8) if (c == ‘\n’)

(12) if (n != 0)

(13) then subtext = subtext ++ c;

(14) n = n - 1;

(15) c = getChar(text);

(18) write(subtext);

Fig. 18. Conditioned slice of Figure 1 (a) with respect to 〈(text, n), F, 18, {subtext}〉
where F = (∀c ∈ text, c 6= ‘\n’ . n > 0)
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It is important to note that the claim “conditioned slicing generalizes dynamic
slicing” is imprecise. To be more precise, the correct sentence should be “path-
aware conditioned slicing generalizes path-aware dynamic slicing” or “path-unaware
conditioned slicing generalizes path-unaware dynamic slicing”. But the sentence
“path-unaware conditioned slicing generalizes path-aware dynamic slicing” is not
true (see Section 2.3). Therefore, in the following, whenever we say that technique A
is a generalization of technique B, we will implicitly assume that both techniques use
equal non-mentioned conditions (i.e., both are static or dynamic, both are forward
or backward, both are path-aware or path-unaware, etc.). Section 3 studies these
conditions and its possible values to make two slicing techniques comparable.

For instance, following our running example, the conditioned slicing criterion
〈(text), F, 16, {lines}〉 where F = (∀c ∈ text, c 6= ‘\n) generalizes the dynamic
slicing criterion of Figure 4. Here the inputs considered are all those texts with a
single line—an infinite set—and thus the corresponding slice is shown in Figure 4.

Question answered: For the initial states which satisfy this condition, what state-
ments can influence these variables at this statement?

Main applications: Debugging, software reuse, ripple effect analysis, legacy code
understanding and program comprehension.

2.20 Backward Conditioning Slicing (Fox, Harman, Hierons and Danicic, 2001)

The definition of conditioned slicing defined by De Lucia et al. has been later
referred to as forward conditioning slicing because the specified condition affects
the initial state—the input—, and this condition is used forwards to determine
which statements are executed when the condition is true. Therefore, forward
conditioning is able to answer questions of the form “what happens when the initial
state is s?”

Fox et al. [2001] noted that the condition could be placed at any point on the
program. This approach is called backward conditioning slicing because the
specified condition is used backwards in the program to determine which statements
are needed to make the condition true. Therefore, backward conditioning is able
to answer questions of the form “how could the program get into state s?”. As
happens with conventional forward slicing, backward conditioning slicing requires
symbolic execution and theorem proving mechanisms.

Together with the definition of backward conditioning slicing, Fox et al. intro-
duced its generalization to consider a set of conditions instead of one. As a result,
the backward conditioning slicing criterion is defined as a set of pairs where each
pair is either

(1) a set of variables and a program point (a traditional static slicing criterion) or

(2) a condition and a program point.

In our running example we could produce the slice shown in Figure 19 from the
slicing criterion 〈{({lines}, 16), (lines = 1, 16)}〉.

As a program comprehension tool, backward conditioning slicing can be used to
check that some situations are not possible in our program. For instance, the back-
ward conditioning slice of Figure 1 (a) with respect to the backward conditioning
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(3) lines = 1;

(16) write(lines);

Fig. 19. Backward conditioning slice of Figure 1 (a) w.r.t. 〈{({lines}, 16), (lines = 1, 16)}〉

slicing criterion 〈{({lines}, 18), (lines = 0, 18)}〉 would be empty, denoting that it
is not possible to reach the state “(lines=0,18)”.

Question answered: What statements can influence these variables at this state-
ment when these conditions at these (other) statements are satisfied?

Main applications: Program specialization and program comprehension.

2.21 Pre/Post Conditioned Slicing (Harman, Hierons, Fox, Danicic and Howroyd,
2001)

Pre/post conditioned slicing [Harman et al. 2001] is a generalized form of condi-
tioned slicing which combines forward and backward conditioning; therefore, it uses
at the same time both the forward conditions (called preconditions) of forward con-
ditioning slicing and the backward conditions (called postconditions when negated)
of backward conditioning slicing. In pre/post conditioned slicing slices are con-
structed by removing all the statements except those which are in the execution
paths determined by the precondition and that can lead to the satisfaction of the
negation of the postcondition. The reason for negating the postcondition is the
verification that the program always satisfies it. For instance, if we want to check
that a program executed in a initial state satisfying precondition C1 always ends in
a final state satisfying postcondition C2, we would produce a slice with respect to
the forward condition C1 and the backward condition ¬C2. Then, the slice should
be empty. If it is not, the statements in the slice are those which could lead to the
violation of the postcondition.

From the previous discussion it is easy to deduce that a pre/post conditioned slic-
ing criterion can use at the same time forward and backward conditions; moreover,
these condition can be more that two if we allow to insert conditions at arbitrary
program points. Therefore, to distinguish between forward and backward condi-
tions, a special arrow notation is used [Fox et al. 2001] where ↓ dce denotes a forward
condition c, and ↑ dce denotes a backward condition c.

A pre/post conditioned slicing criterion is equal to a backward conditioning
slicing criterion, except that each condition pair in the criterion is augmented
with the arrow notation. In our running example we could use the criterion
{({lines}, 16), (↓ d‘\n’∈ texte, 1), (↑ dlines <= 1e, 18)} which would produce the
empty slice to denote that whenever variable text contains a ‘\n’ in the initial state,
variable lines must be greater than 1 in the final state.

Question answered: For those executions whose inputs satisfy this condition, what
statements can influence these variables at this statement when these other condi-
tions at these (other) statements are satisfied?

Main applications: Program comprehension, reuse and verification.
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(1) read(text);

(6) c = getChar(text);

(7) while (c != ‘\eof’)

(8) if (c == ‘\n’)

(9) then lines = lines + 1;

Fig. 20. Path slice of the program in Figure 1 (a) with respect to 〈9, {1, 2, 3, 4, 5, 6, 7, 8, 9}〉

2.22 Path Slicing (Jhala and Majumdar, 2005)

Path slicing [Jhala and Majumdar 2005] is a program slicing-based technique that
tries to answer the questions:

(1) given an execution path, which statements can possibly influence reachability of
a given statement s?,

(2) why this path is never executed?, and

(3) why my program never executes statement s in this path?

From these questions, it is easy to realize that path slicing is computed with
respect to a path in the CFG. It should be clear that a path in the CFG corresponds
to a set of possible infinite inputs. Therefore, path slicing is different from static
slicing where all possible executions are considered; and it is different from dynamic
slicing where only one execution is considered. Moreover, path slicing is different
from quasi-static slicing, simultaneous dynamic slicing, hybrid slicing and pre/post
conditioned slicing because all of them consider feasible computations. In contrast,
path slicing can handle infeasible computations.

A path slicing criterion is a pair 〈s, p〉, where s is the statement of interest, and
p = {s1, . . . , sn} is a sequence of statements defining a possibly infeasible subpath
in the CFG of the program. The path slice is then computed by removing from p
those statements that cannot influence the reachability of s.

For instance, a path slice of the program in Figure 1 (a) with respect to the path
slicing criterion 〈9, {1, 2, 3, 4, 5, 6, 7, 8, 9}〉 is shown in Figure 20.

Statements 7 and 8 are needed to execute 9 (due to control dependence). State-
ment 6 is needed to execute 7, and 1 to execute 6 (due to data dependence).

The definition of a path slice is the following ([Jhala and Majumdar 2005]): A
slice of a path π is a subsequence of the edges of π such that (1) (complete) whenever
the sequence of operations labeling the subsequence is feasible, the target location is
reachable modulo termination, and (2) (sound) whenever the sequence of operations
labeling the subsequence is infeasible, the path is infeasible.

This means that one limitation of path slicing is that it avoids the difficult ques-
tion of statically reasoning about termination. Therefore, researchers that work
with nonterminating programs should take into account that the feasibility of a
path slice guarantees that either the target location is reachable, or all states that
can execute the path slice, cause the program to enter in an infinite loop.

The interesting part of path slicing is that it can slice infeasible paths, and thus
reason about questions like why a path is never executed? For instance, consider
the program in Figure 21 (a) where the statements of function bigFunction are
skipped for simplicity.
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(1) read(x); (1) read(x);

(2) if (x>0) (2) if (x>0)

(3) y=1; (3) y=1;

(4) z = bigFunction(y);

(5) if (x>0) (5) if (x>0)

(6) if (y=0) (6) if (y=0)

(7) write("ERROR") (7) write("ERROR")

(a) Example program (b) Path slice

Fig. 21. Example program (a) and its path slice (b) with respect to 〈7, {1, 2, 3, 4, 5, 6, 7}〉

In this program, statement 7 is never executed because if x > 0 holds in statement
2, then variable y is set to 1; hence, y cannot be 0 at statement 6. Therefore, the
path {1, 2, 3, 4, bigFunction, 5, 6, 7} is infeasible. However, path slicing allows us
to produce a slice with respect to this path. This can be useful in debugging to
reason why this path is infeasible when it should be. It also allows us to reason
about why statement (7) is not executed in this path. As an example, Figure 21 (b)
shows the path slice of the program in Figure 21 (a) with respect to the criterion
〈7, {1, 2, 3, 4, 5, 6, 7}〉. This slice shows that the code in function bigFunction can
not influence execution of statement 7.

In our running example, the path slicing criterion 〈16, {1, 2, 3, 4, 5, 6, 7, 16, 17, 18}〉
yields the empty slice because none of the previous statements can avoid the exe-
cution of statement 16.

Question answered: Given this execution path, which statements can possibly in-
fluence reachability of a this statement?

Main applications: Debugging and testing.

2.23 Abstract Slicing (Hong, Lee and Sokolsky, 2005)

Static slicing is able to determine for each statement in a program whether it affects
or is affected by the slicing criterion; however, it is not able to determine under
which variable values do the statements affect or are affected by the slicing criterion.
This problem is overcome by abstract slicing [Hong et al. 2005].

Essentially, abstract slicing extends static slicing with predicates and constraints
that are processed with an abstract interpretation and model checking based tech-
nique. Given a predicate of the program, every statement is labeled with the value
of this predicate under the statement affects (or is affected by) the slicing criterion.
Similarly, given a constraint on some variables of the program, every statement is
labeled indicating if they can or cannot satisfy the constraint. Clearly, static slicing
is a particular instance of abstract slicing where neither predicates nor constraints
are used. Moreover, in a way similar to conditioned slicing, abstract slicing is able
to produce slices with respect to a set of executions by restricting the allowed inputs
of the program using constraints.

In abstract slicing, a slicing criterion has the form 〈s, P, C〉 where s is a statement
of the program and P and C are respectively a predicate and a constraint for some
statements defined over some variables of the program. For instance, C could be
((1), y > x), meaning that, at statement (1), the condition y > x holds. Based on
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previous slicing techniques, Hong et al. adapted this technique to forward/backward
slicing and chopping, giving rise to abstract forward/backward slicing and abstract
chopping.

As an example, consider the program in Figure 22 (a); the abstract slice of
this program with respect to the slicing criterion 〈(6), y > x, True〉 is depicted
in Figure 22 (b). Here, we are interested in knowing the condition under each
statement affects the slicing criterion; we do not impose any condition. In the
slice we see that the statement labeled with ‘[true]’ will always affect the slicing
criterion, ‘max = x’ will only affect the slicing criterion if y ≤ x, and the ‘if-then’
statements will affect the slicing criterion if y > x.

(1) read(x); (1) read(x); [true]

(2) read(y); (2) read(y); [true]

(3) max = x; (3) max = x; [not(y>x)]

(4) if (y > x) (4) if (y > x) [y>x]

(5) then max = y; (5) then max = y; [y>x]

(6) write(max); (6) write(max); [true]

(a) Example program (b) Abstract slice

Fig. 22. Abstract slicing: (b) is an abstract slice of (a) with respect to 〈(6), y > x, True〉

In our running example, we can produce a slice with respect to the slicing criterion
〈16, c =‘\n’, [(1), text = “hello world!\eof”]〉. This criterion uses the same dynamic
input as in previous criteria thanks to the constraint used. Therefore, with this
input the slice produced would be similar to the one shown in Figure 4 (a dynamic
slice). This can be seen in Figure 23 by looking at the conditions on the right.
All the statements labeled with false cannot affect statement 16. Moreover, the
abstract slice provides additional information: it says for each statement in the slice
if the condition c =‘\n’ will be satisfied or not.

Question answered: Under which variable values do the program’s statements affect
or are affected by the slicing criterion?

Main applications: Program comprehension.

2.24 Amorphous Slicing (Harman and Danicic, 1997)

All approaches to slicing discussed so far have been based on two assumptions: the
slice preserves (part of) the semantics of the program, and it is “syntax preserving”,
i.e., the slice is a subset of the original program statements. In contrast, amorphous
slices [Harman and Danicic 1997] preserve the semantics restriction but they drop
the syntactic restriction: amorphous slices are constructed using some program
transformation which simplifies the program and which preserves the semantics
of the program with respect to the slicing criterion. In the literature (see, e.g.
[Ward 2002; 2003; Ward and Zedan 2007], when a slicing technique is restricted
to statement deletion it is also referred to as syntactic slicing, as opposed to
semantic slicing where only the semantic restriction must be preserved.

The syntactic freedom allows amorphous slicing to perform greater simplifica-
tions, thus often being considerably smaller than conventional program slicing.
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(1) read(text); [false]

(2) read(n); [false]

(3) lines = 1; [c!=‘\n’]

(4) chars = 1; [false]

(5) subtext = ""; [false]

(6) c = getChar(text); [false]

(7) while (c != ‘\eof’) [false]

(8) if (c == ‘\n’) [false]

(9) then lines = lines + 1; [false]

(10) chars = chars + 1; [false]

(11) else chars = chars + 1; [false]

(12) if (n != 0) [false]

(13) then subtext = subtext ++ c; [false]

(14) n = n - 1; [false]

(15) c = getChar(text); [false]

(16) write(lines); [c!=‘\n’]

(17) write(chars); [false]

(18) write(subtext); [false]

Fig. 23. Abstract slice of Figure 1 (a) with respect to 〈16, c =‘\n’, [(1), text = “hello world!\eof”]〉

These simplifications are very convenient in the context of program comprehension
where the user needs to simplify the program as much as possible in order to un-
derstand a part of the semantics of the program having the syntax less importance.

For instance, consider Program 1 in Figure 24 together with the slicing criterion
〈3, {chars}〉. An intraprocedural static slice of this program would contain the
whole program (Program 1). In contrast, an interprocedural static slice would
remove statements 4, 5 and 6 (Program 2). Finally, its amorphous slice would be
Program 3. It should be clear that the three programs preserve the same semantics,
but Program 3 has been further simplified by partially evaluating [Jones 1996] some
expressions (thus changing the syntax) of Program 1. Clearly, Program 3 is much
more understandable than Program 1 and Program 2.

(1) program main (1) program main (1) program main

(2) chars = sum(chars,1); (2) chars = sum(chars,1); (2) chars = chars + 1;

(3) end (3) end (3) end

(4) procedure increment(a)

(5) sum(a,1);

(6) return

(7) procedure sum(a,b) (7) procedure sum(a,b)

(8) a = a + b; (8) a = a + b;

(9) return (9) return

Program 1 Program 2 Program 3

Fig. 24. Example of amorphous slicing

It is known [Harman and Danicic 1997] that amorphous static slicing subsumes
traditional static slicing, i.e., there will always be an amorphous static slice which is
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at least as thin as the static slice constructed for the same slicing criterion. In addi-
tion, there will usually be an amorphous slice which is thinner than the associated
static slice. This leads to the search for the minimal amorphous slice. However, as
proved by Harman and Danicic [Harman and Danicic 1997], the computation of the
minimal amorphous static slice of an arbitrary program is, in general, undecidable.

Amorphous slicing generalizes static slicing with respect to the “syntax preserv-
ing” dimension. While static slicing is restricted to one syntax (the one of the
original program) amorphous slicing can produce slices with different syntax modi-
fications. This new dimension can be combined with other techniques besides static
slicing. For instance, conditioned amorphous slicing introduces the non-syntax pre-
serving feature of amorphous slicing into the conditioned slicing technique (see Sec-
tion 2.19). To continue with our running example, Figure 25 shows a conditioned
amorphous slice of the program in Figure 9 with respect to the slicing criterion
〈(text), (text = “hello\nworld!\n \eof”), 13, {lines}〉.

(1) program main

(2) read(text);

(3) lines = 1;

(5) c = getChar(text);

(6) while (c != ‘\eof’)

(7) if (c == ‘\n’)

(8) then lines = lines +1;

(10) c = getChar(text);

(11) write(lines);

Fig. 25. Conditioned amorphous slice of the program in Figure 9 with respect to the slicing

criterion 〈(text), (text = “hello\nworld!\n \eof”), 13, {lines}〉

Question answered: Can this program be changed to only compute these variables
at this statement?

Main applications: Program comprehension.

2.25 Decomposition Slicing (Gallagher and Lyle, 1991)

Decomposition slicing [Gallagher and Lyle 1991] was introduced in the context of
software maintenance to capture all computation on a given variable. The objec-
tive of this technique is to extract those program statements which are needed to
compute the values of a given variable. Therefore, a decomposition slicing crite-
rion is composed of a single variable v. The slice is then built from the union of
the static backward slices constructed for the criteria {〈n1, v〉, . . . , 〈nm, v〉, 〈end, v〉}
where {n1, . . . , nm} is the set of lines in which v is output and end is the “End” of
the program. It should be clear that decomposition slicing is an instance of simul-
taneous slicing where the set of slicing criteria is derived from the variable and the
program.

A decomposition slice of the program in Example 1 (a) with respect to the slicing
criterion 〈lines〉 is shown in Figure 1 (b).

Question answered: What statements of the program can affect this variable?
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Main applications: Software maintenance, testing and program comprehension.

2.26 Concurrent Slicing (Cheng, 1993)

Since Cheng [Cheng 1993] defined the first approach, there have been many works
[Krinke 1998; Nanda and Ramesh 2000; Müller-Olm and Seidl 2001; Krinke 2003b;
Giffhorn and Hammer 2007] that face the complexity introduced by concurrent
programs in program slicing.

Concurrent programs cannot be represented with standard graph representations
such as the PDG or the SDG, because they allow that some parts of the program
are executed in parallel. These pieces of code that can be executed in parallel are
called threads.

In order to represent threads, the CFG and the PDG are extended with special
nodes that represent the parallel execution of threads. These extensions are called
respectively threaded CFG (tCFG) and threaded PDG (tPDG).

Threads introduce an additional complexity to program slicing when they can be
synchronized or they can communicate (e.g., through the use of variables), because
they introduce a new kind of dependence (called interference) between statements.

A statement s1 is interference dependent on a statement s2 if

—s2 defines a variable which is used in s1, and

—s1 and s2 may be potentially executed in parallel.

The main problem of interference is that it is not transitive as control and data
dependence are. Therefore, slicing algorithms for concurrent programs (see, e.g.,
[Nanda and Ramesh 2000; Krinke 2003b]) must provide a special treatment for in-
terference. An evaluation of slicing algorithms for concurrent programs is presented
in [Giffhorn and Hammer 2007].

Question answered: What program statements can influence these variables at this
statement in this concurrent program?

Main applications: Debugging and program comprehension.

2.27 Incremental Slicing (Orso, Sinha and Harrold, 2001)

Incremental slicing [Orso et al. 2001b] is based on the idea that not all data depen-
dences are equal. In particular, Orso et al. [2001a] distinguish between 24 different
types of data dependences. Their classification is based on the different levels of
complexity that can be introduced by pointers in a program. For instance, consider
Program 1 in Figure 26.

Here, variable x is only defined at statement (2), and it is used for the first time
at statement (5). Therefore, x at statement (5) data depends on x at statement
(2). Note that in all executions the value of x at statement (5) will be the same
as the value of x at statement (2). In contrast, the definition in statement (8) can
modify either y or z depending on how the predicate in statement (5) evaluates.
Hence these definitions can be classified differently: the definition of y (or z) at
statement (8) is a possible definition whereas the definition of x at statement (2)

is a definite definition. Similarly, uses can be also classified as possible or definite.
The combination of these types of definitions, uses and possible paths where they
could appear gives rise to 24 different types of data dependences.
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(1) program main (1) program main (1) program main

(2) read(x); (2) read(x);

(3) y = 0; (3) y = 0;

(4) z = 1;

(5) if (x > 5) (5) if (x > 5)

(6) then p = &y; (6) then p = &y;

(7) else p = &z; (7) else p = &z;

(8) *p = *p + 1; (8) *p = *p + 1; (8) *p = *p + 1;

Program 1 Program 2 Program 3

Fig. 26. Example program with a pointer p and its incremental slices with respect to the slicing

criteria 〈8, y, def use〉 (program 2) and 〈8, y, pos use〉 (program 3)

The objective of this technique is to allow the user to focus on a particular type
of data dependence. This can be useful, e.g., for program comprehension where the
user can initially ignore “weak” data dependences and concentrate on “strong” data
dependences. Then, she can incrementally incorporate weaker data dependences in
the slice. This approach allows us to produce smaller and thus easier to understand
slices. Alternatively, incremental slicing can be used in debugging by using the
opposite strategy. The programmer can produce slices by only considering weak
data dependences which are less obvious and, thus, more likely to be buggy.

An incremental slicing criterion is a triple 〈s, v, t〉 which specifies a statement s,
a set of variables v and a set of types of data dependences t. Hence, an incremental
slice contains those statements that may affect, or be affected by, the values of the
variables in v at s through transitive control or specified types of data dependences.

As an example, the slice of Program 1 in Figure 26 with respect to the slic-
ing criterion 〈8, y, all〉 where all stands for all types of data dependences, is the
whole Program 1. The slice of Program 1 with respect to the slicing criterion
〈8, y, def use〉 where def use stands for all types of data dependences with a defi-
nite use of the variable involved, is Program 2. Finally, the slice of Program 1 with
respect to the slicing criterion 〈8, y, pos use〉 where pos use stands for all types of
data dependences with a possible use of the variable involved, is Program 3.

Because there are no pointers in the program in Example 1 (a), only definite
definitions and uses exist. An incremental slice of this program with respect to the
slicing criterion 〈16, lines, def use〉 is shown in Figure 1 (b).

Clearly, incremental slicing generalizes static slicing by only using a subset of
data dependences to compute the slice. The same idea has been later used in thin
slicing [Sridharan et al. 2007]. Thin slicing distinguishes between three types of
dependences:

(1) control dependences,

(2) base pointer flow dependences (a base pointer flow dependences is a flow de-
pendence due solely to the use of a pointer in a field dereference), and

(3) producer flow dependences (those flow dependences which are not base pointer
flow dependences).

A thin slice is computed by ignoring control and base pointer flow dependences,
thus, a thin slice only includes those statements related by a producer flow depen-

ACM Journal Name, Vol. V, No. N, Month 20YY.



32 · Josep Silva

dence. These statements are called producer statements. Informally, statement s is
a producer for statement t if s is part of a chain of assignments that computes and
copies a value to t.

As an example, consider the Java code in Figure 27.

(1) x = new A();

(2) y = new B(); (2) y = new B();

(3) z = x;

(4) w = x;

(5) w.f = y; (5) w.f = y;

(6) if (z == w)

(7) then v = z.f; (7) then v = z.f;

Program 1 Program 2 PDG of Program 1

Fig. 27. Example of a thin slice

In the PDG, thick arrows represent producer flow dependences, dotted arrows
represent base pointer flow dependences and dashed arrows represent control de-
pendences. Therefore, following producer flow dependences we see that Program

2 is a thin slice of Program 1 with respect to 〈7, v〉. Observe that the static slice
with respect to the same criterion is the entire Program 1.

In our running example, a thin slice of the program in Example 1 (a) with respect
to the slicing criterion 〈16, lines〉 is shown in Figure 5.

Question answered: What program statements can influence these variables at this
statement if we only consider these particular types of data dependence?

Main applications: Debugging and program comprehension.

2.28 Proposition-Based Slicing (Dwyer and Hatcliff, 1999)

Proposition-based slicing [Dwyer and Hatcliff 1999] was defined to reduce the finite-
state transition system used in verification techniques such as model checking. Be-
cause properties verification is often a very costly task, this reduction allows the
user to cope with bigger and more complex programs.

In proposition-based slicing, the final objective is to perform model checking with
respect to a linear temporal logic (LTL) formula. Therefore, the user specifies a
formula, and the slicing criterion must be derived from the formula. In particular,
given a LTL formula, the slicing criterion produced is a simultaneous static slicing
criterion because it contains a set of slicing points.

For instance, given de LTL formula ψ = �(16)⇒ lines > 0 (whenever statement
(16) is executed, variable lines is greater than 0) the following slicing criterion
is produced: 〈{(7, lines), (16, lines), (17, lines), (3, lines), (9, lines)}〉. This slicing
criterion includes a pair (s, v), where v are the variables in ψ,

—for each statement appearing in ψ (in the example, (16)),

—for each predecessor of the statements appearing in ψ (in the example, (7), see
the CFG in Figure 2),

—for each successor of the statements appearing in ψ (in the example, (17)), and
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—for each statements which assigns a value to the variables in ψ (in the example,
(3) and (9)).

The main peculiarity of proposition-based slicing is that, in contrast to previous
techniques, slices produced contain statements that do not contribute to the final
value of the variables in the slicing criterion. In particular, all the statements
appearing in the slicing criterion are included in the slice, indeed if they cannot
affect the specified variables.

As an example, the proposition-based slice of the program in Example 1 (a) with
respect to the previous slicing criterion 〈{(7, lines), (16, lines), (17, lines), (3, lines),
(9, lines)}〉 is shown in Figure 1 (b). This slicing criterion generated from ψ ensures
that the slice produced satisfies ψ. A justification can be found in [Dwyer and
Hatcliff 1999].

Question answered: What subset of program statements are needed to satisfy a
given LTL formula?

Main applications: Model checking.

2.29 Database Slicing (Sivagurunathan, Harman and Danicic, 1997)

The term database slicing can be used in two contexts. First, it can be used to refer
to a slicing technique that correctly accounts for database operations. Second, it
can be used to refer to the slicing of databases.

In 1997, Sivagurunathan et al. [1997] noted that standard algorithms produce
incorrect slices in presence of I/O and database operations. The reason is that pro-
gram slicers only consider the program state and they do not take into account the
external (or contextual) state (i.e., the state of the external interacting components
such as files, databases, user inputs, etc.).

This can be shown with a simple example:

(1) read(x) (1) read(x)

(2) read(y) (2) read(y) (2) read(y)

(3) z = y +1 (3) z = y +1 (3) z = y +1

Program P P’=Incorrect slice of P P’’=Correct slice of P

If we assume that the command read() reads a value from the input file, and
the initial state of the file is “42 5”, then the value of z at line (3) when executing
P is 6, whereas it is 43 when executing P’.

Clearly, the command read() has an effect on the external state which slic-
ing algorithms should take into account. This problem is common when handling
database operations.

The solution proposed by Sivagurunathan et al. was to use special (artificial)
variables in the program associated to I/O operations that make the external state
accessible to the slicer. The main problem of this solution is that it is necessary
to use a transformation schema that maps the original program language to a new
language that includes the special variables. Tan and Ling [1998] proposed a similar
solution for database operations. Their approach assume the existence of implicit
variables which are updated with each database operation.
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Later, Willmor et al. [2004] proposed an alternative solution which is based on
two new types of data dependences which must be computed and added to the
PDG—The resultant PDG is known as Database-Oriented Program Dependence
Graph (DOPDG)—. The new dependences are program-database dependences
which relate non-database statements with database statements; and database-
database dependences that capture the situation when execution of one database
statement affects the behavior of some other database statement that is executed
after it.

As an example, the database slice of the program in Example 1 (a) with respect
to the slicing criterion 〈16, lines〉 is shown in Figure 1 (b).

Database slicing also refers to the slicing of databases. Cheney [2007] applied
program slicing ideas to databases in order to determine what parts of a database
may influence the result of a query.

Question answered: What program statements can influence these variables at this
statement taking into account that the program has I/O operations?

Main applications: Program comprehension, debugging, algorithmic debugging,
dead code removal, program segmentation, program analysis, software quality as-
surance, program differencing, software maintenance, testing, program paralleliza-
tion, module cohesion analysis, partial evaluation and program integration.

3. DISCUSSION

This section compares all the slicing techniques presented from different points
of view. Firstly, the slicing criteria are thoroughly compared by examining their
differences for every slicing criteria’s dimensions. And, secondly, the techniques
are classified with respect to a set of slicing relations which allow us to produce a
hierarchy of slicing techniques.

3.1 A Classification of Slicing Techniques

In this section we use a classification by Harman et al. [1996] in order to compare
and classify all slicing techniques presented so far.

For concreteness, we need first to formally define the notion of precision when
we talk about precise slices. In general, it is accepted that a slice S produced for
a program P with respect to a slicing criterion C—for simplicity, we assume here
a backward static slicing criterion—is precise if and only if S contains all and only
the statements in P which can affect C.

However, it is known [Weiser 1984] that this notion of precision is in general
undecidable. Therefore, we will use along this section a more relaxed (though
decidable) notion of precision.

Given a program P, we consider that a backward static slice S produced for P
with respect to the criterion 〈s, v〉 is precise iff ∀ n, n ∈ S . n→∗ s. Where s1 → s2
means that s2 control or data depends on s1, and→∗ is the reflexive and transitive
closure of →. For those techniques that use the PDG, this condition is equivalent
to say that there exists a path from n to s in the PDG.

It should be clear that, according to this notion of precision, a precise slice
can include statements which cannot influence the slicing criterion. For instance,
consider the following program:
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(1) x = 42;

(2) y = 1 + x;

(3) y = y - x;

Here, statement (1) cannot influence the value of y at statement (3); however,
statement (1) would be included by almost all slicing techniques computed with
respect to 〈3, y〉 because statement (1) influences statement (2) which in turn in-
fluences statement (3).

Table I extends Harman et al’s classification with new dimensions in order to be
able to classify new techniques. In the table, we have omitted those slicing criteria
which have been identified as a particular case of another technique in Section 2
and thus, they do not impose additional restrictions or dimensions in the table.
For instance, we omit in the table “End Slicing” because it is a particular case
of simultaneous slicing; we also omit “Call-Mark Slicing” and “Dependence-Cache
Slicing” because they are versions of dynamic slicing where the dynamic data is
handled differently. In addition, we only include in the table the most general form
of slicing for each technique. For instance, in the case of quasi-static slicing, the
original definition by Venkatesh considered slicing only “at the end of the program”;
here, in contrast, we consider a generalization (see Section 2.11) in which any point
of the program can be selected for slicing.

In the table, following Harman et al’s terminology, the sets I, S, N , D and T
refer respectively to the set of all program variables, possible initial states, possible
iterations, program statements and types of dependences. For each slicing technique
(first column),

—column Variables specifies the number of variables participating in a slicing cri-
terion C, where P(I) indicates that a subset of I participates in C,

—column Initial States shows the number of initial states considered by the corre-
sponding slicing criterion,

—column Slice Points describes the number of program points included in C, and
hence the number of slices actually produced (and combined) to extract the final
slice. Here, n derived means that n different points are implicitly specified (see
Section 2.25); 1+n means that 1 program point is specified together with n
breakpoints, and n+n’ means that n points are specified for the source and n′

points are specified for the sink,

—column Statements Conditions specifies if the statements in the slice must fulfill
any condition. Here, we use a number to describe how many conditions can
be specified; and we use an arrow to describe the direction of the condition: ↓
indicates that the conditions affects the statements after the condition, ↑ indicates
that the conditions affects the statements before the condition and l indicates
that the conditions can be specified for both directions,

—column Iteration Counts is related to the fact that the slicing point can be ex-
ecuted several times (e.g., if it is inside a loop or a procedure), thus producing
several values for its variables. Hence, iteration counts indicates, for the specified
slice points, which iterations are of interest,

—column Path-Aware indicates if the slice produced is path-aware as in Korel and
Laski style of slicing (see Section 2.3) or it is path-unaware,
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—column Direction states the direction of the traversal to produce the slice which
can be backwards (B), forwards (F) or a combination of them. Here, despite
some techniques accept both directions, we assign to every technique the direction
specified in its original definition (see Section 2),

—column Precision is marked if the slice produced is precise,

—column Limits specifies if the computation of the slice is limited or not. Here,
vars specifies that a list of variables is used as the limit; and stats specifies that
a list of statements is used as the limit. Finally,

—column Syntax/Semantics Preserving contains boolean values that indicate re-
spectively whether the slice produced is a projection of the program syntax or it
preserves a projection of the original semantics. Here, (e) means that the slice
produced is executable.

—column Dependences considered specifies how many types of dependences are
considered to compute the slice.

—column Statements considered specifies what statements could be part of the slice.
Here, “+” indicates that a subset of statements are included in the slice indeed
if they do not contribute to the slicing criterion. Whereas “−” indicates that a
subset of statements are not included in the slice indeed if they do contribute to
the slicing criterion.

For precision in the slicing criteria comparison, we have included in the table two
versions of dynamic slicing. The first one is the original definition by Korel and
Laski which is path-aware; the second one is the path-unaware definition introduced
by Agrawal and Horgan. We put attention on Agrawal and Horgan’s definition
because it is more widely used in the program slicing community and, thus, it
is comparable to most slicing techniques. In the case of simultaneous slicing, for
concreteness, we have assumed that the criteria combined are static slicing criteria.

Each dimension in the table introduces a way to do slicing which, in general,
can be adapted to all the techniques. Consider for instance the “Direction” di-
mension. Each technique has been assigned a value for this dimension (i.e., the
value that the author used when the technique was defined); however, other values
can be used giving rise to different forms of slicing. For instance, we can think
of backward static slicing and forward static slicing; backward barrier slicing and
forward barrier slicing, etc. Similarly, the technique amorphous slicing introduced
a new dimension (i.e., a new way to do slicing), and thus it could be applied to
all the slicing techniques (e.g., amorphous conditioned slicing vs. non-amorphous
conditioned slicing). The way in which the slice is computed can be different too.
For instance, we could think of intraprocedural barrier slicing and interprocedural
barrier slicing. In consequence, each dimension in the table is a potential source of
slicing techniques; and new forms of slicing appear when either a new value for a
dimension is defined, or when a new dimension is discovered. In contrast, a new
slicing technique appears in the literature when a new combination of values for the
dimensions is found useful. Note that we are assuming here that the application of
a technique in a different language, paradigm, or context in general, is not a new
slicing technique but an adaptation of an existing slicing technique. Under this
assumption, Table I is a mighty tool that can be used to determine the degree of
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Slicing Vars Initial Slice Sta. Iter. Pa. Dir. Pr. Lim. Sy/Se Dep Sta.
Technique States Points Con. Cou. Aw. Pres. Con. Cons

Static P(I) {S} single no {N} no B yes no y/y(e) {D} {T }
KL Dynamic P(I) single single no single yes B yes no y/y(e) {D} {T }
AH Dynamic P(I) single single no single no B yes no y/y(e) {D} {T }

Forward P(I) {S} single no {N} no F yes no y/y {D} {T }
Quasi-Static P(I) P(S)? single no {N} no B yes no y/y(e) {D} {T }
Conditioned P(I) P(S)?? single 1 ↓ {N} no B yes no y/y(e) {D} {T }

Backward Cond. P(I) P(S)?? single n ↑ {N} no B yes no y/y(e) {D} {T }
Pre/Post Cond. P(I) P(S)?? single n l {N} no B yes no y/y(e) {D} {T }

Path ∅ P(S)? ? ?? single no {N} no B yes no y/y(e) {D} {T }
Decomposition P(I) {S} n derived no {N} no B yes no y/y {D} {T }

Chopping P(I) {S} n+n’ no {N} no B ∧ F yes no y/n {D} {T }
Relevant P(I) single single no single no B no no y/y {D} {T }
Hybrid P(I) P(S)? ? ? 1+n no {N} no B yes no y/y(e) {D} {T }

Intraprocedural P(I) {S} single no {N} no B no no y/y(e) {D} {T }
Interprocedural P(I) {S} single no {N} no B yes no y/y(e) {D} {T }
Simultaneous P(I) {S} n no {N} no B ∨ F yes no y/y(e) {D} {T }
Simul. Dyn. P(I) n single no {N} no B yes no y/y(e) {D} {T }
Interface P(I) {S} n no {N} no B no no y/y(e) {D} {T }
Stop-List P(I) {S} single no {N} no B yes vars y/n {D} {T }
Barrier P(I) {S} single no {N} no B yes stats y/n {D} {T }
Dicing P(I) {S} n no {N} no B yes no y/n {D} {T }

Abstract P(I) P(S)?? single n l {N} no B yes no y/y(e) {D} {T }
Amorphous P(I) {S} single no {N} no B yes no n/y(e) {D} {T }
Incremental P(I) {S} single no {N} no B yes no y/y P(D) {T }
Proposition P(I) {S} n derived no {N} no B yes no y/y {D} {T }+

New
Techniques

Statement ∅ {S} single no {N} no B no no y/y(e) {D} {T }
Point ∅ {S} single no {N} no B no no y/y(e) {D} {T }

Conditioned ∅ P(S)?? single n l {N} no B no no y/y(e) {D} {T }
Cond. Chopping P(I) P(S)?? pair n l {N} no B ∧ F yes no y/n {D} {T }
Dyn. Chopping P(I) P(S)?? pair n l {N} no B ∧ F yes no y/n {D} {T }
Barrier Dicing P(I) {S} n no {N} no B yes stats y/n {D} {T }

Filtered P(I) {S} single no {N} no B yes no y/n {D} P(T )
Augmented P(I) {S} single no {N} no B yes no y/n {D} {T }±

Forw. Amorph. P(I) {S} single no {N} no F yes no n/y(e) {D} {T }
Forward Point ∅ {S} single no {N} no F no no y/y(e) {D} {T }
? all agree on input prefix ?? all agree on conditions ? ? ? all agree on breakpoints ? ? ?? all agree on path

Table I. Classification of program slicing techniques

novelty of new slicing techniques.
The slicing criteria of the table summarize the collection of slicing-based tech-

niques produced during the last 30 years. As explained in Section 2, all these
criteria have been published, implemented and applied to different software engi-
neering fields. However, of course, by combining different values for the dimensions
we could produce several new slicing techniques. Unfortunately, in general, the
techniques produced with this method would be useless in practice.

Binkley et al. [2006a; 2006b] studied the techniques produced by permuting the
values of three dimensions in the table, namely ‘Initial States’, ‘Iteration Counts’
and ‘Path-Aware’. The result are the eight techniques shown in Table II.

The comparison of slicing techniques presented in Table I is a powerful tool for
the study of current slicing techniques and the prediction of new ones. The last
ten rows in Table I correspond to new slicing techniques predicted by analyzing the
information of the table. These new techniques have been predicted by trying to
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Slicing Initial Iteration Path

Technique States Count Aware

Static Slicing (SS) {S} no no

Dynamic Slicing (DS) single no no

Static Iteration Count Slicing (SIS) {S} yes no

Dynamic Iteration Count Slicing (DIS) single yes no

Static Path-Aware Slicing (SPS) {S} no yes

Dynamic Path-Aware Slicing (DPS) single no yes

Static Iteration Count Path-Aware Slicing (SIPS) {S} yes yes

Dynamic Iteration Count Path-Aware Slicing (DIPS) single yes yes

Table II. Binkley et al.’s slicing techniques produced by permutation of slicing dimensions

introduce a facility of a technique into another technique to increase its power.
The first new technique is statement slicing. This technique answers the question:

Which statements can possibly influence reachability of statement s? Surprisingly,
this question cannot be answered by previous slicing techniques. A statement slice
is composed of all the possible path slices of a program with respect to a given
statement. That is, statement slicing is a generalization of path slicing where all
the possible paths are considered4.

For instance, consider the program in Figure 1 (a). We want to know what
statements can possibly influence reachability of statement 18 when the input is
finite. The answer is none (the statement slice would be empty) because this
statement will be executed always. This is rather different from the slice produced
by other slicing techniques which focus on the value of a variable. Here, as happens
in path slicing, the variables of interest are those which belong to conditions that
can influence reachability of the statement of interest. In this example, computing
a path slice is as easy as looking at the PDG where we see that the control of the
program will always arrive to statement 18. In general, to compute the statement
slice it is necessary to check which statements can influence the conditions that
determine whether the point of interest is going to be executed or not. For instance,
consider now the same program and the statement 9. In this case, the statement
slice produced is shown in Figure 28.

(1) read(text);

(6) c = getChar(text);

(7) while (c != ‘\eof’)

(8) if (c == ‘\n’)

(9) then lines = lines + 1;

(15) c = getChar(text);

Fig. 28. Statement slice of the program in Figure 1 (a) with respect to the statement 9

Statements 7 and 8 are needed to execute 9 (due to a control dependence); and
statements 6 and 15 are needed to execute 7, and 1 to execute 6 (due to a data

4We could also restrict the number of paths by using a condition. This would lead us to conditioned

statement slicing.
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dependence).

Another new technique is point slicing. Point slicing tries to answer the question:
What statements could have been executed before statement s? Again, this question
cannot be answered by previous techniques.

As statement slicing, point slicing does consider a single statement in the slicing
criterion. Point slicing selects a statement of the program and computes backwards
(respectively forwards) all the statements that could have been executed before
(respectively after) it. Apart from its clear application in program comprehension,
this technique can be useful in debugging. For instance, during print debugging
[Agrawal 1991] the programmer places print statements in some strategic points
of the program, and then executes it in order to see if some of them have been
reached, and in which order have they been executed. Usually, a print statement
is placed in a part of the code in order to check if it is executed or not. A point
slice with respect to this statement can be useful in order to know which possible
paths of the program could reach the execution of this statement. Note that point
slicing does not follow control or data dependences, but control flows, and thus it
is not subsumed by any of the other slicing techniques in the table. As an example,
the statement “print (‘Executed’);” does not influence any other statement,
and hence, it will not belong to any slice taken with respect to a subset of the
variables of the program (it will be removed in all the slicing techniques!). The
implementation of this technique is straightforward because a point slice can be
constructed by traversing the control flow graph from the point of interest.

The conditioned version of point slicing restricts the possible paths by limiting
the initial states of the execution. By using the pre/post conditions of pre/post
conditioned slicing, the programmer would be able to include conditions inside the
source code. This facility would significantly increase the power of the technique
because it would allow the programmer to know which paths of the program can
be executed before a statement in a particular context (e.g., can statement s1 be
executed before statement s2 if this flag is activated?). This would significantly
reduce the work of a print debugging user by automatizing much of the work. Of
course, the implementation of pre/post conditioned point slicing is not trivial as
point slicing is.

Conditioned chopping is a very general form of slicing which subsumes both
conditioned slicing and chopping, and hence, dynamic chopping (neither defined
yet). Dynamic chopping can be useful, for instance, in debugging. When tracing
a computation, a programmer usually proceeds (big) step by step until a wrong
subcomputation is found (e.g., a procedure call that returned a wrong result). Dy-
namic chopping comes in handy at this point because it can compute the statements
that influenced the wrong result from the procedure call. This dynamic chop is, in
general, much smaller than the static chop because it only considers a particular
execution.

It should be clear that the source and the sink of chopping are not conditions,
but points. Therefore, conditioned chopping computes all the statements in the
program that being affected by source, they affect sink when some pre and post
conditions are satisfied.

Barrier dicing is a new form of dicing in which barriers are used to eliminate from
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the slice those parts that the user knows are correct. Once an incorrectly valued
variable has been found and a slice produced for it, the objective of dicing is to
reduce this slice by eliminating the statements appearing in a static slice of variables
that appears to be correctly computed. However, in the slice still remain many
statements which the programmer knows that are correct (e.g., reused procedures
and functions, legacy code, etc.). The barriers facility of barrier slicing are useful
at this point, because they can be set at strategic points (e.g, procedure calls) to
avoid the inclusion in the slice of correct code; thus, increasing the power of dicing.

Filtered slicing generalizes static slicing. While the other techniques collect all
statements that influence the slicing criterion, filtered slicing only collects the subset
of statements that influence the slicing criterion and that are of a given type.
Clearly, the idea behind filtered slicing is similar to the one of incremental slicing
and thin slicing. These techniques only consider a type of dependences and filtered
slicing only considers a type of statements. A filtered slicing criterion is a triple
〈s, v, c〉 where s and v keep the standard meaning and c specifies a condition that
statements must fulfill in order to be part of the slice. This freedom allows the
user to produce smaller slices that only focus on a particular comprehension task.
For instance, the filtered slice of the program in Example 1 (a) with respect to the
slicing criterion 〈16, lines, s defines variable lines〉 contains statements (3) and (9).
This slice shows what assignments to lines does influence the slicing criterion. The
filtered slice with respect to 〈16, lines, s contains c〉 contains statements (6), (7),
(8) and (15). This slice shows only the contribution of c to the computation of the
slicing criterion. The filtered slice with respect to 〈16, lines, s is an if or a while
statement〉 contains statements (7) and (8). This slice shows all the conditions that
can be traversed before reaching the slicing criterion.

Augmented slicing generalizes proposition-based slicing by allowing us to exclude
statements from the slice. Moreover, in contrast to proposition-based slicing where
the statements added to the slice are predefined, in augmented slicing the state-
ments added are specified by the user. An augmented slicing criterion is a tuple
〈s, v, c, f〉 where s and v keep the standard meaning of static slicing, c specifies a
condition that statements must fulfill in order to be part of the slice and f specifies
a condition that statements must fulfill in order to be excluded from the slice.

Finally, the last two rows of the table, forward amorphous and forward point
slicing, correspond to the forward versions of these techniques which should be in-
vestigated as a program comprehension tool. On the one hand, forward amorphous
collects those statements affected by the slicing criterion, but without the syntax
preservation restriction. This allows us to present to the programmer more compact
and understandable slices. On the other hand, forward point slicing allows us to
answer the question: What statements could be executed after statement s? Here,
again, the use of pre/post conditions would increase the power of this technique.

3.2 Inter-relations Between Slicing Techniques

The information in Table I can also be used to identify relations between slicing
techniques. We have identified some relations and represented them in the graph of
Figure 29 considering that each pair of related slicing techniques relate comparable
slicing criteria. There are three kinds of arrows in the graph:
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Generalization (S1 −→ S2): A slicing technique S2 generalizes another technique
S1 iff all the slicing criteria that can be specified with S1 can also be specified
with S2. This relation answer the question: Is slicing technique A a particular
case of slicing technique B?

Superset (S1 99K S2): The slice produced by a slicing technique S2 is a superset
of the slice produced by another technique S1 iff all the statements in S1 also
belong to S2. This relation answer the question: Is the slice5 produced by slicing
technique A included in the slice produced by slicing technique B?

Composed of (S1 · · ·· . S2): A slicing technique S1 is composed of the technique S2

iff the slicing criterion of S1 contains the slicing criterion of S2. For instance,
chopping is composed of two slicing techniques (forward slicing and backward
slicing), dicing is composed of n slicing techniques (usually one backward slice of
an incorrect value, and n−1 backward slices of a correct value) and simultaneous
static slicing is composed of n slicing techniques. In the graph, for clarity,
we use only static slicing as the component of dicing and simultaneous static
slicing. This relation answer the question: Is slicing technique A used by slicing
technique B?

The graph in Figure 29 mixes together all the techniques. Each node in the
graph represents a technique of Table I. Therefore, each node has a different pa-
rameterization for the dimensions in Table I, and the reader should not confuse
techniques with particular values of dimensions. For instance, the node “Forward”
represents the technique “Forward Slicing” described in Section 2.5 rather than
the value “Forward” of the “Direction” dimension. Therefore, this graph must be
complemented with Table I in order to know the exact meaning of each arrow. The
graph can say that technique A generalized technique B, but it cannot explain why.
For instance, incremental slicing generalizes static slicing by allowing us to only
consider a subset of types of dependences. This information comes from Table I.
Note that the graph naturally places static slicing (Weiser’s technique) as the core
of the relations. This also allows us to see how this technique has evolved in many
directions.

If we concentrate in a subset of the dimensions we can extract useful information.
For instance, if we only focus on the Initial states dimension we get the graph in
Figure 31. This graph only contains those techniques which have concentrated
on restricting the initial states considered. In the Figure we have included the
year when each technique was published, and thus we see that this dimension was
exploited during the 90’s decade.

We can also focus on a set of dimensions and get interesting conclusions. This is
what Binkley et al. [2006a; 2006b] have done with the eight techniques of Table II.
They used the superset relation to relate different permutations of the values of
three dimensions producing the graph in Figure 32. Since each pair of values taken
in the same dimension imply a less or more restricted slice, their combination
produces a lattice.

The classification points out abstract slicing as one of the most general slicing
techniques thanks to its use of predicates and conditions. While chopping general-

5Recall that we are referring to minimal slices.
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Fig. 29. Relationships between program slicing techniques
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Fig. 30. Relationships between interprocedural and intraprocedural slicing, and
between chopping and forward and backward slicing

izes forward and backward slicing, an abstract chop [Hong et al. 2005] generalizes
forward and backward abstract slicing. Hence abstract chopping subsumes static,
dynamic, backward and forward slicing.

4. CONCLUSIONS

During the last thirty years, program slicing has been applied to solve a wide va-
riety of problems. Each application required a different extension, generalization
or combination of previous slicing techniques. In this work, we have described and
compared these techniques in order to classify them according to their properties
and in order to establish a hierarchy of slicing techniques. In particular, we have
extended a comparative table of slicing techniques by Harman et al. with new di-
mensions and techniques. The classification of techniques presented not only shows
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develop the initial states dimension
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Fig. 32. Superset relationships between the program slicing techniques of Table II

the differences between them, but it also allows us to predict future techniques that
will fit a combination of parameters in the table not used yet. By combining strong
points of different slicing techniques, we can predict a more powerful technique that
can solve problems not addressed before.

With the information provided in this classification we have studied and identified
three kinds of relations between the techniques: composition, generalization and
superset relations. This study allows us to reason about the inter-relations between
slicing techniques, to observe how (in which order and when) the techniques have
been developed, thus reasoning about the evolution of program slicing; and to
answer questions like: Is one technique more general than another technique? Is
the slice produced by one technique included in the slice of another technique? Is
one technique composed of other techniques?
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