
Web Information Retrieval Based on Syntax Distances 
 

1 

  
Abstract—Internet is a huge source of information. Search 

engines have indexed much of this information and are able to 
extract the relevant webpages that are related to a given query.  
However, once the search engine retrieves a set of webpages, the 
user has to read the webpages in order to find the relevant 
information. This task is a time consuming task because 
webpages often mix information related to different subjects, and 
also because they usually contain advertisements and publicity 
that tries to call to attention the reader using pictures, videos, etc. 
In this work we define a novel technique for information filtering 
of webpages. This technique uses the distance of elements in a 
webpage to approximate semantic relations. The technique is 
able to work only (with any webpage that has not been pre-
processes in advance). We present our implementation and show 
the usefulness of the technique with examples. 
 

Index Terms—Information Filtering, HTML Filtering, Slicing 
Websites. 

I. INTRODUCTION 
NTERNET contains millions of webpages with 

information of practically all subjects. The efforts of the 
scientific community in defining efficient techniques for 
information retrieval have produced good results (be referred 
to [1] for a survey of this kind of techniques); and current 
search engines are continuously indexing webpages that can 
be later retrieved with a query producing high quality results. 
However, once a collection of webpages is retrieved, the user 
is forced to read them in order to find the information of 
interest.  

Surprisingly, the task of filtering a webpage in order to 
remove the useless information has not been automated. There 
exist very few tools devoted to filter the information of a 
webpage, and they are often very limited, or need to pre-
process the webpages before filtering them. The lack of real-
time (online) applications able to automatically filter a 
webpage gives an idea of the difficulty of the problem. This 

 
Manuscript received on March 10, 2010. This work has been partially 

supported by the Spanish Ministerio de Ciencia e Innovación under grant 
TIN2008-06622-C03-02, by the Generalitat Valenciana under grant 
ACOMP/2009/017 and by the Universidad Politécnica de Valencia (Programs 
PAID-05-08 and PAID-06-08). 

 

difficulty is mainly produced by the fact that webpages are 
usually implemented with plain (X)HTML, and this language 
is not prepared to qualify the semantic information.  

There are some attempts to solve this situation. For 
instance, in the Semantic web, an ontological model of 
webpages is constructed and the knowledge is modelled and 
queried using languages such as RDF [2] or OWL [3]. 
Another approach tries to introduce semantic labels into 
webpages, so that explicit semantic relationships between 
elements exist. These labels are called microformats [4,5,6], 
and are already used by many webpages that include places, 
contact info, etc. Unfortunately, 99% of the webpages of 
Internet were created without taken into account these models.  

A recent approach for information retrieval is based on an 
extension of search engines called answer engines. These tools  
construct indexes of webpages where the information is 
labeled with semantic information that allows to extract 
implicit information. When a query is specified by the user, 
these tools try to construct an answer with the information of 
the webpages. The most important tool of this kind ‘Wolfram 
Alpha’, but unfortunatelly, it is quite limited and answers can 
be only produced for very simple questions. These tools are 
considered a future option for information retrieval, but they 
are not currently being used for information filtering.  

Another kind of tools that are related to our work are the 
parental control tools. These tools determine if a webpage 
contains violence or pornographic content. If so, the whole 
webpage is bloqued. This contrast with our tool in which the 
webpage is not bloqued. It is simply filtered skipping the 
unwanted content. Notable tools of this kind are Webguard 
[¿?], Anti-Porn [¿?] and Naomi [¿?]. 

There are a few tools devoted to filter webpages by 
removing unnecessary contents, but they often need to pre-
process the webpages that are going to be filtered. This 
imposes important restrictions on the webpages that can be 
processed, and thus the implemented tools are usually offline 
tools. For instance, Webwatcher [¿?] and Webfilter [¿?] use a 
proxy to analyze the webpages. Preprocesado preguntar a cual 
es cual Hector? 

A New Information Filtering Method for 
WebPages  

Sergio López, Josep Silva 

Universidad Politécnica de Valencia 
Camino de Vera s/n E-46022 – Valencia, Spain 

{slopez,jsilva}@dsic.upv.es 

I 



Web Information Retrieval Based on Syntax Distances 
 

2 

 
Fig. 1. A la izquierda se encuentra la página sin filtrar y a continuación se 

encuentra la página filtrada con tolerancia 0 y 1. 
 
From the best of our knowledge, our tool is the first 

approach that can filter webpages online without any pre-
compilation or pre-parsing phases. 

The rest of the article has been organized as follows: In 
Section II we present the technique from a practical point of 
view by showing examples of use. Section III presents the 
technique and introduces an algorithm to automatically filter a 
webpage for a given query. In Section IV we describe our 
implementation and, finally, Section V concludes and gives 
some directions for future work. 

II. MOTIVATION 
This section presents real examples of information filtering 

using the technique presented in this paper. In our first 
example, we consider a user that is browsing on the Apple 
Store in order to buy an iPhone. When we open the main 
webpage of the Apple Store (shown in Figure 1 in the left), we 
see that there is much information (including images and 
menus) not related to iPhones. Therefore, the user is forced to 
read unnecessary information in order to find what she is 
looking for.  

Now, consider that we have a tool available able to filter all 
the information not related to iPhones. Our algorithm is able to 
filter a webpage and only show the relevant information 
according to the given filtering criterion. For instance, the 
algorithm would produce the new filtered webpage shown in 
Figure 1 (center). Observe that even images and the main 
horizontal menu have been filtered. 

If the user considers that this information is not enough, or 
has been filtered too much, she can augment the information 
shown. In this case, the webpage is automatically reprocessed 
to include more information. The result is shown in Figure 1 
(right). 

Now let us consider another scenario where a user has 
loaded the Facebook’s page of its creator Mark Zuckerberg. 
Observe that Facebook uses the left area of the pages for a 
publicity area with annoying auto-changing advertisements. In 
this case, we can use the filtering tool in the opposite way than 
before. We can delete all the information related to a given 
word. For instance, we can specify that we want to delete all 
the “ads”. Observe that advertisements have been filtered out. 

This tool does not need to use proxies [7] or to pre-process [8] 
the filtered webpages. It can work online with any webpage. 

III. FILTERING INFORMATION FROM WEBPAGES 
In this section we formalize our technique for information 

filtering and visualization.  

A. Slicing the Relevant Information 
The Document Object Model (DOM) [9] is an API that 

provides programmers with a standard set of objects for the 
representation of HTML and XML documents. Our technique 
is based on the use of DOM as the model for representing 
webpages. For the sake of concreteness, in the following we 
will assume that a DOM tree is a data structure that represents 
each single element of a webpage with a node labelled with a 
text. This simplification assumes that all nodes have a single 
attribute, and it allows us to avoid in our formalization and 
algorithms low-level details such as the distinction between 
different kinds of HTML elements’ attributes. For instance, in 
our implementation we have to distinguish and query different 
properties depending on the element that we are analyzing, 
e.g., image nodes are queried by using their alt, longdesc and 
src attributes.  
 

Definition 1 (DOM tree): A DOM tree t=(V,E) is a tree 
whose vertices V are labelled nodes connected by a set of 
edges E. 
In the following, we will refer to the label of a DOM node n 
with l(n); and we will refer to the root of a DOM tree t with 
root(t). We also use the notation n –x n’ to denote that there 
exists a path of size less or equal to x between nodes n and n’.  

 
Definition 2 (Webpage): A webpage is a pair (u,t) where u is 

an URL and t is a DOM tree. 
 
We allow the user to specify complex queries that contain 

multiple words and metadata such as “” for exact search, and 
boolean operators (and, or, not) to produce combinations of 
texts that force a particular order of words, or force the 
existence or inexistence of a particular (sub)text. The syntax 
of the queries allowed in our implementation is given by the 
following grammar: 

 
Query = Word 
Query = Word Operator Query 
Query = EmptyWord “Word” Query 



Web Information Retrieval Based on Syntax Distances 
 

3 

Operator = and | or 
Word = character EmptyWord 
EmptyWord = character EmptyWord 
EmptyWord = є 

 
Where terminals are in bold and character refers to any 

alphanumerical character. However, for simplicity, in our 
formalization we will assume that queries are composed of a 
single word. The extension of the technique for multiple 
words is trivial and it only requires the iteration of the method 
over all the words of the query.  This has been already done in 
our implementation, and thus, the interested reader is referred 
to its (open) source code for implementation details. 

Together with the text, the user must specify other 
parameters that configure the query. These parameters are the 
following: 
 

• Keep Structure: It is a boolean value used to specify if 
the structure of the webpage should be maintained. 
For instance, if a DOM element that contains the 
specified text is inside a table which is inside a layer, 
keep structure decides whether these container 
elements should be filtered out or not. 
For instance, consider the  Figure 2. We can assume 
that the only nodes that contain the word specified by 
the user are nodes 6 and 12 (we refer to these nodes 
as key nodes, and we draw them in the following 
with a square). If keep structure is activated, then the 
light nodes are selected by the algorithm and the dark 
nodes are filtered out. 
Therefore, keep structure decides whether the paths 
between the root node and the key nodes should be 
filtered out or not.  

• Tolerance: It is an integer number that is related to the 
amount of information that the user wants to see in 
the filtered webpage. The tolerance is used to decide 
what elements of the DOM tree are related to the user 
specified word. With a tolerance of 0, only elements 
that contain the specified word should be retrieved. 
With a tolerance of 1, only elements that contain the 
word and those that are in a distance of 1 to them 
should be retrieved, and so on.  

                      
                            Tolerance 0               Tolerance 1                  Tolerance 2 
 

• Inverse Filtering: It is used to decide whether we filter 
out the elements not related to the specified text 
(normal filtering), or we filter out the elements 
related to the specified text (inverse filtering). 

 
Fig. 2. A la izquierda se encuentra la estructura de una página y a su derecha 

el filtrado con las opciones Keep Structure and Tree activa. 
 
Definition 3 (Query): A query is a tuple (w,t,k,i) where w is a 

word that is associated to the information which is relevant for 
the user; t is an integer that represents the tolerance required in 
the search, k is a boolean value that specifies whether the 
structure should be maintained, and i is a boolean value that 
specifies whether the filtering is inverse. 

 
We are now in a position to present our algorithm for 

information filtering: 
 
Algorithm 1: Information retrieval from single webpages 
Input: A webpage P=(u,t) and a query q=(w,t,k,i) 
Output: A webpage P’=(u,t’) 
 
Initialization: t=(v,e), t’=(∅,∅) 
 
(1)   key_nodes = {n ∈ v | l(n)=w} 
(2)   relevant_nodes = {n ∈ v | n –t n’  ∧ n’ ∈ key_nodes} 
(3)   if (k=True) 
(4)       ancestors = {n ∈ v | n0→

*n→*n1  ∧  n0=root(t)  
                                ∧  n1 ∈ key_nodes ∪ relevant_nodes} 
(5)   else 
(6)       ancestors = ∅ 
(7)   successors = {n ∈ v | n0→

*n ∧  n0 ∈ relevant_nodes } 
(8)   if (i=True) 
(9)       final_nodes = {n ∈ v | n ∉ (successors ∪ ancestors)} 
(10) else 
(11)     final_nodes = successors ∪ ancestors  
(12) edges = {(n,n’) ∈ e | n,n’ ∈ final_nodes } 
 
return P’=(u,(final_nodes, edges)) 
 
Roughly, Algorithm 1 proceeds by (i) finding the key_nodes 

that are those whose label is equal1 to the text specified by the 
user (w). (ii) From these nodes, the relevant_nodes are 
computed, which are those whose syntax distance to the 
relevant nodes is lower than the tolerance specified by the user 
(t). The idea of using the tolerance (that is a measure of syntax 
distance) as a measure of semantic relation is in important 
contribution of this technique. Compared to other techniques 
that use semantic labels, ontologies, semantic hierarchies or 

 
1 The restriction of being equal is taken for simplicity of presentation. In 

the implementation, a lexicon could be activated to also consider synonyms. 
Of course, standard semantic distances for word similarity can also be used.  



Web Information Retrieval Based on Syntax Distances 
 

4 

indexes, this idea seams to be too simple. However, several 
experiments using our implementation with real examples 
together with massive use of anonymous users demonstrate 
the practical utility of this syntax distance. (iii) if keep 
structure is activated, then the ancestors of the relevant nodes 
are collected. (iv) Next, the successors of the relevant nodes 
are also collected. Finally, (v) if inverse filtering is not 
activated, then the final_nodes of the filtered DOM tree are the 
successors and the ancestors. Otherwise, the final nodes are 
the rest of nodes. The edges of the filtered DOM tree are the 
edges that connect the final nodes. Therefore, Algorithm 1 has 
a cost linear with the size of the DOM tree.   

 
Example 1: Assuming that the only nodes that contain the 

word w are 6 and 12, the light nodes of Figure 2 correspond to 
the slice produced by the query (w,0,True,False).  

 
Observe that the final filtered webpage (that we refer to as 

slice) is always a subset of the original webpage, and this 
subset keeps the original structure of information because the 
paths between retrieved elements are maintained.  

It should be clear that Algorithm 1 is able to work with 
complex webpages composed of other webpages by means of 
frames or iframes. The reason is that the DOM trees of frames 
and iframes are a subtree of the webpage that contains them. 
The DOM API offers methods to navigate into the DOM tree 
of a frame so that they can be treated separately or as a part of 
their parent webpage.  

Another interesting property of the technique is that filtering 
can be done incrementally. Since the result of the filtering 
process is a webpage whose DOM tree is valid, it is possible 
to slice the own slice produced by the technique. This means 
that it is possible to combine positive and negative filtering. 
For instance it is possible to filter a webpage and show all the 
information related to the tennis player Federer, but excluding 
the information related to the tennis player Nadal. This can be 
achieved by first filtering the webpage with the word 
‘Federer’, and then filtering the result with the word ‘Nadal’ 
and activating the inverse filtering option. (BORRAR EL 
PARRAFO??)  

B. Visualizing the Slice. 
The slice computed by Algorithm 1 can be visualized in 

different ways, and depending on the results expected by the 
user only some of them are appropriate.  

Keep structure plays an important role in the way in which 
elements are visualized. If keep structure is activated, the path 
of nodes from the root of the slice to the key nodes belong to 
the slice. This path often contains DOM nodes of container 
objects such as tables or layers. These nodes have a size and 
thus they fill an area of the screen. Therefore, if we delete 
these nodes, then the position of the other nodes changes in 
the screen.  

From an implementation point of view, the path cannot be 
always deleted, because some nodes of the DOM model need 
to have a particular parent to be correct. For instance, it is not 
correct to delete the parent of a LI HTML element because it 
represents an element of a list and needs the list to be correct 

(in particular, it needs a parent of type OL or UL). Similarly, 
an element of type row (TR) or column (TD) needs a TABLE 
element as its parent. Lo que haremos será cambiar el puntero 
al nodo padre mímino necesario para representarse. 

In the case that the nodes are kept, it is still possible to 
visualize the webpage in two different ways. The first 
possibility is to hide the elements with the property:  

 
Style.visibility=”hidden” 
 
This is equivalent to make the element invisible. But it still 

fills an area. The other possibility is to remove the element 
from the page thus compressing the information at the top part 
of the webpage. This can be done with the property:  

 
Style.display=”none” 
  
In presence of frames (and iframes), the visualization of the 

slice is a bit more complex. The reason is that in a frame of 
size x, it is possible to include elements whose total size is 
greater than x. It is possible thanks to the use of scrolls. 
However, after slicing, many elements in the frame are filtered 
out, and thus the size of the slice usually fits in the space 
assigned for the frame. In order to ensure that these elements 
are visualized, we transform the frame into a layer with auto 
scrolls. This ensures that scrolls are only used when the 
information of the sliced frame does not fit in the layer. 

Another important task related to visualization is the fact 
that the user can be working with different webpages at the 
same time. Therefore, each webpage must be in a different 
window or tag, and all of them can be filtered. In order to 
correctly visualize the slice of each window or tag, the tool 
must record the properties of all nodes of each slice. 
Therefore, each window or tag has an associated data structure 
including the visualization properties of each node in this 
webpage.  

IV. IMPLEMENTATION 
Our implementation of the technique is an official addon of 

the Firefox web browser. Therefore, it has been implemented 
following the standard Firefox design. The implementation 
languages are XUL (for the graphical use interface) and 
Javascript. We do massive use of the DOM API to access and 
manipulate properties of the nodes.  

The implementation keeps for each slice (e.g., in different 
tags) two arrays of DOM nodes: one for visible nodes, and one 
for hidden nodes. For efficiency reasons, it is not needed to 
check all the nodes of the DOM tree when filtering. The 
property innerHTML allows us to know if the HTML of a 
node contains a text. If it does, the descendants are explored to 
find key nodes. It is does not, the node is discarded.  

  Es importante destacar que si el criterio es de dos o más 
palabras, un nodo puede necesitar de dos o más varios nodos 
hijos para coincidir con el criterio mientras que ninguno de sus 
nodos hijos es capaz de coincidir con todos los parámetros.  

In the implementation, there is an option that can be 
activated by the user called “keep tree”. When it is activated, 
the paths from the root to the key nodes are part of the slice. 
Otherwise, they are filtered out. Básicamente, todos los 



Web Information Retrieval Based on Syntax Distances 
 

5 

enlaces del nodo BODY con sus hijos se rompen y 
posteriormente colgamos todos los nodos del vector 
KeyNodes del nodo BODY. 

We have implemented an additional functionality in the tool 
that allows the user to perform continuous filtering while she 
is surfing in Internet. This means that it is possible to activate 
this option and the bar acts as an agent that automatically 
helps the user during the search. In particular, if the user is 
looking for information related to Mercedes Benz, then the bar 
will automatically filter all the webpages that are loaded only 
showing the information related to Mercedes Benz. From the 
point of view of the user, the navigation is the same, but the 
webpages that she reads are already filtered when she loads 
them. Of course, she can always augment or reduce the 
tolerance to change the amount of information shown. It is 
also possible to press the button Show All to see the original 
page.         Our current implementation has been released as 
version 1.5 of the Firefox’s Web Filtering Toolbar. This tool 
is an official extension of the Firefox web browser that has 
been tested and approved by the expert evaluators of the 
Firefox’s developers area, and that has more than 10.000 
downloads at the time of writing these lines. The most stable 
version of the tool can be downloaded from Firefox’s addons 
area or Author Webpage: 

 
https://addons.mozilla.org/es-ES/firefox/addon/5823 

   http://users.dsic.upv.es/~jsilva/webfiltering/ 

V. ARQUITECTURA 
El plugin utiliza la versión orientada a objetos de Javascript, 
lenguaje interpretado para la Web. Contiene principalmente un 
vector de una clase principal llamada ‘webfiltering’ que 
contienen todos los métodos y atributos necesarios para 
realizar un filtro sobre una página web, de esta manera cada 
filtrado sobre una página web es independiente del resto de 
filtrados. La clase consta principalmente de 3 vectores que 
contendrá todos los nodos divididos en grupos según el 
criterio, también consta de otras variables para guardar 
información sobre el filtrado o sobre la página en cuestión 
como la URL o el contenido. Los métodos de la clase estarían 
principalmente divididos en métodos públicos que se llaman 
desde la interfaz XUL del plugin y métodos privados 
necesarios para completar la funcionalidad o para compartir 
funcionalidad en común (Figura 3). Los eventos generados por 
la interfaz XUL son gestionados por un método central que se 
encarga de gestionar y  llamar a su correspondiente método. 

 

      
Fig. 3. Estructura del plugin. 

VI. CONCLUSIONS AND FUTURE WORK 
This work introduces a novel technique for information 

filtering that uses syntax distances to approximate semantic 
relations. The technique is able to work online and extract 
information from websites without any pre-compilation, 
labeling, or indexing of the webpages to be analyzed.  

Currently, we give the same semantic value to all the kinds 
of nodes in a DOM tree. Future work will include the analysis 
of what nodes provide information that can be considered as 
more reliable. For instance, meta-tags and microformats are 
good candidates. 

We would like our tool to be able to work in any browser. 
Therefore, we plan to implement a version of the bar that is 
not integrated into Firefox. This is possible because the 
implementation language is Javascript and thus standard 
browsers can interpret it. We have already implemented a 
version of the tool as a webpage with a top frame that contains 
the bar.  

In [10] a technique for information retrieval from single 
webpages was proposed, but a formalization of the algorithm 
was not defined. In this section we introduce this algorithm 
and adapt it to be later used for our algorithm for information 
retrieval from multiple webpages. (CAMBIAR. Para reducirlo 
habría que poner que es possible integrar en una pa´gina y 
punto) 

REFERENCES 

[1] J.M. Gómez Hidalgo, F. Carrero García, E. Puertas Sanz. Named Entity 
Recognition for Web Content Filtering International Conference on 
Applications of Natural Language, NLDB2005, pages 286-297, 2005 

[2] W3C Consortium, Resource Description Framework (RDF). 
www.w3.org/RDF 

[3] W3C Consortium, Web Ontology Language (OWL). 
www.w3.oeg/2001/sw/wiki/OWL 

[4] Microformats.org.	  The	  Official	  Microformats	  Site.	  
http://microformats.org/,	  2009.	  

[5] R. Khare, T. Çelik Microformats: a Pragmatic Path to the Semantic 
Web. Proceedings of the 15h International Conference on World Wide 
Web. International World Wide Web Conference. Poster Sessions pages 
865-866, 2006. 

[6] R.	   Khare.	   Microformats:	   The	   Next	   (Small)	   Thing	   on	   the	   Semantic	  
Web?	  IEEE	  Internet	  Computing,	  10(1):68–75,	  2006.	  

[7] Suhit Gupta, Gail E. Kaiser et al. Automating Content Extraction of 
HTML Documents. World Wide Archive vol.8 issue.2, pages 179-224, 
2005. 

[8] Po-Ching Li, Mind-Dao Liu, Ying-Dar Lin, Yuang-Cheng Lai 
Accelerating Web Content Filtering by the Early Decision Algorithm. 
IEICE – Transactions on Information and Systems vol. E91-D, pages 
251-257, 2008. 

[9] W3C Consortium, Document Object Model (DOM). www.w3.org/DOM 
[10] J. Silva, Information Filtering and Information Retrieval with the Web 

Filtering Toolbar. Electronic Notes in Theoretical Computer Science, 
vol. 235, pages 125-136, 2008. 

[11] R. Baeza-Yates, C. Castillo, Crawling the Infinite Web: Five levels are 
enough. WAW, Lecture Notes in Computer Science, vol.3243, pages 
156-167. Ed. Springer 2004.  

[12] A. Micarelli, F. Gasparetti, Adaptative Focused Crawling. The 
Adaptative Web, pages 231-262, 2007. 

[13] Jakob Nielsen. “Designing Web Usability: The Practice of Simplicity”; 
New Riders Publishing, Indianapolis ISBN 1-56205-810-X; 2010. 

 



Web Information Retrieval Based on Syntax Distances 
 

6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       


