
DEPARTAMENTO DE SISTEMAS INFORMÁTICOS Y COMPUTACIÓN
UNIVERSIDAD POLITÉCNICA DE VALENCIA

P.O. Box: 22012 E-46071 Valencia (SPAIN)

Informe Tcnico / Technical Report

Ref. No.: DSIC-II/03/09 Pages: 27
Title: A Tracing Semantics for CSP
Author(s): M. Llorens, J. Oliver, J. Silva and S. Tamarit
Date: June, 2009
Keywords: Concurrent Programming, Semantics, Tracing, CSP

Vo Bo

Leader of research Group Author(s)

A Tracing Semantics for CSP?

Marisa Llorens, Javier Oliver, Josep Silva, and Salvador Tamarit

Universidad Politécnica de Valencia, Camino de Vera S/N, E-46022 Valencia, Spain.
{mllorens,fjoliver,jsilva,stamarit}@dsic.upv.es

Abstract. CSP is a powerful language to specify complex concurrent
systems. Due to the non-deterministic execution order of processes and
to the restrictions imposed on this order by synchronizations, many anal-
yses such as deadlock analysis, reliability analysis, program slicing and
the MEB and CEB analyses try to predict properties of the specifica-
tion which can guarantee the quality of the final system. These analyses
often rely on the use of traces and/or on a data structure which is able
to represent computations. In this work, we introduce the theoretical
basis for tracing concurrent and explicitly synchronized computations in
process algebras such as CSP. Tracing computations is a difficult task
due to the subtleties of the underlying operational semantics which com-
bines concurrency, non-determinism and non-termination. We define an
instrumented operational semantics that generates as a side-effect an ap-
propriate data structure which can be used to trace computations at an
adequate level of abstraction. The formal definition of a tracing seman-
tics improves the understanding of the tracing process, but also, it allows
us to formally prove the correctness of the computed traces.

Keywords: Concurrent Programming, Semantics, Tracing, CSP.

1 Introduction

One of the most important techniques for program understanding and debugging
is tracing. A trace gives the user access to otherwise invisible information about
a computation. In the context of concurrent languages, computations are par-
ticularly complex due to the non-deterministic execution order of processes and
to the restrictions imposed on this order by synchronizations; and thus, a tracer
is a powerful tool to explore, understand and debug concurrent computations.

One of the most extended concurrent languages is the Communicating Se-
quential Processes (CSP) [3, 10] whose operational semantics allows the combi-
nation of parallel, non-deterministic and non-terminating processes. The study
and transformation of CSP specifications often implies different analyses such as
deadlock analysis [5], reliability analysis [4] and program slicing [11] which are
often based on a data structure able to represent computations.
? This work has been partially supported by the Spanish Ministerio de Ciencia e In-

novación under grant TIN2008-06622-C03-02, by the Generalitat Valenciana under
grant GVPRE/2008/001, and by the Universidad Politécnica de Valencia (Programs
PAID-05-08 and PAID-06-08).

2

However, computing CSP traces is a complex task due to the non-deterministic
execution of processes, due to deadlocks, due to non-terminating processes and
mainly due to synchronizations. This is probably the reason why there does not
exist any correctness result which formally relates the trace of a specification
to the execution of this specification. This semantics is needed because it would
allow us to prove important properties (such as correctness and completeness)
of the techniques and tools based on tracing.

In this work, we introduce the first tracing semantics for CSP. Concretely, we
instrument the standard operational semantics of CSP in such a way that the
execution of the semantics produces as a side-effect the trace of the computation.
If the execution is stopped (e.g., because it is non-terminating), the semantics
produces the trace of the computation performed so far. This semantics can
serve as a theoretical foundation for tracing CSP because it formally relates the
computations of the standard semantics with the traces of these computations.
Therefore, it allows us to better understand the overall tracing process, but it
also allows us to formally prove the correctness of the computed traces.

It is important to remark the difference between our traces which are based
on the standard notion of trace used in programming languages, and the notion
of trace commonly used in CSP which refer to a sequence of events. Concretely,
the operational semantics of CSP is an event-based semantics in which the oc-
currence of events fires the rules of the semantics. Hence, the final trace of the
computation is the sequence of events occurred (see Chapter 8 of [10] for a de-
tailed study of this kind of traces). Our notion of trace is essentially different.
In our setting, a trace [1, 2] is a data structure which represents the sequence
of expressions that have been reduced during the computation, and moreover,
this data structure is labeled with the source position of these expressions in the
program.

The rest of the paper has been organized as follows. Firstly, in Section 2
we present the standard operational semantics of CSP. In Section 3 we intro-
duce some notation that will be used along the paper. Then, in Section 4, we
instrument the semantics in such a way that the execution of the instrumented
semantics produces as a side-effect the trace associated to the performed com-
putation. In Section 5, we present the main results of the paper stating that the
instrumented semantics presented is a conservative extension of the standard
semantics, and its computed traces are correct. Finally, Section 6 concludes.

2 The semantics of CSP

This section presents the standard operational semantics of CSP as defined by
Roscoe [10]. It is presented in Fig. 1 as a logical inference system. A state of the
semantics is an expression to be evaluated called the control. The system starts
with an initial state, and the rules of the semantics are used to infer how this
state evolves. When no rules can be applied to the current state, the computation
finishes. The rules of the semantics change the states of the computation due
to the occurrence of events. The set of possible events is Σ ∪ {τ, X}. Events in

3

(Process Call) (Prefixing) (SKIP)

P
τ−→ rhs(P) (a → P)

a−→ P SKIP
X−→ >

(Internal Choice 1) (Internal Choice 2)

(P uQ)
τ−→ P (P uQ)

τ−→ Q

(External Choice 1) (External Choice 2)

P
τ−→ P ′

(P ¤ Q)
τ−→ (P ′ ¤ Q)

Q
τ−→ Q′

(P ¤ Q)
τ−→ (P ¤ Q′)

(External Choice 3) (External Choice 4)

P
a or X−→ P ′

(P ¤ Q)
a or X−→ P ′

Q
a or X−→ Q′

(P ¤ Q)
a or X−→ Q′

(Synchronized Parallelism 1) (Synchronized Parallelism 2)

P
a or {τ or X}−→ P ′

(P
‖
X Q)

a or τ−→ (P ′
‖
X Q)

a 6∈ X
Q

a or {τ or X}−→ Q′

(P
‖
X Q)

a or τ−→ (P
‖
X Q′)

a 6∈ X

(Synchronized Parallelism 3) (Synchronized Parallelism 4)

P
a−→ P ′ Q

a−→ Q′

(P
‖
X Q)

a−→ (P ′
‖
X Q′)

a ∈ X
(> ‖

X >)
X−→ >

(Sequential Composition 1) (Sequential Composition 2)

P
a or τ−→ P ′

(P ; Q)
a or τ−→ (P ′; Q)

P
X−→ >

(P ; Q)
τ−→ Q

(Hiding 1) (Hiding 2) (Hiding 3)

P
a−→ P ′

(P\B)
τ−→ (P ′\B)

a ∈ B
P

a or τ−→ P ′

(P\B)
a or τ−→ (P ′\B)

a 6∈ B
P

X−→ >
(P\B)

X−→ >
(Renaming 1) (Renaming 2) (Renaming 3)

P
a−→ P ′

(P [[R]])
b−→ (P ′[[R]])

a R b
P

a or τ−→ P ′

(P [[R]])
a or τ−→ (P ′[[R]])

a 6∈ R
P

X−→ >
(P [[R]])

X−→ >

Fig. 1. CSP’s operational semantics

Σ = {a, b, c . . .} are visible from the external environment, and can only happen
with its co-operation (e.g., actions of the user). The special event τ cannot be
observed from outside the system and it happens automatically as defined by the

4

semantics. X is a special event representing the successful termination of a pro-
cess. We use the special symbol > to denote any process that already terminated.
In order to perform computations, we construct an initial state (e.g., MAIN) and
(non-deterministically) apply the rules of Fig. 1. The intuitive meaning of each
rule is the following:

(Process Call) The call is unfolded and the right-hand side of process P is
added to the control. For concretion, in the following, we will use rhs(P) to
denote the right-hand side expression in the definition of process P .

(Prefixing) When event a occurs, process P is added to the control. This rule
is used both for prefixing and communication operators (input and output).
Given a communication expression, either c?u → P or c!u → P , this rule
treats the expression as a prefixing except for the fact that the set of u’s
appearing in P is replaced by the communicated events.

(SKIP) After SKIP, the only possible event is X, which denotes the end of the
(sub)computation with the special symbol >. There is no rule for > (neither
for STOP), hence, this (sub)computation has finished.

(Internal Choice 1 and 2) The system uses the internal event τ to (non-
deterministically) select one of the two processes P or Q which is added to
the control.

(External Choice 1, 2, 3 and 4) The occurrence of τ develops one of the
branches. The occurrence of an event a 6= τ is used to select one of the two
processes P or Q and the control changes according to the event.

(Synchronized Parallelism 1 and 2) When event a 6∈ X or events τ or X
happen, one of the two processes P or Q evolves accordingly, but only a is
visible from outside the parallelism operator.

(Synchronized Parallelism 3) When event a ∈ X happens, it is required
that both processes synchronize, P and Q are executed at the same time

and the control becomes P ′
‖
X Q′.

(Synchronized Parallelism 4) When both processes have successfully ter-
minated the control becomes >, performing X.

(Sequential Composition 1) In P ;Q, P can evolve to P ′ with any event
except X. Hence, the control becomes P ′;Q.

(Sequential Composition 2) When P finishes (with event X), Q starts. Note
that X is hidden from outside the whole process becoming τ .

(Hiding 1) When event a ∈ B occurs in P , it is hidden, and thus changed to
τ so that it is not observable from outside P .

(Hiding 2 and Hiding 3) P can normally evolve (using rule 2) until it is
finished (X happens). When P finishes, the control becomes >.

(Renaming 1) Whenever a renamed event a happens in P , it is renamed to b
so that, externally, only b is visible.

(Renaming 2 and 3) Renaming has no effect on either τ or X events. The
rules for renaming are similar to those for hiding.

We illustrate the semantics with the following example.

5

(Process Call)
MAIN

τ−→ ((a→ STOP) ‖
{a}

(P2(a→ STOP)))

(Synchronized

Parallelism 2)

(External Choice 1)

(Process Call)
P

τ−→ (b→ SKIP)

(P2(a→ STOP))
τ−→ ((b→ SKIP)2(a→ STOP))

((a→ STOP) ‖
{a}

(P2(a→ STOP)))
τ−→ State1

where State1 =((a→ STOP) ‖
{a}

((b→ SKIP)2(a→ STOP)))

(Synchronized
Parallelism 2)

(External Choice 1)

(Prefixing)
(b→ SKIP)

b−→ SKIP

((b→ SKIP)2(a→ STOP))
b−→ SKIP

State1
b−→ ((a→ STOP) ‖

{a}
SKIP)

(Synchronized

Parallelism 2)

(SKIP)
SKIP

X−→ >
((a→ STOP) ‖

{a}
SKIP)

τ−→ ((a→ STOP) ‖
{a}
>)

Fig. 2. A computation with the operational semantics in Fig. 1

Example 1. Consider the following CSP specification:

MAIN = (a → STOP) ‖
{a}

(P 2 (a → STOP))

P = b → SKIP

If we use MAIN as the initial state to execute the semantics, we get the computa-
tion shown in Fig. 2 where the final state is ((a→ STOP) ‖

{a}
>). This computation

corresponds to the execution of the left branch of the choice (i.e., P) and thus
only event b occurs. Each rewriting step is labeled with the applied rule, and
the example should be read top-down.

3 Tracing computations

In this section we define the notion of trace. Firstly, we introduce some notation
that will be used along the paper. A trace is usually formed by the sequence
of expressions that appear in the control of the semantics. These expressions
are conveniently connected to form a graph. However, several program analysis
techniques such as program slicing handle the source positions of programs, and
thus, this notion of trace is insufficient for them. Therefore, we want our traces to
store the source position of each expression so that the trace can be used to know

6

what portions of the source code have been executed and in what order. The
inclusion of source positions in the trace implies an additional level of complexity
in the semantics, but the benefits of providing our traces with this additional
information are clear and, for some applications, essential. Therefore, we use
labels (that we call specification positions) to identify each subexpression in a
specification. Formally,

Definition 1. (Position, specification position) Given a specification S, the po-
sitions in S are represented by a sequence of natural numbers, where Λ denotes
the empty sequence (i.e., the root position). They are used to address subexpres-
sions of an expression viewed as a tree:

Proc|Λ = Proc ∀ Proc ∈ P
(Proc op)|1.w = Proc|w ∀ op ∈ {\, [[]]}
(Proc1 op Proc2)|1.w = Proc1|w ∀ op ∈ {→,u, 2, |||, ||, ; }
(Proc1 op Proc2)|2.w = Proc2|w ∀ op ∈ {→,u, 2, |||, ||, ; }
A specification position is a pair (P, w) that addresses the subexpression Proc|w
in the right-hand side of the process definition P = Proc ∈ S. We often use
Pos(Proc) to refer to (P,w). In order to also identify names of processes, we
use (P,) as the specification position of P .

We often use indistinguishably an expression and its associated specification
position, when it is clear from the context. In order to introduce the formal
definition of trace, we need first to define the concept of control-flow.

Definition 2. (Control-flow) Given a CSP specification S and two specification
positions n, n′ in S, we say that the control of n can pass to n′ iff

– n = P ∧ n′ = first((P, Λ)) with P = rhs(P) ∈ S
– n ∈ {u, 2, |||, ||} ∧ n′ ∈ {first(n.1),first(n.2)}
– n ∈ {→, ; } ∧ n′ = first(n.2)
– n = n′.1 ∧ n′ = →
– n ∈ last(n′.1) ∧ n′ = ;
– n ∈ {\, [[]]} ∧ n′ = first(n.1)

where first(n) is the specification position of the subprocess denoted by n which
must be executed first:

first(n) =





n.1 if n = →
first(n.1) if n = ;
n otherwise

7

and where last(n) is the set of all possible termination points of the subprocess
denoted by n:

last(n) =





{n} if n = SKIP
∅ if n = STOP ∨

(n ∈ {|||, ||} ∧ (last(n.1) = ∅ ∨ last(n.2) = ∅))
last(n.1) ∪ last(n.2) if n ∈ {u, 2} ∨

(n ∈ {|||, ||} ∧ last(n.1) 6= ∅ ∧ last(n.2) 6= ∅)
last(n.2) if n ∈ {→, ; }
last(n.1) if n ∈ {\, [[]]}
last((P, Λ)) if n = P

Definition 3. (Rewriting Step, Derivation) Given a CSP expression e, a rewrit-
ing step for e (e ΘÃ e′) is the application of a rule of the semantics of Fig. 1:

Θ

e −→ e′
where Θ is a (possibly empty) set of rewriting steps. Given a CSP ex-

pression e0, we say that the sequence e0
Θ0Ã . . .

ΘnÃ en+1, n ≥ 0, is a derivation
of e0 iff ∀ i, 0 ≤ i ≤ n, ei

ΘiÃ ei+1 is a rewriting step. We say that the deriva-
tion is complete iff there is no possible rewriting step for en+1. We say that the
derivation has successfully finished iff en+1 is >.

Function last can be used to determine the last specification position in a
derivation. However, this function computes all possible final specification posi-
tions, and a derivation only reaches (non-deterministically) a set of them. There-
fore, we will use in the following a modified version of last called last ′ whose be-
havior is exactly the same as last except in the case of choices. For each rewriting
step e u e′ ΘÃ e or e 2 e′ Θ∗Ã e, last ′(e u e′) = last ′(e 2 e′) = e.

Definition 4. (Trace) Given a CSP specification S, and a derivation D in S,
a trace of D is a graph G = (N,Ec, Es) where N is a set of nodes labeled with
specification positions and edges are divided into two groups:

– control-flow edges (Ec) are a set of one-way edges (denoted with 7→) repre-
senting the control-flow between two nodes, and

– synchronization edges (Es) are a set of two-way edges (denoted with e)
representing the synchronization of two (event) nodes;

and for each e
ΘÃ e′ ∈ D and for all rewriting steps in Θ we have that:

– if e is a prefixing (a → P) or a sequential composition (Q; P) and Pos(P) ∈
N , then Ec contains an edge Pos(a) 7→ Pos(→) or Pos(last ′(Q)) 7→ Pos(;)
respectively,

– if the control can pass from e to e′′ where e′′ Θ′Ã e′′′ ∈ Θ, then Ec contains
an edge Pos(e) 7→ Pos(first(e′′)),

– if the control can pass from e to e′, then Ec contains an edge Pos(e) 7→
Pos(first(e′)), and

8

– Es contains a synchronization edge a e a′ for each synchronization occur-
ring in the rewriting step where a and a′ are the synchronized events.

The only nodes in N are the nodes induced by Ec and Es.

MAIN Ã (a→ STOP) ‖
{a}

(P2STOP)

Ã STOP ‖
{a}

STOP

Ã ⊥ ‖
{a}

STOP

Ã ⊥ ‖
{a}
⊥

(a) Derivation

||
MAIN,Λ

�
MAIN,2

a
MAIN,1.1

→
MAIN,1

STOP
MAIN,1.2

a
MAIN,2.2.1

→
MAIN,2.2

STOP
MAIN,2.2.2

1

5

6

7

8

2

3

4

MAIN
MAIN,-

0

(b) Trace

Fig. 3. Derivation and trace associated to the specification of Example 2

Example 2. Consider the specification of Example 1 where expressions are la-
beled with its associated specification positions (in grey color) so that labels are
unique.

MAIN(MAIN,) = (a(MAIN,1.1)→(MAIN,1)STOP(MAIN,1.2)) ‖
{a}

(MAIN,Λ)

(P(MAIN,2.1)2(MAIN,2)(a(MAIN,2.2.1)→(MAIN,2.2)STOP(MAIN,2.2.2)))
P(P,) = b(P,1)→(P,Λ)SKIP(P,2)

We show in Fig. 3(a) one possible derivation (ignoring subderivations) of this
specification. Its associated trace is shown in Fig. 3(b). For the time being, the
reader can ignore the numbering of the nodes; they will be explained in Section
4. In the example, we see that the trace is a connected and directed graph.
Apart from the control-flow edges, there is one synchronization edge between
nodes (MAIN, 2.2.1) and (MAIN, 1.1) representing the synchronization of event a.
We refer the reader to Appendix B where an example with loops is discussed.

4 Instrumenting the semantics for tracing

This section introduces an instrumented operational semantics of CSP which
generates as a side-effect the trace associated to the computation performed with
the semantics. The instrumented semantics is shown in Fig. 4, where we assume

9

(SKIP)
(SKIPα, G, (q, p),)

X−→ (>, G[q
p7→
r

α], (r, q), ∅)

(STOP)
(STOPα, G, (q, p),)

τ−→ (⊥, G[q
p7→
r

α], (r, q), ∅)

(Process Call)
(Pα, G, (q, p),)

τ−→ (rhs(P), G[q
p7→
r

α], (r, q), ∅)

(Prefixing)
(aα →β P, G, (q, p),)

a−→ (P, G[q
p7→
r

α, r
q7→
s

β], (s, r), {q})

(Internal
Choice 1)

(P uα Q, G, (q, p),)
τ−→ (P, G[q

p7→
r

α], (r, q), ∅)
(Internal
Choice 2)

(P uα Q, G, (q, p),)
τ−→ (Q, G[q

p7→
r

α], (r, q), ∅)

(External
Choice 1)

(P, GΩ , ϕΩ ,)
τ−→ (P ′, G′, ϕ′, ∅)

(P ¤(α,ϕP ,ϕQ)Q, G, ϕ,)
τ−→ (P ′ ¤(α,ϕ′,ϕQ)Q, G′, ϕ, ∅)

(GΩ , ϕΩ) = Ω(G, ϕP , ϕ, α)

(External
Choice 2)

(Q, GΩ , ϕΩ ,)
τ−→ (Q′, G′, ϕ′, ∅)

(P ¤(α,ϕP ,ϕQ)Q, G, ϕ,)
τ−→ (P ¤(α,ϕP ,ϕ′)Q′, G′, ϕ, ∅)

(GΩ , ϕΩ) = Ω(G, ϕQ, ϕ, α)

(External
Choice 3)

(P, GΩ , ϕΩ ,)
a or X−→ (P ′, G′, ϕ′, ∆)

(P ¤(α,ϕP ,ϕQ)Q, G, ϕ,)
a or X−→ (P ′, G′, ϕ′, ∆)

(GΩ , ϕΩ) = Ω(G, ϕP , ϕ, α)

(External
Choice 4)

(Q, GΩ , ϕΩ ,)
a or X−→ (Q′, G′, ϕ′, ∆)

(P ¤(α,ϕP ,ϕQ)Q, G, ϕ,)
a or X−→ (Q′, G′, ϕ′, ∆)

(GΩ , ϕΩ) = Ω(G, ϕQ, ϕ, α)

(Sequential
Composition 1)

(P, G, ϕ,)
a or τ−→ (P ′, G′, ϕ′, ∆)

(P ; Q, G, ϕ,)
a or τ−→ (P ′; Q, G′, ϕ′, ∆)

(Sequential
Composition 2)

(P, G, ϕ,)
X−→ (>, G′, (q, p), ∅)

(P ;α Q, G, ϕ,)
τ−→ (Q, G′[q

p7→
r

α], (r, q), ∅)

Fig. 4. An instrumented operational semantics for CSP that generates the trace

that every expression in the program has been labeled with its specification
position (denoted by a subscript, e.g., Pα). In this semantics, a state is a tuple

10

(Synchronized

Parallelism 1)
(P, GΩ , ϕΩ ,)

a or {τ or X}−→ (P ′, G′, ϕ′, ∆)

(P ‖
X

(α,ϕP ,ϕQ)Q, G, ϕ,)
a or τ−→ (P ′ ‖

X
(α,ϕ′,ϕQ)Q, G′, ϕ, ∆)

a 6∈ X ∧ (GΩ , ϕΩ) = Ω(G, ϕP , ϕ, α)

(Synchronized

Parallelism 2)
(Q, GΩ , ϕΩ ,)

a or {τ or X}−→ (Q′, G′, ϕ′, ∆)

(P ‖
X

(α,ϕP ,ϕQ)Q, G, ϕ,)
a or τ−→ (P ‖

X
(α,ϕP ,ϕ′)Q′, G′, ϕ, ∆)

a 6∈ X ∧ (GΩ , ϕΩ) = Ω(G, ϕQ, ϕ, α)

(Synchronized
Parallelism 3)

RewritingStepP RewritingStepQ

(P ‖
X

(α,ϕP ,ϕQ)Q, G, ϕ,)
a−→ (P ′ ‖

X
(α,ϕ′

P
,ϕ′

Q
)Q′, G′, ϕ, ∆P ∪∆Q)

a ∈ X ∧ G′ = GP ∪GQ ∪ {sP
ae sQ | sP ∈ ∆P ∧ sQ ∈ ∆Q} ∧

(GPΩ , ϕPΩ) = Ω(G, ϕP , ϕ, α) ∧ (GQΩ , ϕQΩ) = Ω(G, ϕQ, ϕ, α)

∧ RewritingStepP = (P, GPΩ , ϕPΩ ,)
a−→ (P ′, GP , ϕ′P , ∆P)

∧ RewritingStepQ = (Q, GQΩ , ϕQΩ ,)
a−→ (Q′, GQ, ϕ′Q, ∆Q)

(Synchronized
Parallelism 4)

(>‖
X

(α,(qP ,pP),(qQ,pQ))>, G, ϕ,)
X−→ (>, G[pP 7→

r
, pQ 7→

r
], (r, pP), ∅)

(Hiding 1)
(P, GΣ , ϕΣ ,)

a−→ (P ′, G′, ϕ′,)

(P\αB, G, ϕ,)
τ−→ (P ′\•B, G′, ϕ′, ∅)

a ∈ B

(Hiding 2)
(P, GΣ , ϕΣ ,)

a or τ−→ (P ′, G′, ϕ′, ∆)

(P\αB, G, ϕ,)
a or τ−→ (P ′\•B, G′, ϕ′, ∆)

a 6∈ B

(Hiding 3)
(P, GΣ , ϕΣ ,)

X−→ (>, G′, ϕ′, ∅)
(P\αB, G, ϕ,)

X−→ (>, G′, ϕ′, ∅)
where (GΣ , ϕΣ) = Σ(G, α, ϕ)

(Renaming 1)
(P, GΣ , ϕΣ ,)

a−→ (P ′, G′, ϕ′, ∆)

(P [[R]]α, G, ϕ,)
b−→ (P ′[[R]]•, G′, ϕ′, ∆)

(a, b) ∈ R

(Renaming 2)
(P, GΣ , ϕΣ ,)

a or τ−→ (P ′, G′, ϕ′, ∆)

(P [[R]]α, G, ϕ,)
a or τ−→ (P ′[[R]]•, G′, ϕ′, ∆)

(a,) 6∈ R

(Renaming 3)
(P, GΣ , ϕΣ ,)

X−→ (>, G′, ϕ′, ∅)
(P [[R]]α, G, ϕ,)

X−→ (>, G′, ϕ′, ∅)
where (GΣ , ϕΣ) = Σ(G, α, ϕ)

Fig. 4. An instrumented operational semantics for CSP that generates the trace (cont.)

(e,G, (q, p),∆), where e is the expression to be evaluated (the control), G is a
directed graph (i.e., the trace built so far), (q, p) are references to the current
node and its parent in G, and ∆ is a set of references to nodes that must be
synchronized. Concretely, q is a reference to store the specification position of

11

the current expression e in the control, and p denotes the parent of q. q will be
often a fresh1 reference generated to add new nodes to G. The basic idea of the
graph construction is to record the current control with the current reference
in every step by connecting it to its parent whose reference is p. We use the
notation G[q

p7→
r

α] to introduce a node in G. For instance, if we are adding a
node to G this new node has reference q, is labeled with specification position
α, its parent is p, and its successor is r. It is assumed that the reference of the
root node of the trace (e.g., (MAIN, Λ)) is called Root.

An explanation for each rule of the semantics follows:

(SKIP and STOP) Whenever one of these rules is applied, the subcomputa-
tion finishes because > (for rule SKIP) and ⊥ (for rule STOP) are put in the
control, and these special symbols have no associated rule. A node with the
SKIP (respectively STOP) specification position is added to the graph.

(Process Call) The called process is unfolded, node q is added to the graph
with specification position α, parent p and successor r (a fresh reference).
In the new state, q becomes the parent reference and the fresh reference r
represents the current reference. The new expression in the control is rhs(P).
The set ∆ of events to be synchronized is initialized to ∅.

(Prefixing) This rule adds nodes q (the prefix) and r (the prefixing operator)
to the graph. Node q is the parent of r. In the new state, r becomes the
parent reference and the fresh reference s represents the current reference.
The new control is P . The set ∆ is initialized to {q} to indicate that event
a has occurred and it must be synchronized if required by other rule.

(Internal Choice 1 and 2) The choice operator is added to the graph, and
the (non-deterministically) selected branch is put into the control with the
fresh reference r as the child of the choice operator.

(External Choice 1, 2, 3 and 4) External choices can develop both branches
while τ events happen, until an event in Σ ∪ {X} occurs. This means that
the semantics can add nodes to both branches of the trace alternatively, and
thus, it needs to store the next reference to use in every branch of the choice.
This is done by labeling choice operators with a tuple of the form (α, ϕ, ϕ′)
where α is the specification position of the choice operator; and ϕ and ϕ′ are
respectively the references to be used in the left and right branches of the
choice, and they are initialized to (,). Therefore, these rules can be fired
several times to evolve the branches of the choice, but the choice operator
must be introduced into the graph only once (i.e., the first time). For this
purpose, function Ω is used:

Ω(G, ϕ, (q, p), α) =

{
(G[q

p7→
r

α], (r, q)) if ϕ = (,)

(G,ϕ) otherwise

1 We assume that fresh references are generated taking the next node identifier not
used into account (i.e., fresh references already generated but not used are employed
before producing new references).

12

This function checks whether this is the first time that the branch is evalu-
ated (this only happens when the references of this branch are empty, i.e.,
ϕ = (,)). In this case, the choice operator is added to G.

(Sequential Composition 1 and 2) Sequential Composition 1 is used to
evolve process P until it is finished. P is evolved to P ′ which is put into
the control. When P finishes (it becomes >), X happens. Then, Sequential
Composition 2 is used and Q is put into the control. The sequential compo-
sition operator ; is added to the graph with parent p that is the reference to
the last node added in the subderivation associated to P .

(Synchronized Parallelism 1 and 2) In a parallelism, both parallel processes
can be intertwiningly executed until a synchronized event is found. Therefore,
nodes from both processes can be added interweaved to the graph. Hence,
parallelism operators are labelled with a tuple of the form (α, ϕ, ϕ′) as it
happens with external choices.
These rules develop the branches of the parallelism until they are finished
or until they must synchronize. They use function Ω to introduce the paral-
lelism into the graph the first time it is executed and only if it has not been
introduced in a previous rewriting step.

(Synchronized Parallelism 3) This rule is used to synchronize the parallel
processes. In this case, both branches must perform a rewriting step with
the same visible (and synchronized) event. Each branch has a non-empty
set of events ∆ to be synchronized (note that this is a set because many
parallelisms could be nested). Then, all references in the sets ∆P and ∆Q

are mutually linked with a synchronization edge.
(Synchronized Parallelism 4) It is used when none of the parallel processes

can proceed because they already finished. In this case, the control becomes
> indicating the successful termination of the synchronized parallelism. In
the new state, the new (fresh) reference is r. Therefore, this rule also adds
to the graph two arcs from the last references of each branch (pP and pQ)
to r.

(Hiding 1, 2 and 3) Hiding 1 is used to hide an event in P that belongs
to the hiding set B. In this case, the event is hidden with τ . Because the
event is hidden, it should not be synchronized by other rules; therefore, the
set ∆ is initialized to ∅. If the event does not belong to B then Hiding 2
is used, and thus, it remains observable from outside. In both cases, the
specification position of the hiding operator is replaced by • (in the next
state of the semantics, not in the specification) meaning that it has been
already evaluated. This is used to ensure that the hiding operator is only
added to the graph once. For this purpose, function Σ is used:

Σ(G,α, (q, p)) =

{
(G[q

p7→
r

α], (r, q)) if α 6= •
(G, (q, p)) otherwise

Function Σ checks that the specification position of the hiding operator is
not •. In this case, it is the first time that it is evaluated and thus it is
added to the graph. Hiding 3 is used to finish the process by placing > in
the control and performing X.

13

(Renaming 1, 2 and 3) It is completely analogous to the previous case, but in
this case, the event is not hidden, but replaced by another event in mapping
R. Note in Renaming 1 that, contrarily to Hiding 1, the set ∆ is passed down
from the top rewriting step. This is done because an event a happened that
has been added to ∆ and must be synchronized if required by other rule.
Due to the renaming, other rules see a as b, so, if they try to synchronize b,
they will use the reference of a introduced in ∆.

We illustrate this semantics with a simple example.

Example 3. Consider again the specification in Example 2. The execution of
the instrumented semantics with the initial state (MAIN, ∅, (0, Root), ∅) gets the
computation of Fig. 5. Here, for clarity, each computation step is labeled with
the applied rule; in each state, G denotes the current graph. This computation
corresponds to the execution of the right branch of the choice (i.e., a → STOP).
The final state is (⊥ ‖

{a}
((MAIN,Λ),(9,4),(10,8))⊥, G′, (1, 0), ∅). The final trace G′ com-

puted for this execution is depicted in Fig. 3(b) where we can see that nodes are
numbered with the references generated by the instrumented semantics.

5 Correctness

In this section we prove the correctness of the semantics by showing that (i) the
computations performed by the instrumented semantics are equivalent to the
computations performed by the standard semantics; and (ii) the graph produced
by the instrumented semantics is the trace of the derivation.

Theorem 1 (Conservativeness). Let S be a CSP specification, e an expres-
sion in S, and D and D′ the derivations of e performed with the semantics of
Fig. 1 and Fig. 4, respectively. Then, the sequence of rules applied in D and D′
is exactly the same except that D′ performs one rewriting step more than D for
each (sub)computation that finishes with STOP.

This theorem shows that the computations performed with the instrumented
semantics are all and only the computations performed with the standard se-
mantics. The only difference between them from an operational point of view
is that the instrumented semantics needs to perform one step when a STOP is
evaluated (to add its specification position to the trace) and then finishes, while
the standard semantics finishes without performing any step. The proof of the
theorem can be found in Appendix C.

The following theorem states the correctness of the instrumented semantics
by ensuring that the graph produced is a trace of the computation.

Theorem 2 (Correctness). Let S be a CSP specification, D a derivation of S
performed with the semantics of Fig. 4, and G the graph produced by D. Then,
G is the trace associated to D.

The proof of this theorem can be found in Appendix C.

14

(P
ro

ce
ss

C
al

l)
(M
A
I
N
,∅

,(
0
,R

oo
t)

,∅
)

τ −→
S

ta
te

1
w

h
er

e

S
ta

te
1

=
((
a
→

S
T
O
P
)
‖ {a
}((

M
A
I
N
,Λ

),
(−

,−
),

(−
,−

))
(P

2
(a
→

S
T
O
P
))

,G
[0

R
o
o
t

7→ 1
(M
A
I
N
,

)]
,(

1
,0

),
∅)

(S
yn

ch
ro

n
iz

ed
P
ar

al
le

lis
m

3
)

L
R

S
ta

te
1

a −→
S

ta
te

2
w

h
er

e

L
=

(P
re

fi
xi

n
g
)
(a
→

S
T
O
P
,G

[1
0 7→ 2

(M
A
I
N
,Λ

)]
,(

2
,1

),
∅)

a −→
(S
T
O
P
,G

[2
1 7→ 3

(M
A
I
N
,1

.1
),

3
2 7→ 4

(M
A
I
N
,1

)]
,(

4
,3

),
{2
})

R
=

(E
C

4
)

(P
re

fi
xi

n
g
)
(a
→

S
T
O
P
,G

[5
1 7→ 6

(M
A
I
N
,2

)]
,(

6
,5

),
∅)

a −→
(S
T
O
P
,G

[6
5 7→ 7

(M
A
I
N
,2

.2
.1

),
7

6 7→ 8
(M
A
I
N
,2

.2
)]

,(
8
,7

),
{6
})

((
P
2

((
M
A
I
N
,Λ

),
(−

,−
),

(−
,−

))
(a
→

S
T
O
P
))

,G
[1

0 7→ 5
(M
A
I
N
,Λ

)]
,(

5
,1

),
∅)

a −→
(S
T
O
P
,G

′ ,
(5

,1
),
{6
})

a
n
d

S
ta

te
2

=
((
S
T
O
P
‖ {a
}((

M
A
I
N
,Λ

),
(4

,3
),

(8
,7

))
S
T
O
P
),

G
′ ∪
{2

a e
6
},

(1
,0

),
{2

,6
})

(S
yn

ch
ro

n
iz

ed
P
ar

al
le

lis
m

1
)

(S
T

O
P
)
(S
T
O
P
,G

,(
4
,3

),
{2

,6
})

τ −→
(⊥

,G
[4

3 7→ 9
(M
A
I
N
,1

.2
)]

,(
9
,4

),
∅)

S
ta

te
2

τ −→
S

ta
te

3

w
h
er

e
S

ta
te

3
=

(⊥
‖ {a
}((

M
A
I
N
,Λ

),
(9

,4
),

(8
,7

))
S
T
O
P
,G

′ ,
(1

,0
),
∅)

(S
yn

ch
ro

n
iz

ed
P
ar

al
le

lis
m

2
)

(S
T

O
P
)
(S
T
O
P
,G

,(
8
,7

),
∅)

τ −→
(⊥

,G
[8

7 7→ 1
0

(M
A
I
N
,2

.2
.2

)]
,(

1
0
,8

),
∅)

S
ta

te
3

τ −→
S

ta
te

4

w
h
er

e
S

ta
te

4
=

(⊥
‖ {a
}((

M
A
I
N
,Λ

),
(9

,4
),

(1
0
,8

))
⊥,

G
′ ,

(1
,0

),
∅)

Fig. 5. An example of computation with the semantics in Fig. 4

15

6 Conclusions

This work introduces the first semantics of CSP instrumented for tracing. The
execution of the instrumented semantics produces a graph as a side effect which
is the trace of the computation. This trace is produced by the semantics step by
step, and thus, it can be also used to produce a trace of an infinite computation
until has been stopped. The generated trace can be useful not only for tracing
computations but for debugging and program comprehension. This is due to the
fact that our generated trace also includes the specification positions associated
to the expressions appearing in the trace. Therefore, traces could be used to
analyse what parts of the program are executed (and in what order) in a partic-
ular computation. Also, this information allows a traces viewer tool to highlight
the parts of the code that are executed in each step.

This semantics is the first tracing semantics for CSP. Therefore, it is an
interesting result because it can serve as a reference mark to prove properties
such as completeness of static analyses which are based on traces.

References

1. O. Chitil. A Semantics for Tracing. In 13th Intl Workshop on Implementation of
Functional Languages (IFL 2001), pp. 249-254. Ericsson CSL, 2001.

2. O. Chitil, C. Runciman, M. Wallace. Transforming Haskell for Tracing. In Int’l
Workshop on the Impl. of Functional Languages, LNCS 2670, pp. 165–181, 2003.

3. Hoare, C. A. R. Communicating sequential processes. Communications ACM,
26(1):100–106, 1983.

4. Kavi, K. M., F. T. Sheldon, and B. Shirazi. Reliability analysis of CSP specifications
using Petri nets and Markov processes. In Proceedings 28th Annual Hawaii Inter-
national Conference on System Sciences. Software Technology, vol. 2, pp. 516–524,
Wailea, HI, 1995.

5. Ladkin, P. and B. Simons. Static deadlock analysis for csp-type communications.
Responsive Computer Systems (Chapter 5), Kluwer Academic Publishers, 1995.

6. Leuschel, M. and M. Butler. ProB: an automated analysis toolset for the B method.
Journal of Software Tools for Technology Transfer, vol. 10(2), pp. 185–203, 2008.

7. Leuschel, M., M. Llorens, J. Oliver, J. Silva, and S. Tamarit, Static slicing of CSP
specifications. In Proceedings of the 18th International Symposium on Logic-Based
Program Synthesis and Transformation (LOPSTR’08), pp. 141–150, 2008.

8. Leuschel, M., M. Llorens, J. Oliver, J. Silva, and S. Tamarit, SOC: a slicer for CSP
specifications. In Proceedings of the 2009 ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-based Program Manipulation (PEPM’09), pp. 165–168,
Savannah, GA, USA, 2009.

9. Leuschel, M., M. Llorens, J. Oliver, J. Silva, and S. Tamarit, The MEB and CEB
Static Analysis for CSP Specifications. In Post-proceedings of the 18th International
Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR’08),
Revised Selected Papers, LNCS 5438, Springer-Verlag, pp. 103–118, 2009.

10. Roscoe, A.W., The Theory and Practice of Concurrency, Prentice-Hall, 2005.
11. M. D. Weiser. Program slicing. IEEE Transactions on Software Engineering, vol.

10(4), pp. 352–357, 1984.

16

A The syntax of CSP

For those readers not familiarized with CSP, this appendix recalls CSP’s syntax.

S ::= D1 . . . Dm (entire specification) Domains
P, Q, R . . . ∈ P (processes)
a, b, c . . . ∈ Σ (events)
u, v, w . . . ∈ V (variables)

D ::= P = Proc (process definition)
Proc ::= Q (process call)

| x → Proc (prefixing)
| c?u → Proc (input)
| c!u → Proc (output)
| Proc1 u Proc2 (internal choice)
| Proc1 2 Proc2 (external choice)
| Proc1 ||{xn} Proc2 (synchronized parallelism) where xn = x1, . . . , xn

and xi ∈ Σ ∪ V
| Proc1 ||| Proc2 (interleaving)
| Proc1 ; Proc2 (sequential composition)
| Proc\{xn} (hiding)
| Proc[[f]] (renaming) where f : Σ → Σ
| SKIP (skip)
| STOP (stop)

Fig. 6. Syntax of CSP specifications

Figure 6 summarizes the syntax constructions used in CSP specifications. A
specification is a finite collection of definitions. The left-hand side of each defini-
tion is the name of a different process, which is defined in the right-hand side by
means of an expression that can be a call to another process or a combination
of the following operators:

Prefixing. It specifies that event x must happen before expression Proc.
Input. It is used to receive a message from another process. Message u is re-

ceived through channel c; then process Proc is executed.
Output. It is analogous to the input, but this is used to send messages. Message

u is sent through channel c; then process Proc is executed.
Internal choice. The system chooses (e.g., non-deterministically) to execute

one of the two expressions.
External choice. It is identic to internal choice but the choice comes from

outside the system (e.g., the user).
Synchronized parallelism. Both expressions are executed in parallel with a

set of synchronized events. In absence of synchronizations both expressions
can execute in any order. Whenever a synchronized event xi, 1 ≤ i ≤ n,

17

happens in one of the expressions it must also happen in the other at the
same time. Whenever the set of synchronized events is not specified, it is
assumed that expressions are synchronized in all common events.

Interleaving. Both expressions are executed in parallel and independently.
Therefore, it is operationally equivalent to a parallelism with an empty syn-
chronization events set.

Sequential composition. It specifies a sequence of two processes. When the
first (successfully) finishes, the second starts.

Hiding. Process Proc is executed with a set of hidden events {xn}. Hidden
events are not observable from outside the process, and thus, they cannot
synchronize with other processes.

Renaming. Process Proc is executed with a set of renamed events specified
with the mapping f . An event a renamed as b behaves internally as a but it
is observable as b from outside the process.

Skip. It finishes the current process. It allows us to continue the next sequential
process.

Stop. It finishes the current process; but it does not allow the next sequential
process to continue.

B Tracing a specification with loops

In this appendix we show another example where a non-terminating process
appears which execution finishes with a deadlock.

a
MAIN,1.1

||
MAIN,Λ

→
MAIN,1

a
MAIN,1.2.1

P
MAIN,2

1

4

5

→
MAIN,1.2

STOP
MAIN,1.2.2

6

a
P,1

→
P,Λ

P
P,2

10

11

2

3

7

8

0 MAIN
MAIN,-

a
P,1

→
P,Λ

9

12

P
P,2

13

Fig. 7. Trace of the program in Example 4

18

(P
ro

ce
ss

C
al

l)
(M
A
I
N
,∅

,(
0
,R

oo
t)

,∅
)

τ −→
S

ta
te

1
w

h
er

e

S
ta

te
1

=
((
a
→

a
→

S
T
O
P
‖ {a
}((

M
A
I
N
,Λ

),
(−

,−
),

(−
,−

),
∅)
P
),

G
[0

R
o
o
t

7→ 1
(M
A
I
N
,

)]
,(

1
,0

),
∅)

(S
yn

cr
o
n
iz

ed

P
ar

al
le

lis
m

2
)

(P
ro

ce
ss

C
al

l)
(P

,G
[1

0 7→ 2
(M
A
I
N
,Λ

)]
,(

2
,1

),
∅)

τ −→
(a
→

P
,G

[2
1 7→ 3

(M
A
I
N
,2

)]
,(

3
,2

),
∅)

S
ta

te
1

τ −→
S

ta
te

2
w

h
er

e
S

ta
te

2
=

((
a
→

a
→

S
T
O
P
‖ {a
}((

M
A
I
N
,Λ

),
(−

,−
),

(3
,2

),
∅)
a
→

P
),

G
′ ,

(1
,0

),
∅)

(S
yn

ch
ro

n
iz

ed
P
ar

al
le

lis
m

3
)

L
R

S
ta

te
2

a −→
S

ta
te

3
w

h
er

e

L
=

(P
re

fi
xi

n
g
)
(a
→

a
→

S
T
O
P
,G

[1
0 7→ 4

(M
A
I
N
,Λ

)]
,(

4
,1

),
∅)

a −→
(a
→

S
T
O
P
,G

[4
1 7→ 5

(M
A
I
N
,1

.1
),

5
4 7→ 6

(M
A
I
N
,1

)]
,(

6
,5

),
{4
})

R
=

(P
re

fi
xi

n
g
)
(a
→

P
,G

,(
3
,2

),
∅)

a −→
(P

,G
[3

2 7→ 7
(P

,1
),

7
3 7→ 8

(P
,Λ

)]
,(

8
,7

),
{3
})

a
n
d

S
ta

te
3

=
(a
→

S
T
O
P
‖ {a
}((

M
A
I
N
,Λ

),
(6

,5
),

(8
,7

))
P
,G

′ ∪
{4

a e
3
},

(1
,0

),
{4

,3
})

(S
yn

cr
o
n
iz

ed

P
ar

al
le

lis
m

2
)

(P
ro

ce
ss

C
al

l)
(P

,G
,(

8
,7

),
{4

,3
})

τ −→
((
a
→

P
),

G
[8

7 7→ 9
(P

,2
)]

,(
9
,8

),
∅)

S
ta

te
3

τ −→
S

ta
te

4
w

h
er

e
S

ta
te

4
=

((
a
→

S
T
O
P
)
‖ {a
}((

M
A
I
N
,Λ

),
(6

,5
),

(9
,8

))
(a
→

P
),

G
′ ,

(1
,0

),
∅)

Fig. 8. Computation of Example 4 with the semantics in Fig. 4

19

(S
yn

ch
ro

n
iz

ed
P
ar

al
le

lis
m

3
)

L
R

S
ta

te
4

a −→
S

ta
te

5
w

h
er

e

L
=

(P
re

fi
xi

n
g
)
(a
→

S
T
O
P
,G

,(
6
,5

),
∅)

a −→
(S
T
O
P
,G

[5
5 7→ 1
0

(M
A
I
N
,1

.2
.1

),
1
0

6 7→ 1
1

(M
A
I
N
,1

.2
)]

,(
1
1
,1

0
),
{5
})

R
=

(P
re

fi
xi

n
g
)
(a
→

P
,G

,(
9
,8

),
∅)

a −→
P
,G

[9
8 7→ 1
2

(P
,1

),
1
2

9 7→ 1
3

(P
,Λ

)]
,(

1
3
,1

2
),
{9
})

a
n
d

S
ta

te
5

=
(S
T
O
P
‖ {a
}((

M
A
I
N
,Λ

),
(1

1
,1

0
),

(1
3
,1

2
))
P
,G

′ ∪
{9

a e
6
},

(1
,0

),
{5

,9
})

(S
yn

cr
o
n
iz

ed

P
ar

al
le

lis
m

1
)

(S
T

O
P
)
(S
T
O
P
,G

,(
1
1
,1

0
),
{5

,9
})

τ −→
(⊥

,G
[1

1
1
0 7→ 1
4

(M
A
I
N
,1

.2
.2

)]
,(

1
4
,1

1
),
∅)

S
ta

te
5

τ −→
S

ta
te

6
w

h
er

e
S

ta
te

6
=

(⊥
‖ {a
}((

M
A
I
N
,Λ

),
(1

4
,1

1
),

(1
3
,1

2
),
∅)
P
),

G
′ ,

(1
,0

),
∅)

(S
yn

cr
o
n
iz

ed

P
ar

al
le

lis
m

2
)

(P
ro

ce
ss

C
al

l)
(P

,G
,(

1
3
,1

2
),
∅)

τ −→
((
a
→

P
),

G
[1

3
1
2 7→ 1
5

(P
,2

)]
,(

1
5
,1

3
),
∅)

S
ta

te
6

τ −→
S

ta
te

7
w

h
er

e
S

ta
te

7
=

(⊥
‖ {a
}((

M
A
I
N
,Λ

),
(1

4
,1

1
),

(1
5
,1

3
),
∅)

(a
→

P
),

G
′ ,

(1
,0

),
∅)

Fig. 8. Computation of Example 4 with the semantics in Fig. 4 (cont.)

Example 4. Consider the following CSP specification where each expression has
been labeled with its associated specification position (in grey color).

20

MAIN = a(MAIN,1.1)→(MAIN,1)a(MAIN,1.2.1)→(MAIN,1.2)STOP(MAIN,1.2.2) ‖
{a}

(MAIN,Λ)P(MAIN,2)

P = a(P,1)→(P,Λ)P(P,2)

We use the initial state (MAIN, ∅, (0, Root), ∅) to execute the semantics and get
the computation of Fig. 8. The final state is (⊥ ‖

{a}
((MAIN,Λ),(14,11),(15,13))(a →

P), G′, (1, 0), ∅). The final trace G′ computed is the graph of Fig. 7.

C Proofs of technical results

In this appendix we present the proofs of the technical results of the paper.

Theorem 1 (Conservativeness). Let S be a CSP specification, e an expression
in S, and D and D′ the derivations of e performed with the semantics of Fig. 1
and Fig. 4, respectively. Then, the sequence of rules applied in D and D′ is
exactly the same except that D′ performs one rewriting step more than D for
each (sub)computation that finishes with STOP.

Proof. Firstly, rule (STOP) of the instrumented semantics is the only rule that
is not present in the standard semantics. When a STOP is reached in a derivation,
the standard semantics stops the (sub)computation because no rule is applicable.
In the instrumented semantics, when a STOP is reached in a derivation, the only
rule applicable is (STOP) which performs τ and puts ⊥ in the control. Then,
the (sub)computation is stopped because no rule is applicable for ⊥. Therefore,
when the control in the derivation is STOP, the instrumented semantics performs
one additional rewriting step with rule (STOP).

The claim follows from the fact that both semantics have exactly the same
number of rules except for rule (STOP), and these rules have the same control
in the four states of the rules. Therefore, all derivations in both semantics have
exactly the same number of steps and they are composed of the same sequences
of rewriting steps except for (sub)computations finishing with STOP that perform
one rewriting step more (applying rule (STOP)). ut

Now we are going to prove Theorem 2.

Theorem 2 (Correctness) Let S be a CSP specification, D a derivation of S
performed with the semantics of Fig. 4, and G the graph produced by D. Then,
G is the trace associated to D.

In order to prove the correctness of the semantics, the following lemmas are
necessary.

Lemma 1. Let S be a CSP specification, D a complete derivation of S per-
formed with the semantics of Fig. 4, and G the graph produced by D. Then, for
each prefixing (a → P) in the control of the left state of a rewriting step in D,
we have that Pos(a) and Pos(→) are nodes of G and Pos(→) is the successor
of Pos(a).

21

Proof. If a prefixing a → P is in the control of the left state of a rewriting step,
following the semantics of Fig. 4, only the rule (Prefixing) can be applied. By
definition of this rule, (q, p) are the references for the current (q) and parent (p)
nodes in G. The rule (Prefixing) adds two new nodes to the graph: q and r. The
node q is labeled with the specification position of event a and has parent p and
successor r. The node r is labeled with the specification position of operator →
and has parent q and successor s (a fresh reference). Therefore, we have that
Pos(a) and Pos(→) are nodes of G and Pos(→) is the successor of Pos(a). ut

Lemma 2. Given a derivation D, for each rewriting step e
ΘÃ e′ in D with

e′ 6= > and e′ 6= ⊥, either last ′(e) = e′ or last ′(e) = last ′(e′).

Proof. We prove this lemma by induction on the length of Θ. In the base case, Θ
is empty, and thus only the rules (Process Call), (Prefixing) and (Internal Choice
1 and 2) can be applied. In all cases, the lemma holds trivially by the definition
of last ′. We assume as the induction hypothesis that the lemma holds for a non-
empty Θi with i > 0 rewriting steps; and prove that the lemma also holds for a
Θi+1 with i + 1 rewriting steps. We can assume that Θi+1 = e

ΘiÃ e′, thus, we
have to prove that the lemma holds for any possible e and e′. The possible cases
are the following:

(External Choice 1 and 2) This case is trivial because the specification position
of e and e′ are the same. Hence, last ′(e) = last ′(e′).

(External Choice 3 and 4) Both cases are similar. Thus, we only discuss (External
Choice 3). In the case of (External Choice 3), last ′(P ¤ Q) = last ′(P). This
rule puts P ′ in the control, and we know by the induction hypothesis that
last ′(P) = last ′(P ′) and, thus, the lemma holds.

(Sequential Composition 1) This case is analogous to (External Choice 1 and 2).
(Sequential Composition 2) last ′(P ; Q) = last ′(Q). Therefore the lemma holds

trivially by the definition of last ′.
(Synchronized Parallelism 1, 2 and 3) It is the same case as (External Choice 1).
(Hiding 1 and 2) This case is similar to (External Choice 3). Note that the loss

of the specification position (it is • in e′) is only used as a flag to add nodes
to the graph; but it does not have any influence on the derivation.

(Renaming 1 and 2) It is completely analogous to the previous case.
ut

Lemma 3. Let S be a CSP specification, D a complete derivation of S per-
formed with the semantics of Fig. 4, and G the graph produced by D. Then, for
each sequential composition (P ;Q) in the control of the left state of a rewriting
step in D, we have that Pos(last′(P)) and Pos(;) are nodes of G and Pos(;) is
the successor of Pos(last′(P)) whenever P has successfully finished.

Proof. If a sequential composition (P ; Q) is in the left state of the control of a
rewriting step, following the semantics of Fig. 4, only the rules (Sequential Com-
position 1) and (Sequential Composition 2) can be applied. (Sequential Composition
1) is only used to evolve process P until it is finished. The application of this rule

22

is only possible with any event except X, remaining the sequential composition
operator in the control. (Sequential Composition 2) can only be used when X
happens and thus > is in the control.

Therefore, when P has successfully finished evolving to > and with (q, p) as
references, (Sequential Composition 2) is applied. This rule adds to the graph a
new node q labeled with the specification position of ; that has parent p and
successor r (a fresh reference). Therefore, we have that Pos(;) is a node of G
and Pos(;) is the successor of p. Then, we have to prove that Pos(last′(P)) is a
node of the graph added before P successfully finished with reference p.

We prove this claim by induction on the length of the derivation P
Θ∗Ã >.

The base case happens when the last rewriting step of the derivation is done
leaving > in the control. Only these rules can be used:

(SKIP) In this case, q
p7→
r
SKIP is added to G and (r, q) are the new references.

last ′(SKIP) = SKIP. Therefore the claim follows.
(External Choice 3) Here, last ′(P ¤ Q) = last ′(P). This rule puts P ′ in the

control which is > by the conditions of the lemma. Therefore, there must
be a SKIP, which is last ′(P), at the top of Θ because we know that the
derivation successfully finishes and thus Θ is finite.

(External Choice 4) It is analogous to the previous case, but here last ′(P ¤ Q) =
last ′(Q).

(Synchronized Parallelism 4) last ′(P || Q) = last ′(P) ∪ last ′(Q). The last nodes
of P and Q, pP and pQ respectively, are added to G and connected to the
new reference r. Therefore the claim follows.

(Hiding 3) In this case, because last ′(P\B) = last ′(P) and P is put in the control
of the left state in the rewriting step of the precondition which must be
reduced to > performing X, the claim follows by the recursive application
of one of these six rules.

(Renaming 3) It is completely analogous to the previous case.

The induction hypothesis states that for all rewriting step e
ΘÃ e′, e′ 6= > in

the derivation Q
Θ∗Ã > where P

ΘÃ Q ∈ D, last ′(P) is put in the control of a
further rewriting step of the derivation together with its reference.

Then, we prove that this also holds for the previous rewriting step e0
ΘÃ e.

Only rules that do not perform X could be applied (because X puts > in the
control of the right state and now, we are not considering the final rewriting
step).

(STOP) This rule could not be applied because it puts ⊥ in the control. There
is no rule for ⊥ thus, if applied, P could not successfully finished.

(Process Call), (Prefixing) and (Internal Choice 1 and 2) In these rules e is put
in the control of the final state together with its reference. We know that
last ′(e0) = last ′(e) thus, the claim follows by the induction hypothesis.

(External Choice 1 and 2) Both rules keep the expression in the control and the
same references, thus the claim follows by the induction hypothesis.

23

(External Choice 3 and 4) In this case, last ′(P ¤ Q) = last ′(P). This rule puts
P ′ in the control, and we know by Lemma 2 that last ′(P) = last ′(P ′), thus
the lemma holds by the induction hypothesis.

(Sequential Composition 1 and 2) We know that P successfully finished, thus (Se-
quential Composition 1) is applied a number of times before (Sequential Com-
position 2), that puts Q in the control. We know that last ′(P ;Q) = last ′(Q)
thus, the claim holds by the induction hypothesis.

(Synchronized Parallelism 4) last ′(P ||Q) = last ′(P) ∪ last ′(Q). The last nodes of
P and Q, pP and pQ respectively, are added to G and connected to the new
reference r. Therefore the claim follows.

(Hiding 3) In this case, because last ′(P\B) = last ′(P) and P is put in the control
of the condition state which must be reduced to > performing X, the claim
follows by the recursive application of one of these rules.

(Renaming 3) It is completely analogous to the previous case.
ut

In the following lemma, we need to extend the notion of rewriting step by
including the graph references. Therefore, we will use extended rewriting step
denoted with (e, ϕ) ΘÃ (e′, ϕ′).

Lemma 4. Let S be a CSP specification, D a complete derivation of S per-
formed with the semantics of Fig. 4, and G the graph produced by D. Then, for
each extended rewriting step in D of the form (e, ϕ) ΘÃ (e′, ϕ′) which is not as-
sociated to (Synchronized Parallelism 4) we have that a node for first(e) is added
to G with reference ϕ.

Proof. We prove the lemma for each rule:

(SKIP), (STOP), (Prefixing), (Process Call), and (Internal Choice 1 and 2) A node
for first(e) (in these rules α) is added to G with reference ϕ.

(External Choice 1, 2, 3 and 4) and (Synchronized Parallelism 1, 2 and 3) In these
rules, the node associated to first(e) (it is α here) could be included or not,
depending on whether it has been included by a previous rewriting step. If
it is already included, it is due to the specification position of the previous
expression in the control is the same as e, and its associated rewriting step
or a previous one has added it. If other case, function Ω is called and it
includes the node for e with reference ϕ, since the corresponding ϕP and ϕQ

are equal to (,).
(Hiding 1, 2 and 3) and (Renaming 1, 2 and 3) The proof for these rules is simi-

lar to the one for rules of external choice and synchronized parallelism, but
here function Σ is called and it adds to G the node for e with reference ϕ
because the label is distinct of •.

(Sequential Composition 1 and 2) In both rules, the node for first(e) (in this
case first(P)) is included by a rewriting step in Θ. All possible rewriting
steps must apply one of these previous rules, and thus, the claim recursively
follows.

ut

24

Lemma 5. Let S be a CSP specification, D a complete derivation of S per-
formed with the semantics of Fig. 4, and G the graph produced by D. Then, for
each rewriting step in D of the form ei

ΘiÃ ei+1 we have that:

1. Ec contains an edge Pos(ei) 7→ Pos(first(e′)) where e′ Θ′Ã e′′ ∈ Θi and the
control can pass from ei to e′, and

2. if the control can pass from ei to ei+1 then Ec contains an edge Pos(ei) 7→
Pos(first(ei+1)).

Proof. We prove each claim separately:

1. Firstly, we know that Θ cannot be empty. Therefore, rules (SKIP), (STOP),
(Process Call), (Prefixing), (Internal Choice 1 and 2) and (Synchronized Par-
allelism 4) could not be applied. Moreover, (Sequential Composition) could
never be applied because if ei is of the form P ;Q, then the control can only
pass from P ; Q to Q (by Definition 2). And Q can only be in the control of
the right state; hence, Q cannot appear in Θ. Then the only applicable rules
are (External Choice), (Synchronized Parallelism), (Hiding) or (Renaming).

Let us extend the rewriting step e′ Θ′Ã e′′ ∈ Θi with references, so that we

have (e′, ϕ′) Θ′Ã (e′′, ϕ′′) ∈ Θi. First, we have to prove that a node with the
specification position of ei is included in the graph and the reference of its
successor node is put in each ϕ′ of Θi. In rules (External Choice) and (Syn-
chronized Parallelism) it is done using function Ω. The references associated
to the selected branches of the operator must be (,), i.e., the branches has
not been developed until now in the derivation. Otherwise, by Definition 2,
there is not possible control flow between ei and e′. In this case, if the cor-
responding reference is (,), then Ω adds to G the specification position of
ei and the reference of the successor node is put in all possible ϕ′.
(Hiding) and (Renaming) are analogous but, in these cases, function Σ is
used. If the previous rewriting step in the derivation has different position to
ei, then function Σ is called and the node is included in the graph and the
reference to the successor is put in ϕ′. Next rewriting step cannot include
again the node for the position of ei because the label of the operator will be
•. Moreover, if the node has been already included, then the control cannot
pass from ei to e′. Then, we have to prove that the node associated to
first(e′) is included in the graph with reference ϕ′. It is trivially proven by
using Lemma 4. Note that Lemma 4 excludes rule (Synchronized Parallelism 4)
but in this case both branches must be already in G by a previous application
of (Synchronized Parallelism 1, 2 or 3).

2. In this case, ei cannot be a SKIP neither a STOP, because the control cannot
pass from them to expression ei+1 (> or ⊥, respectively) by Definition 2.
Expression ei can neither be a parallelism, a hiding or a renaming because
the control cannot pass to ei+1 (itself or >).
If ei is an external choice we have two possibilities. If we apply (External
Choice 1 or 2) then ei and ei+1 have the same specification position and

25

thus, by Definition 2, no control flow is possible. If we apply (External Choice
3 or 4) the control cannot pass from ei to ei+1, because ei+1 is different to
first(ei.1) or first(ei.2). This is due to the fact that the nodes associated to
these positions have necessarily been added to G by the rewriting step Θi or
by a previous rewriting step on derivation D. Therefore, expression ei must
be a process call, a prefixing, an internal choice, or a sequential composition.
If it is a sequential composition, rule (Sequential Composition 1) cannot be
applied because in this case ei and ei+1 have the same specification position.
Therefore, only (Sequential Composition 2) can be applied.
We now prove that the application of any of remaining rules (Process Call),
(Prefixing), (Internal Choice 1 and 2), and (Sequential Composition 2) satisfies
the property.
For convenience, we extend the rewriting step to also include the references
of the graph: (ei, ϕi)

ΘiÃ (ei+1, ϕi+1). In all the rules, a node labeled α is
added to G (except in (Prefixing) where is β) and the position of its suc-
cessor is placed as ϕi+1. Furthermore, we know by Lemma 4 that a node
for Pos(first(ei+1)) is included in the next rewriting step in the derivation

(ei+1, ϕi+1)
Θi+1Ã (ei+2, ϕi+2) having associated position ϕi+1.

Note that Lemma 4 excludes rule (Synchronized Parallelism 4) but in this
case both branches must be already in G by a previous application of (Syn-
chronized Parallelism 1, 2 or 3).

ut

Lemma 6. Let S be a CSP specification, D a derivation of S performed with
the semantics of Fig. 4, and G the graph produced by D. Then, there exists a
synchronization edge (a e a′) in G for each synchronization in D where a and
a′ are the synchronized events.

Proof. We prove this lemma by induction on the length of the derivation D =
e0

Θ0Ã e1
Θ1Ã . . .

ΘnÃ en+1. We can assume that the derivation starts with the
initial configuration (MAIN, ∅, (0, Root), ∅), thus in the base case, the only rule
applicable is (Process Call) and hence no synchronization is possible. We assume
as the induction hypothesis that there exists a synchronization edge (a e a′)
∈ G for each synchronization in e0

Θ∗Ã ei with 0 < i ≤ n and prove that the
lemma also holds for the next rewriting step ei

ΘiÃ ei+1.
Firstly, only (Synchronized Parallelism 3) allows the synchronization of events.

Therefore, only if e is a synchronizing parallelism, or if a (Synchronized Paral-

lelism 3) is applied in Θi, (a e a′) ∈ G. Then, let us consider the case where ΘiÃ is
the application of rule (Synchronized Parallelism 3). This proof is also valid to the
case where (Synchronized Parallelism 3) is applied in Θi. We have the following
rewriting step:

RewritingStepP RewritingStepQ

(P ‖
X

(α,ϕP ,ϕQ)Q,G,ϕ,) a−→ (P ′ ‖
X

(α,ϕ′P ,ϕ′Q)Q′, G′, ϕ, ∆P ∪∆Q)

26

a ∈ X ∧ G′ = GP ∪GQ ∪ {sP
ae sQ | sP ∈ ∆P ∧ sQ ∈ ∆Q} ∧

(GPΩ
, ϕPΩ

) = Ω(G, ϕP , ϕ, α) ∧ (GQΩ
, ϕQΩ

) = Ω(G,ϕQ, ϕ, α)

∧ RewritingStepP = (P, GPΩ
, ϕPΩ

,) a−→ (P ′, GP , ϕ′P ,∆P)

∧ RewritingStepQ = (Q,GQΩ
, ϕQΩ

,) a−→ (Q′, GQ, ϕ′Q,∆Q)

Because (Prefixing) is the only rule that performs an a event without further
conditions, we know that P must be a prefixing operator or an expression con-
taining a prefixing operator whose prefix is a, i.e., we know that the rule applied
in RewritingStepP is fired with an event a; and we know that all the rules of
the semantics except (Prefixing) need to fire another rule with an event a as a
condition. Therefore, at the top of the condition rules, there must be a (Prefix-
ing). The same happens with Q. Hence, two prefixing rules (one for P and one
for Q) have been fired as a condition of this rule.

In addition, the new graph G′ contains the synchronizations set {sP
ae

sQ | sP ∈ ∆P ∧ sQ ∈ ∆Q} where ∆P and ∆Q are the sets of references to
the events that must synchronize in RewritingStepP and RewritingStepQ, re-
spectively.

Hence, we have to prove that all and only the events (a) that must synchronize
in RewritingStepP are in ∆P . We prove this by showing that all references to
the synchronized events are propagated down by all rules from the prefixing
in the top to the (Synchronized Parallelism 3). And the proof is analogous for
RewritingStepQ.

The possible rules applied in (P, GPΩ
, ϕPΩ

,) a−→ (P ′, GP , ϕ′P ,∆P) are: (Pre-
fixing) In this case, the prefix a is added to ∆P . (External Choice 3), (External
Choice 4), (Sequential Composition 1), (Synchronized Parallelism 1), (Synchronized
Parallelism 2), (Hiding 1), (Hiding 2), (Renaming 1), (Renaming 2) In these cases,
the set ∆ is propagated down. (Synchronized Parallelism 3) In this case, the sets
∆P and ∆Q are joined and propagated down.

Therefore, all the synchronized events are in the set ∆P and the claim follows.
ut

Theorem 2 (Correctness). Let S be a CSP specification, D a derivation of S
performed with the semantics of Fig. 4, and G the graph produced by D. Then,
G is the trace associated to D.

Proof. In order to prove that G is a trace, we need to prove that it satisfies the
properties of Definition 4. For each e

ΘÃ e′ ∈ D and for all rewriting steps in Θ
we have

– by Lemma 1, if e is a prefixing (a → P) and Pos(P) ∈ N , then Ec contains
an edge Pos(a) 7→ Pos(→);

– by Lemma 3, if e is a sequential composition (Q; P) and Pos(P) ∈ N , then
Ec contains an edge Pos(last ′(Q)) 7→ Pos(;);

27

– by Lemma 5, if the control can pass from e to e′′ where e′′ Θ′Ã e′′′ ∈ Θ, then
Ec contains an edge Pos(e) 7→ Pos(first(e′′)); and if the control can pass
from e to e′ then Ec contains an edge Pos(e) 7→ Pos(first(e′)); and

– by Lemma 6, Es contains a synchronization edge a e a′ for each synchro-
nization occurring in the rewriting step where a and a′ are the synchronized
events.

Moreover, we know that the only nodes in N are the nodes induced by Ec

and Es because all the nodes inserted in G are inserted by connecting the new
node to the last inserted node (i.e., if the current reference is (q, p), the new
node is always inserted as G[q

p7→
r

α]). Hence, all nodes are related by control or
synchronization edges and thus the claim holds. ut

