
Speeding Up Algorithmic Debugging
Using Balanced Execution Trees?

David Insa, Josep Silva, and Adrián Riesco

Departamento de Sistemas Informáticos y Computación,
Universitat Politècnica de València, Valencia, Spain

{dinsa,jsilva}@dsic.upv.es
Departamento de Sistemas Informáticos y Computación,

Universidad Complutense de Madrid, Madrid, Spain
ariesco@fdi.ucm.es

Abstract. Algorithmic debugging is a debugging technique that uses a data struc-
ture representing all computations performed during the execution of a program.
This data structure is the so-called Execution Tree and it strongly influences the
performance of the technique. In this work we present a transformation that au-
tomatically improves the structure of the execution trees by collapsing and pro-
jecting some strategic nodes. This improvement in the structure implies a better
behavior and performance of the standard algorithms that traverse it. We prove
that the transformation is sound in the sense that all the bugs found after the
transformation are real bugs; and if at least one bug is detectable before the trans-
formation, then at least one bug will also be detectable after the transformation.
We have implemented the technique and performed several experiments with real
applications. The experimental results confirm the usefulness of the technique.

1 Introduction

Debugging is one of the most difficult and less automated tasks in object-oriented pro-
gramming. The most extended technique is still based on the use of breakpoints. Break-
points allow the programmer to manually inspect a computation. She must decide where
to place the breakpoints and use them to inspect the values of strategic variables. Be-
tween the point where the effect of a bug is observed, and the point where the bug is
located, there can be hundreds or thousands of lines of code, thus, the programmer must
navigate the computation in order to find the bug. Ideally, breakpoints should be placed
in a way that the amount of code inspected is reduced as much as possible.

There exists a debugging technique called algorithmic debugging (AD) [14] that
tries to automate the problem of inspecting a computation in order to find a bug. AD is
a semi-automatic debugging technique that produces a dialogue between the debugger
and the programmer to locate bugs. This technique relies on the programmer having
an intended interpretation of the program. In other words, some computations of the

? This work has been partially supported by the Spanish Ministerio de Ciencia e Innovación
under grants TIN2008-06622-C03-02 and TIN2012-39391-C04-04, by the Generalitat Va-
lenciana under grant ACOMP/2009/017, and by the Comunidad de Madrid under grant
S2009/TIC–1465. David Insa has been partially supported by the spanish Ministerio de Edu-
cación under grant AP2010-4415.

2 D. Insa, J. Silva, A. Riesco

program are correct and others are wrong with respect to the semantics intended by the
programmer. Therefore, algorithmic debuggers compare the actual results of subcompu-
tations with those expected by the programmer. By asking questions to the programmer
or using a formal specification the system can identify precisely the location of a bug.

The idea behind AD is that the own debugger selects automatically the places that
should be inspected. The advantage is that the debugger knows a priori the length of the
computation, and thus it can perform a dichotomic search inspecting the subcomputa-
tion located in the middle of the remaining suspicious area. This allows the debugger to
efficiently explore the computation. Moreover, the places inspected are always method
invocations and thus, it is easy for the programmer to decide if the result produced by
an invocation with given arguments is correct or not.

Conceptually, AD is a two-phase process: During the first phase, a data structure
that represents the execution of the program, the Execution Tree (ET), is built; while in
the second phase a navigation strategy is used to iteratively select nodes in the ET. The
debugger asks a question related to each selected node to an external oracle (typically
the user). With every answer the debugger prunes a part of the ET until a single node
remains. The bug is located in the method associated with this node.

In this work we introduce a technique that changes the structure of the ET in such
a way that the navigation strategies present an almost optimal behavior. The objective
of the technique is to balance1 the ET in such a way that navigation strategies prune
half of the ET at every step, because they can always find a node that divides the search
area in half. Our experiments with real programs show that the technique reduces (as
an average) the number of questions to the oracle by around 30%.

In order to show the general idea of the technique with an example, we need to
explain first how the ET is constructed. The ET contains nodes that represent subcom-
putations of the program. Therefore, the information of the ET’s nodes refer to method
executions. Without loss of generality, we will base our examples on programs imple-
mented using the Java language, although our ET transformations and the balancing
technique are conceptually applicable to any ET, independently of the language it rep-
resents.

Our technique is particularly useful for object-oriented programs because (i) it al-
lows the programmer to ignore the operational details of the code to concentrate on the
validity of the effects produced by method executions. In general, the programmer does
not need to look at the source code to interact with the debugger: she only has to answer
questions related to the effects of the computations. (ii) The technique is very powerful
in presence of iterative loops which are inexistent in other paradigms (e.g., functional).

In the object-oriented paradigm, an ET is constructed as follows: Each node of the
ET is associated with a method execution. It contains all the information needed to
decide whether the method execution produced a correct result. This information in-
cludes the call to the method with its arguments and the result, and the values of all the
attributes that are in the scope of this method, at the beginning and at the end of the
execution (observe, e.g., that exception objects are also in the scope). This information
allows the programmer to know whether all the effects of the method execution corre-
spond to her intended semantics. The root node of the ET is the initial method execution
of the program (e.g., main). For each node n with associated method m, and for each

1 Note that throughout this paper we use balanced to indicate that the tree becomes binomial.

Speeding Up Algorithmic Debugging Using Balanced Execution Trees 3

Initial position Final position Expected position

public class Chess {
public static void main(String[] args) {
Chess p = new Chess();
Position tower = new Position();
Position king = new Position();
king.locate(5,1);
tower.locate(8,1);
p.castling(tower,king);

}
void castling(Position t,Position k) {

if (t.x!=8){
for(int i=1; i<=2; i++) {t.left();}
for(int i=1; i<=2; i++) {k.right();}

} else{
for(int i=1; i<=3; i++) {t.right();}
for(int i=1; i<=2; i++) {k.left();}

}
}

}
public class Position {

int x, y;
void locate(int a, int b) {x=a; y=b;}
void up() {y=y+1;}
void down() {y=y-1;}
void right() {x=x+1;}
void left() {x=x-1;}

}

Fig. 1. Example program

method execution m′ invoked by m, a new node associated with m′ is added to the ET
as a child of n.

Example 1. Consider the Java program in Figure 1. This program has a bug, and thus it
wrongly simulates a movement on a chessboard. The call p.castling(tower,king)
produces the (wrong) movement shown in the chessboards of the figure. Figure 2 de-
picts the portion of the ET associated with the method call p.castling(tower,king).
With this ET, all current navigation strategies need to ask about the six nodes. In con-
trast, if we balance this ET with our transformation, the bug is found with at most three
questions.

4 D. Insa, J. Silva, A. Riesco

Fig. 2. ET associated with the call p.castling(tower,king) of the program in Figure 1

Fig. 3. Balanced ET associated with the call p.castling(tower,king) for Figure 1

Our technique presents three important advantages that make it useful for AD. First,
it can be easily adapted to other programming languages. We have implemented it for
Java and it can be directly used in other object-oriented languages, but it could be easily
adapted to other languages such as C or Haskell using the analogy between methods
and functions. Second, the technique is quite simple to implement and can be integrated
into any existing algorithmic debugger with small changes. And third, the technique is
conservative. If the questions triggered by the new nodes are difficult to answer, the user
can answer “I don’t know” and continue the debugging session as in the standard ETs.
Moreover, the user can naturally get back to the original ET in case it is needed.

The rest of the paper has been organized as follows. In Section 2 we introduce
some preliminary definitions that will be used in the rest of the paper. In Section 3
we explain our technique and its main applications, and we introduce the algorithms
used to balance ETs. The correctness of the technique is proved in Section 4. Then, in
Section 5, we present our implementation and some experiments carried out with real
Java programs. Section 6, discusses the related work. Finally, Section 7 concludes.

2 Algorithmic Debugging

In this section we introduce some notation and formalize the notion of execution tree
used in the rest of the paper. For the purpose of this work, we consider ETs as labeled
trees. We need to formally define the notions of context and method execution before
we provide a definition of ET.

Speeding Up Algorithmic Debugging Using Balanced Execution Trees 5

Definition 1 (Context). Let P be a program, and X the execution of a method in P .
The context of X at a particular instant t is {(a,v) | a is an attribute in the scope of X
at instant t and v is the value of a}.

Roughly, the context of a method at a particular instant of its execution is composed
of all the variables of the program that are visible at this moment. Clearly, these vari-
ables can be other objects that in turn contain other variables. In a realistic program,
each node contains several data structures that could change during the execution. All
this information (the context at the beginning and at the end of the execution of the
method) should be visualized together with the call to the method so that the program-
mer can decide whether it is correct.2

Definition 2 (Method Execution). Let P be a program and X an execution of P . Then,
each method execution done in X is represented with a triple E = (b,m,e) where m
represents the call to the method with its arguments and the returned value, b is the
context of the method in m at the beginning of its execution, and e is the context of
the method in m at the end of its execution. A composite method execution is a non
empty sequence of method executions 〈(b1,m1,e1),(b2,m2,e2), . . . ,(bn,mn,en)〉 that we
represent as (b1,m1,m2, . . . ,mn,en).

Thanks to the declarative properties of AD, we can ignore the operational details
of an execution. From the point of view of the debugger an execution is a finite tree of
method executions. This can be modeled with the following grammar:

T = (b,m[L],e) L = ε L = T L

where the terminal m is a method of the program and b and e represent the con-
text at the beginning and at the end of the execution of the method. For instance,
p.castling(tower,king) in Example 1 can be represented with the tree:

(b1,p.castling(tower,king)

[(b2,t.right()[],e1),(e1,t.right()[],e2),(e2,t.right()[],e3),

(b3,k.left[],e4),(e4,k.left[],e5)],e6)

With this tree, we can construct the ET in Figure 2. Roughly speaking, an ET is a tree
whose nodes represent method executions and the parent-child relation is defined by
the tree produced by the grammar. Formally,

Definition 3 (Execution Tree). Given a program P and a method execution E , the
execution tree (ET) of P with respect to E is a tree t = (V,E) where ∀v ∈ V, v is a
composite method execution, and

– The root of the ET is E .
– For each pair of method executions E1, E2 ∈V , we have that (E1→ E2) ∈ E iff

1. during the execution of the method associated with E1, the method associated
with E2 is invoked, and

2. from the instant when E1 starts until the instant when E2 starts, there does not
exist a method execution E3 such that E3 has started but not ended.

2 We refer the reader to Appendix B for a brief explanation about how this information is dis-
played in our implementation.

6 D. Insa, J. Silva, A. Riesco

Note that we use (v→ v′) to denote a directed edge from v to v′. From now on, we
will assume that there exists an intended semantics I of the program being debugged. It
corresponds to the model the programmer had in mind while writing the program, and
it contains, for each method m and each context b of m at the beginning of its execution,
the expected context e at the end of its execution, that is, (b,m,e) ∈ I . Moreover, given
this atomic information, we are able to deduce judgments of the form (b,m1; . . . ;mn,e)
with the inference rule Tr, that defines the transitivity for the composition of methods

(b,m1,e′) (e′,m2; . . . ;mn,e)
(b,m1; . . . ;mn,e)

Tr if n > 1

and we say that I |= (b,m1; . . . ;mn,e). Using this intended semantics we can formally
define the correctness of method executions.

Definition 4 (Correctness of method executions). Given a method execution E and
the intended semantics of the program I , we say that E is correct if E ∈ I or I |= E
and wrong otherwise.

Once the ET is built, in the second phase the debugger uses a strategy to traverse
the ET asking the oracle about the correctness of the information stored in each node.
If the method execution of a node is wrong, it answers NO. Otherwise, it answers YES.
Using the answers, the debugger identifies a buggy node that is associated with a buggy
source code of the program.

Definition 5 (Buggy node). Given an ET t = (V,E), a buggy node of t is a node v ∈V
such that (i) the method execution of v is wrong and (ii) ∀v′ ∈ V , (v→ v′) ∈ E, v′ is
correct.

According to Definition 5, when all the children of a node with a wrong computation
(if any) are correct, the node becomes buggy and the debugger locates a bug in the part
of the program associated with this node [12]. A buggy node detects a buggy method,
which informally stands for methods that return an incorrect context even though all the
methods executions performed by them are correct.

Lemma 1 (Buggy method). Given an ET t = (V,E), and a buggy node v ∈V in t with
v = (b,m,e), then m contains a bug.

Proofs of all technical results have been included in Appendix A.
Due to the fact that questions are asked in a logical order (i.e., consecutive questions

refer to related parts of the computation), top-down search is the strategy that has been
traditionally used (see, e.g., [2, 3, 8]) to measure the performance of different debugging
tools and methods. It basically consists of a top-down (assuming that the root is on top),
left-to-right traversal of the ET. When the answer to the question of a node is NO, then
the next question is associated with one of its children. When the answer is YES, the
next question is associated with one of its siblings. Therefore, the node asked is always
a child or a sibling of the previous asked node. Hence, the idea is to follow the path of
wrong computations from the root of the tree to the buggy node.

However, selecting always the leftmost child does not take into account the size of
the subtrees that can be explored. Binks proposed in [1] a variant of top-down search in

Speeding Up Algorithmic Debugging Using Balanced Execution Trees 7

order to consider this information when selecting a child. This variant is called heaviest
first because it always selects the child with the biggest subtree. The objective is to
avoid selecting small subtrees that have a lower probability of containing a bug.

Another important strategy is divide and query (D&Q) [13], that always selects the
node whose subtree’s size is the closest one to half the size of the tree. If the answer
is YES, this node (and its subtree) is pruned. If the answer is NO the search continues
in the subtree rooted at this node. This strategy asks, in general, fewer questions than
top-down search because it prunes near half of the tree with every question. However,
its performance is strongly dependent on the structure of the ET. If the ET is balanced,
this strategy is query-optimal.

There are many other strategies: variants of top-down search [10, 5], variants of
D&Q [6], and others [9, 14]. A comparison of strategies can be found in [14]. In general,
all of them are strongly influenced by the structure of the ET.

Example 2. An AD session for the ET in Figure 2 using D&Q follows (YES and NO
answers are provided by the programmer):

Starting Debugging Session...
(2) t.x=8, t.y=1 >>> t.right() >>> t.x=9, t.y=1 ? YES
(3) t.x=9, t.y=1 >>> t.right() >>> t.x=10, t.y=1 ? YES
(4) t.x=10, t.y=1 >>> t.right() >>> t.x=11, t.y=1 ? YES
(5) k.x=5, k.y=1 >>> k.left() >>> k.x=4, k.y=1 ? YES
(6) k.x=4, k.y=1 >>> k.left() >>> k.x=3, k.y=1 ? YES
(1) king.x=5, king.x=3,

king.y=1, >>> p.castling(tower,king) >>> king.y=1, ? NO
tower.x=8, tower.x=11,
tower.y=1 tower.y=1

Bug found in method: castling(Position t, Position k) of class Chess.

The debugger points out the buggy method, which contains the bug. In this case, t.x!=8
should be t.x==8. Note that, to debug the program, the programmer only has to answer
questions. It is not even necessary to see the code.

3 Collapsing and projecting nodes

Even though the strategy heaviest first significantly improves top-down search, its per-
formance strongly depends on the structure of the ET. The more balanced the ET is, the
better. Clearly, when the ET is balanced, heaviest first is much more efficient because it
prunes more nodes after every question. If the ET is completely balanced, heaviest first
is equivalent to divide and query and both are query-optimal.

3.1 Advantages of collapsing and projecting nodes

Our technique is based on a series of transformations that allows us to collapse/project
some nodes of the ET. A collapsed node is a new node that replaces some nodes that
are then removed from the ET. In contrast, a projected node is a new node that is placed
as the parent of a set of nodes that remain in the ET. This section describes the main
advantages of collapsing/projecting nodes:

Balancing execution trees. If we augment an ET with projected nodes, we can strategi-
cally place the new nodes in such a way that the ET becomes balanced. In this way, the
debugger speeds up the debugging session by reducing the number of asked questions.

8 D. Insa, J. Silva, A. Riesco

Example 3. Consider again the program in Figure 1. The portion of the ET associated
with p.castling(tower,king) is shown in Figure 2. We can add projected nodes to
this ET as depicted in Figure 3. Note that now the ET becomes balanced, and hence,
many strategies ask fewer questions. For instance, in the worst case, using the ET of
Figure 2 the debugger would ask about all the nodes before the bug is found. This is
due to the broad nature of this ET that prevents strategies from pruning any nodes. In
contrast, using the ET of Figure 3 the debugger prunes almost half of the tree with
every question. In this example, with the standard ET of Figure 2, D&Q produces the
following debugging session (numbers refer to the codes of the nodes in the figure):

Starting Debugging Session...
(2) YES (3) YES (4) YES (5) YES (6) YES (1) NO
Bug found in method: castling(Position t, Position k) of class Chess.

In contrast, with the ET of Figure 3, D&Q produces this session:

Starting Debugging Session...
(2) YES (3) YES (1) NO
Bug found in method: castling(Position t, Position k) of class Chess.

Skipping repetitive questions. Algorithmic debuggers tend to repeat the same (or
very similar) question several times when it is associated with a method execution
that is inside a loop. In our example, this happens in for(int i=1; i<=3; i++)
{t.right();}, which is used to move the tower three positions to the right. Here,
the nodes

{t.x=8, t.y=1} t.right() {t.x=9, t.y=1}
{t.x=9, t.y=1} t.right() {t.x=10, t.y=1}
{t.x=10, t.y=1} t.right() {t.x=11, t.y=1}

could be projected to the node
{t.x=8, t.y=1} t.right(); t.right(); t.right() {t.x=11, t.y=1}

This kind of projection, where all the projecting nodes refer to the same method,
has an interesting property: If the projecting nodes are leaves, then they can be deleted
from the ET. The reason is that the new projected node and the projecting nodes refer
to the same method. Therefore, it does not matter what computation produced the bug,
because the bug will necessarily be in this method. Hence, if the projected node is
wrong, then the bug is in the method pointed to by this node. When the children of the
projected node are removed, we call it collapsed node.

Note that, in this case, the idea is not to add nodes to the ET as in the previous
case, but to delete them. Because the input and output of all the questions relate to the
same attributes (i.e., x and y), then the user can answer them all together, since they
are, in fact, a sequence of operations whose output is the input of the next question
(i.e., they are chained). Therefore, this technique allows us to treat a set of questions
as a whole. This is particularly interesting because it approximates the real behavior
intended by the programmer. For instance, in this example, the intended meaning of the
loop was to move the tower three positions to the right. The intermediate positions are
not interesting; only the initial and final ones are meaningful for the intended meaning.

Example 4. Consider the ET of Figure 3. Observe that, if the projected nodes are wrong,
then the bug must be in the unique method appearing in the projected node. Thus, we
could collapse the node instead of projecting it. Hence, nodes 4, 5, 6, 7, and 8 could be
removed; and thus, with only three questions we could discover any bug in any node.

Speeding Up Algorithmic Debugging Using Balanced Execution Trees 9

Fig. 4. Transformation of ETs.

Enhancing the search of algorithmic debugging. One important problem of AD
strategies is that they must use a given ET without any possibility of changing it. This
often prevents strategies from selecting nodes that prune a big part of the ET, or from
selecting nodes that concentrate on the regions with a higher probability of containing
the bug. Collapsing some subtrees into a single node can help to solve these drawbacks.

The initial idea of this section was to use projected nodes to balance the ET. This
idea is very interesting in combination with D&Q, because it can cause the debugging
session to be optimal in the worst case (its query complexity is O(b · log n), where b is
the branching factor and n is the number of nodes in the ET). However, this idea could
be further extended in order to force the strategies to ask questions related to parts of
the computations with a higher probability of containing the bug. Concretely, we can
replace parts of the ET with a collapsed node in order to avoid questions related to
this part. If the debugging session determines that the collapsed node is wrong, we can
expand it again to continue the debugging session inside this node. Therefore, with this
idea, the original ET is transformed into a tree of ETs that can be explored when it is
required. Let us illustrate this idea with an example.

Example 5. Consider the leftmost ET in Figure 4. This ET has a root that started two
subcomputations. The computation on the left performed ten method executions, while
the computation on the right performed only three. Hence, in this ET, all the existing
strategies would explore first the left subtree.3 If we balance the left branch by inserting
projected nodes we get the new ET shown on the right of the previous one. This bal-
anced ET requires (on average) fewer questions than the previous one; but the strategies
will still explore the left branch of the root first.

Now, let us assume that the debugger identified the right branch as more likely to be
buggy (e.g., because it contains recursive calls, because it is non-deterministic, because
it contains calls with more arguments involved or with complex data structures...). We
can change the structure of the ET in order to make AD strategies start by exploring
the desired branch. In this example we can remove from the ET the nodes that were
projected. The new ET is shown on the right of Figure 4. With this ET the tool explores
first the right branch of the root. Observe that it is not necessary that the nodes that were
projected refer to the same method. They can be completely different and independent
computations. However, if the debugger determines that they are probably correct, they
can be omitted to direct the search to other parts of the ET. Of course, they can be
expanded again if required by the strategy (e.g., if the debugger cannot find the bug in
the other nodes).

Disadvantages Given these benefits, we must talk of a potential drawback: the difficulty
of the questions related to the new nodes. The new questions may be more difficult to

3 Current strategies assume that all nodes have the same probability of being buggy, therefore,
heavy branches are explored first.

10 D. Insa, J. Silva, A. Riesco

answer than the previous ones, but the user can avoid these difficult questions as we
will discuss later. However, the nodes encapsulated in the new projected/collapsed are
intimately related, as we explain in the next section, and thus in many situations the
question is more related to the behavior the user had in mind when writing the code
than the original questions (i.e., the behavior of the whole loop vs. the behavior of each
single call inside the loop).

3.2 Collapsing and projecting algorithms

In this section we define a technique that allows us to balance an ET while keeping the
soundness and completeness of AD. The technique is based on two basic transforma-
tions for ETs (namely collapse leaf chain and project chain, described respectively by
Algorithms 1 and 2), and on a new data structure called an Execution Forest (EF) that
is a generalization of an ET.

Definition 6 (Execution Forest). An execution forest is a tree t =(V,E) whose internal
vertices V are method executions and whose leaves are either method executions or
execution forests.

Roughly speaking, an EF is an ET where some subtrees have been replaced (i.e.,
collapsed) by a single node. Note that this recursive definition of EF is more general
than the one for ET because an ET is an instance of an EF where no collapsed nodes
exist. We can now define the two basic transformations of our technique. Both transfor-
mations are based on the notion of chain. Informally, a chain is formed by an ordered
set of sibling nodes in which the final context produced by a node of the chain is the
initial context of the next node. Chains often represent a sequence of method executions
performed one after the other during an execution. Formally,

Definition 7 (Chain). Given an EF t = (V,E) and a set C ⊂V of n nodes with associ-
ated method executions E1,E2, . . . ,En we say that C is a chain iff

– ∃v ∈V such that ∀c ∈C . (v→ c) ∈ E,
– ∀i, j,1 ≤ i < j ≤ n, the method associated with Ei is executed before the method

associated with E j, and
– ∀ j,1≤ j ≤ n−1, if E j = (e j,m j,e j+1)

then E j+1 = (e j+1,m j+1,e j+2)

The first condition ensures that all the elements in the chain are siblings. The second
condition ensures that the elements are executed one after the other. The third condition
ensures that for all nodes in the chain the final context of a node is the initial context of
the next chained node. Note that, by the definition of context, only those attributes that
can be affected by the execution of the methods are taken into account. It is common to
find chains when one or more methods are executed inside a loop.

The basic transformations of chains are described by Algorithms 1 and 2. Algo-
rithm 1 is in charge of collapsing chains, that consists in creating a new node colnode
with initial context the initial context of the first node of the chain, final context the
final context of the last node of the chain, and with the composition of the methods in
the chain as associated method. Then, the nodes in the chain (and thus their edges) are

Speeding Up Algorithmic Debugging Using Balanced Execution Trees 11

Algorithm 1 Collapse Leaf Chain.
Input: An EF t = (V,E) and a set of nodes C ⊂V
Output: An EF t ′ = (V ′,E ′)
Preconditions: C is a chain with nodes (a1,m1,a2), (a2,m2,a3), . . ., (an,mn,an+1) and @ v ∈V . (c→ v) ∈ E, with c ∈C
begin
1) parent = u ∈V such that ∀c ∈C,(u→ c) ∈ E
2) colnode = (a1,m,an+1) with m = m1;m2; . . . ;mn
3) V ′ = (V \C)∪{colnode}
4) E ′ = ((E \ {(parent→ v) ∈ E | v ∈C}) ∪ {(parent→ colnode)}
end
return t ′ = (V ′,E ′)

Algorithm 2 Project Chain.
Input: An EF t = (V,E) and a set of nodes C ⊂V
Output: An EF t ′ = (V ′,E ′)
Preconditions: C is a chain with nodes (a1,m1,a2), (a2,m2,a3), . . ., (an,mn,an+1)
begin
1) parent = u ∈V such that ∀c ∈C,(u→ c) ∈ E
2) prjnode = (a1,m,an+1) with m = m1;m2; . . . ;mn
3) V ′ =V ∪{prjnode}
4) E ′ = ((E \ {(parent→ v) ∈ E | v ∈C}) ∪ {(parent→ prjnode)}∪ {(prjnode→ c) | c ∈C}
end
return t ′ = (V ′,E ′)

removed from the tree and the new node is linked to the parent of the nodes in C, thus
reducing the size of the EF. Algorithm 2 is in charge of projecting chains, and works in
a similar way to the previous algorithm. Given a tree t and a chain C in the tree, it re-
moves from t the edges between each c ∈C and its parent parent, and then introduces a
new node prjnode built as explained before, that is linked to each c as their new parent,
and to parent as its new child.

Algorithm 3 is in charge of removing the chains of leaves that can be collapsed.
It first computes in the initialization all the maximal chains (i.e., chains that are not
subchains of other chains) of nodes that are leaves and are related to the same methods.
Then, for each of these chains, it applies Algorithm 1 to collapse them by removing the
chain from the tree and adding the corresponding collapsed node.4

Our method for balancing EFs is implemented by Algorithm 4. This algorithm first
uses Algorithm 3 to shrink the EF (line 1) by collapsing as many nodes as possible;
and then it balances this shrunken EF by projecting some nodes. The objective is to
divide the tree into two parts with the same weight (i.e., number of nodes). Therefore,
we first compute the half of the size of the EF (lines 4 and 5). If a child of the root is
already heavier than half the size of the tree, then, the weight of this node is not taken
into account in the balancing process because the question associated to this node will
be the first question asked (lines 9-15). Otherwise, it projects the part of a chain whose
weight is as close as possible to half the weight of the root (lines 16-24). This allows us
to prune half of the subtree when asking a question associated with a projected node. In
the case that the heavier node (lines 13-15) or the projected chain (lines 18-19) belongs
to a bigger chain, it must be cut with function cutChain producing new (smaller) chains

4 Note that, since these chains are usually found when a loop or a recursive call is used, our
approach generates nodes whose questions are very close to the intended meaning the pro-
grammer had in mind while developing the program and thus, although the new questions
comprise a bigger context, they may be even easier to answer than the “atomic” ones.

12 D. Insa, J. Silva, A. Riesco

Algorithm 3 Shrink EF.
Input: An EF t = (V,E)
Output: An EF t ′ = (V ′,E ′)
Preconditions: Given a node v, v.method is the name of the method in v
Initialization: t ′ = t, set S contains all the maximal chains of t s.t. for each chain s = {c1, . . . ,cn} of S ,

∀x, 1≤ x≤ n−1, cx.method == cx+1.method, and @ v ∈V . (c→ v) ∈ E, with c ∈ s
begin
1) while (S 6= /0)
2) take a chain s ∈ S
3) S = S\{s}
4) t ′ = collapseChain(t ′,s)
end while

end
return t ′

that are also processed. Of course, the size of the chains already processed is not taken
into account when dividing the successive (sub)chains (because they will be already
pruned during a debugging session).

If a chain is very long, it can be cut in several subchains to be projected and thus
better balance the EF. In order to cut chains we use the function cutChain:

function cutChain(chain {c1, ...,cn}, int i, int j)
if i > 2 then sini = {c1, . . . ,ci−1} else sini = /0 end if
if n− j > 1 then send = {c j+1, . . . ,cn} else send = /0 end if

return (sini,send)

This function removes from a chain a subchain delimited by indices i and j. As a result,
depending on the indices, it can produce two subchains that are located before and after
the subchain. Note that when the initial index i is 2, there is only one node remaining
before the subchain, and thus, because it is not a chain, /0 is returned. The same happens
on the right.

The algorithm finishes when no more chains can be projected. Trivially, because the
number of chains and their length are finite, termination is ensured. In addition, Algo-
rithm 4 is able to balance the EF while it is being computed. Concretely, the algorithm
should be executed for each node of the EF that is completed (i.e., the final context of
the method execution is already calculated, thus all the children of this node are also
completed). Note that this means that the algorithm is applied bottom-up to the nodes
of the EF. Hence, when balancing a node, all the descendants of the node have been al-
ready balanced. This also means that modern debuggers that are able to debug programs
with uncompleted ETs [7] can also use the technique, because the ET can be balanced
while being computed.

4 Correctness

Our technique for balancing EFs is based on the transformations presented in the pre-
vious section. We present in this section the theoretical results about soundness and
completeness, whose proofs are available in Appendix A.

Theorem 1 (Completeness and soundness of EFs). Given an EF with a wrong root,
it contains a buggy node which is associated with a buggy method.

Speeding Up Algorithmic Debugging Using Balanced Execution Trees 13

Algorithm 4 Shrink & Balance EF.
Input: An EF t = (V,E) whose root is root ∈V
Output: An EF t ′ = (V ′,E ′)
Preconditions: Given a node v, v.weight is the size of the subtree rooted at v
begin
1) t ′ = shrink(t)
2) children = {v ∈V ′ | (root→ v) ∈ E ′}
3) S = {s | s is a maximal chain in children}
4) rootweight = root.weight
5) weight = rootweight/2
6) while (S 6= /0)
7) child = c ∈ children such that @c′ ∈ children,c 6= c′ ∧ c′.weight > c.weight
8) distance = |weight− child.weight|
9) if (child.weight≥ weight or @s, i, j s.t. s = {c1, . . . ,cn} ∈ S and (|W −weight|< distance) with W = ∑

j
x=i cx.weight)

10) then children = children\{child}
11) rootweight = rootweight− child.weight
12) weight = rootweight/2
13) if (∃s ∈ S such that s = {c1, . . . ,cn} and child = ci,1≤ i≤ n)
14) then (sini,send) = cutChain(s, i, i)
15) S = (S\{s})∪ sini ∪ send

end if
else

16) find an s, i, j such that s = {c1, . . . ,cn} ∈ S and ∑
j
x=i cx.weight is as close as possible to weight

17) s′ = {ci, . . . ,c j}
18) (sini,send) = cutChain(s, i, j)
19) S = (S\{s})∪ sini ∪ send
20) t ′ = projectChain(t ′,s′)
21) for each c ∈ s′
22) rootweight = rootweight− c.weight

end for each
23) children = (children\s′)
24) weight = rootweight/2

end if
end while

end
return t ′ = (V ′,E ′)

Completeness and soundness are kept after our transformations. In particular, an EF
with a buggy node still has a buggy node after any number of collapses or projections.

Theorem 2 (Chain Collapse Correctness). Let t =(V,E) and t ′=(V ′,E ′) be two EFs,
being the root of t wrong, and let C ⊂V be a chain such that all nodes in the chain are
leaves and they have the same associated method. Given t ′ = collapseChain(t,C),

1. t ′ contains a buggy node.
2. Every buggy node in t ′ is associated with a buggy method.

Theorem 3 (Chain Projection Correctness). Let t = (V,E) and t ′ = (V ′,E ′) be two
EFs, and let C ⊂V be a chain such that t ′ = projectChain(t,C).

1. All buggy nodes in t are also buggy nodes in t ′.
2. Every buggy node in t ′ is associated with a buggy method.

We also provide in this section an interesting result related to the projection of
chains. This result is related to the incompleteness of the technique when it is used intra-
session (i.e., in a single debugging session trying to find one particular bug). Concretely,
the following result does not hold: A buggy node can be found in an EF if and only if it
can be found in its balanced version.

14 D. Insa, J. Silva, A. Riesco

In general, our technique ensures that all the bugs that caused the wrong behavior
of the root node (i.e., the wrong final context of the whole program) can be found in the
balanced EF. This means that all those buggy nodes that are responsible of the wrong
behavior are present in the balanced EF.

However, AD can find bugs by a fluke. Those nodes that are buggy nodes in the EF
but did not cause the wrong behavior of the root node can be undetectable with some
strategies in the balanced version of the EF. The opposite is also true: It is possible to
find bugs in the balanced EF that were undetectable in the original EF. Let us explain it
with an example.

Example 6. Consider the EFs in Figure 5. The EF on the right is the same as the one on
the left but a new projected node has been added. If we assume the following intended
semantics (expressed with triples of the form: initial context, method, final context) then
grey nodes are wrong and white nodes are right:

x = 1 g() x = 4 x = 4 g() x = 4 x = 1 f () x = 2
x = 3 h() x = 3 x = 4 h() x = 4

Fig. 5. New buggy nodes revealed.

Note that in the EF on the left, only nodes 2 and 3 are buggy. Therefore, all the
strategies will report these nodes as buggy, but never node 1. However, node 1 contains
a bug but it is undetectable by the debugger until nodes 2 and 3 have been corrected.
Nevertheless, observe that nodes 2 and 3 did not produce the wrong behavior of node
1. They simply produced two errors that, in combination, produced by a fluke a global
correct behavior.

Now, observe in the EF on the right that node 1 is buggy and thus detectable by the
strategies. In contrast, nodes 2 and 3 are now undetectable by top-down search (they
could be detected by D&Q). Thanks to the balancing process, it has been made explicit
that three different bugs are in the EF.

5 Implementation

We have implemented the technique presented in this paper and integrated it into an
algorithmic debugger for Java.The implementation allows the programmer to activate
the transformations of the technique and to parameterize them in order to adjust the size
of the projected/collapsed chains. It has been tested with a collection of small to large
programs including real applications (e.g., an interpreter, a compiler, an XSLT proces-
sor, etc.) producing good results, as summarized in Table 1. All the information related

Speeding Up Algorithmic Debugging Using Balanced Execution Trees 15

Benchmark ET nodes Prj./Col. Prj./Col. nodes Bal. time Quest. Quest. bal. %

NumReader 12 nodes 0/0 0/0 nodes 0 msec 6,46 6,46 0,00 %
Orderings 72 nodes 2/14 5/45 nodes 0 msec 11,47 8,89 22,46 %
Factoricer 62 nodes 7/0 17/0 nodes 0 msec 13,89 7,90 43,09 %
Sedgewick 41 nodes 3/8 7/24 nodes 0 msec 18,79 7,52 59,95 %
Clasifier 30 nodes 4/7 10/20 nodes 0 msec 15,52 6,48 58,21 %
LegendGame 93 nodes 12/20 28/40 nodes 0 msec 16,00 9,70 39,36 %
Cues 19 nodes 3/1 8/2 nodes 0 msec 10,40 8,20 21,15 %
Romanic 123 nodes 20/0 40/0 nodes 0 msec 25,06 16,63 33,66 %
FibRecursive 6724 nodes 19/1290 70/2593 nodes 344 msec 38,29 21,47 43,92 %
Risk 70 nodes 7/8 19/43 nodes 0 msec 30,69 10,28 66,50 %
FactTrans 198 nodes 5/0 12/0 nodes 0 msec 18,96 14,25 24,88 %
RndQuicksort 88 nodes 3/3 9/0 nodes 0 msec 12,88 10,40 19,20 %
BinaryArrays 132 nodes 7/0 18/0 nodes 0 msec 15,56 10,58 32,03 %
FibFactAna 380 nodes 3/29 9/58 nodes 0 msec 30,13 29,15 3,27 %
NewtonPol 46 nodes 1/3 2/40 nodes 0 msec 23,09 4,77 79,35 %
RegresionTest 18 nodes 1/0 3/0 nodes 0 msec 6,84 6,26 8,46 %
BoubleFibArrays 214 nodes 0/40 0/83 nodes 0 msec 12,42 12,01 3,33 %
ComplexNumbers 68 nodes 17/9 37/18 nodes 16 msec 20,62 10,20 50,53 %
StatsMeanFib 104 nodes 3/20 6/56 nodes 0 msec 12,33 11,00 10,81 %
Integral 25 nodes 0/2 0/22 nodes 0 msec 8,38 3,38 59,63 %
TestMath 51 nodes 1/2 2/5 nodes 0 msec 12,77 11,65 8,73 %
TestMath2 267 nodes 7/13 16/52 nodes 31 msec 66,47 58,33 12,24 %
Figures 116 nodes 8/3 16/6 nodes 0 msec 13,78 12,17 11,66 %
FactCalc 105 nodes 3/11 8/32 nodes 0 msec 19,81 12,64 36,19 %
SpaceLimits 127 nodes 38/0 76/0 nodes 0 msec 40,85 29,16 28,61 %
Argparser 129 nodes 31/9 70/37 nodes 16 msec 20,78 12,71 38,85 %
Cglib 1216 nodes 67/39 166/84 nodes 620 msec 80,41 65,01 19,15 %
Javassist 1357 nodes 10/8 28/24 nodes 4.745 msec 79,52 77,50 2,54 %
Kxml2 1172 nodes 260/21 695/42 nodes 452 msec 79,61 28,21 64,56 %
HTMLcleaner 6047 nodes 394/90 1001/223 nodes 8.266 msec 169.49 138,85 18,08 %
Jtestcase 4151 nodes 299/27 776/54 nodes 1.328 msec 85,05 80,52 5,32 %

Table 1. Benchmark results.

to the experiments, the source code of the tool, the benchmarks, and other materials can
be found at http://www.dsic.upv.es/˜jsilva/DDJ/examples/.

Each benchmark has been evaluated assuming that the bug could be in any node.
This means that each row of the table is the average of a number of experiments. For
instance, cglib was tested 1.216 times (i.e., the experiment was repeated choosing a
different node as buggy, and all nodes were tried). For each benchmark, column ET
nodes shows the size of the ET evaluated; column Prj./Col. shows the number of
projected/collapsed nodes inserted into the EF; column Prj./Col. nodes shows the
number of nodes that were projected and collapsed by the debugger; column Bal. time
shows the time needed by the debugger to balance the whole EF; column Quest. shows
the average number of questions done by the debugger before finding the bug in the
original ET; column Quest. bal. shows the average number of questions done by the
debugger before finding the bug in the balanced ET; finally, column (%) shows the
improvement achieved with the balancing technique. Clearly, the balancing technique
has an important impact in the reduction of questions with a mean reduction of 30%
using top-down.

Essentially, our debugger produces the EF associated with any method execution
specified by the user (by default main) and transforms it by collapsing and projecting
nodes using Algorithm 4. Finally, it is explored with standard strategies to find a bug.
If we observe again Algorithms 1, 2, and 3, a moment of thought should convince
the reader that their cost is linear with the branching factor of the EF. In contrast, the

16 D. Insa, J. Silva, A. Riesco

cost of Algorithm 4 is quadratic with the branching factor of the EF. On the practical
side, our experiments reveal that the average cost of a single collapse (considering the
1.675 collapses) is 0,77 msec, and the average cost of a single projection (considering
the 1.235 projections) is 17,32 msec. Finally, the average cost for balancing an EF is
2.818,25 msec.

Our algorithm is very conservative because it only collapses or projects nodes that
belong to a chain. Our first experiments showed that if we do not apply any restric-
tion in the use of chains, the technique produces EFs that are much more balanced.
Repeating the experiments in this way (considering all 23.257 experiments) produced
a query reduction of 42%. However, this reduction comes with a cost: the complexity
of the questions may be increased. Therefore, we only apply the transformations when
the question produced is not complicated (i.e., when it is generated by a chain). This
has produced good results. In the case that the question of a collapsed/projected node
was still hard to answer, our tool gives the possibility of answering “I don’t know”,
thus skipping the current question and continuing the debugging process with the other
questions (e.g., with the children). This means that, if the programmer is able to find
the bug with the standard ET, she will also be able with the balanced EF. That is, the
introduction of projected nodes is conservative and cannot cause the debugging session
to stop.

6 Related Work

We are not aware of other approaches for balancing the structure of the ET. However,
besides our approach, there exist other transformations devoted to reducing the size of
the ET, and thus the number of questions performed. Our implementation allows us to
balance an already generated ET, and it also allows us to automatically generate the bal-
anced ET. This can be done by collapsing or projecting nodes during their generation.
However, conceptually, our technique is a post-ET generation transformation.

The most similar approach is the tree compression technique introduced by Dave
and Chitil [5]. This approach is also a conservative approach that transforms an ET
into an equivalent (smaller) ET where the same bugs can be detected. The objective of
this technique is essentially different: it tries to reduce the size of the ET by removing
redundant nodes, and it is only applicable to recursive calls. A similar approach to
tree compression is declarative source debugging [4], that instead of modifying the tree
implements an algorithm to prevent the debugger from selecting questions related to
nodes generated by recursive calls.

Another approach which is related to ours was presented in [11], where a trans-
formation for list comprehensions of functional programs was introduced. In this case,
it is a source code (rather than an ET) transformation to translate list comprehensions
into equivalent functions that implement the iteration. The ET produced can be further
transformed to remove the internal nodes of the ET reducing the size of the final ET as
in the tree compression technique. Both techniques are orthogonal to the balancing of
the ET, thus they both can be applied before balancing.

Speeding Up Algorithmic Debugging Using Balanced Execution Trees 17

7 Conclusions

This work presents a new technique that allows us to automatically balance standard
ETs. This technique has been implemented, and experiments with real applications con-
firm that it has a positive impact on the performance of AD.

From a theoretical point of view, two important results have been proved. The pro-
jection and the collapse of nodes do not prevent finding bugs, and the bugs found after
the transformations are always real bugs. Another interesting and surprising result is
the fact that balancing ETs can discover bugs undetectable with the original ET and can
also change the order in which bugs are found.

In our current experiments, we are now taking advantage of the Execution Forests.
This data structure allows us to apply more drastic balancing transformations. For in-
stance, it allows us to collapse a whole subtree of the EF. This permits to avoid questions
related to some parts of the EF and direct the search in other direction. In this respect,
we do not plan to apply this transformation to chains, but to subtrees; based on approx-
imations of the probability of a subtree to be buggy.

Execution forests provide a new dimension in the search that allows the debugger to
go into a collapsed region and explore it ignoring the rest of the EF; and also to collapse
regions so that search strategies can ignore them.

References

1. D. Binks. Declarative Debugging in Gödel. PhD thesis, University of Bristol, 1995.
2. R. Caballero. A Declarative Debugger of Incorrect Answers for Constraint Functional-Logic

Programs. In Proc. of the 2005 ACM SIGPLAN Workshop on Curry and Functional Logic
Programming, WCFLP 2005, pp. 8–13. ACM Press, 2005.

3. R. Caballero, C. Hermanns, and H. Kuchen. Algorithmic debugging of Java programs. In
Francisco Javier López-Fraguas, editor, Proc. of the 15th Workshop on Functional and (Con-
straint) Logic Programming, WFLP 2006, Madrid, Spain, ENTCS 177, pp. 75–89. Elsevier,
2007.

4. Miguel Calejo. A Framework for Declarative Prolog Debugging. PhD thesis, New University
of Lisbon, 1992.

5. T. Davie and O. Chitil. Hat-delta: One Right Does Make a Wrong. In Seventh Symposium
on Trends in Functional Programming, TFP 2006, April 2006.

6. V. Hirunkitti and C. J. Hogger. A Generalised Query Minimisation for Program Debugging.
In Proc. of International Workshop of Automated and Algorithmic Debugging, AADEBUG
1993, LNCS 749, pp. 153–170. Springer, 1993.

7. D. Insa and J. Silva. Debugging with Incomplete and Dynamically Generated Execution
Trees. In Marı́a Alpuente, editor, Proc. of the 20th International Symposium on Logic-based
Program Synthesis and Transformation, LOPSTR 2010, LNCS 6564. Springer, 2011.

8. G. Kokai, J. Nilson, and C. Niss. GIDTS: A Graphical Programming Environment for Prolog.
In Workshop on Program Analysis For Software Tools and Engineering, PASTE 1999, pp.
95–104. ACM Press, 1999.

9. I. MacLarty. Practical Declarative Debugging of Mercury Programs. PhD thesis, Depart-
ment of Computer Science and Software Engineering, The University of Melbourne, 2005.

10. M. Maeji and T. Kanamori. Top-Down Zooming Diagnosis of Logic Programs. Technical
Report TR-290, Japan, 1987.

11. H. Nilsson. Declarative Debugging for Lazy Functional Languages. PhD thesis, Linköping,
Sweden, May 1998.

18 D. Insa, J. Silva, A. Riesco

12. H. Nilsson and P. Fritzson. Algorithmic Debugging for Lazy Functional Languages. Journal
of Functional Programming, 4(3):337–370, 1994.

13. E.Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1982.
14. Josep Silva. A Survey on Algorithmic Debugging Strategies. Advances in Engineering

Software, 42(11):976–991, 2011.

Speeding Up Algorithmic Debugging Using Balanced Execution Trees 19

Note for the reviewers: The following appendices have been only included to ease
the reviewing process, and they will not be part of the final paper. In case of acceptance,
these appendices will be published as a technical report so that the interested reader will
have public access to them.

A Proofs of technical results

Lemma 1 (Buggy method). Given an ET t = (V,E), and a buggy node v ∈V in t with
v = (b,m,e), then m contains a bug.

Proof. Because v is buggy, then the method execution (b,m,e) is wrong, thus (b,m,e) 6∈
I and I 6|= (b,m,e). Moreover, by Definition 3, we have a child of v for each call to a
method done from the definition of m. But we know by Definition 5 that for all child v′

of v, v′ ∈ I or I |= v′ Hence, m contains a bug.

Proposition 1 Let t be a EF with a wrong root. Then t contains a buggy node.

Proof. We prove the claim by induction on the size of t. (Base case) t only contains one
node b. Then b is buggy, because it is wrong and it has no children. (Induction hypoth-
esis) t contains i nodes and at least one of them is buggy. (Inductive case) t contains
i+1 nodes. In this case we have a tree of i nodes that, by the induction hypothesis, does
contain a buggy node b plus one extra node n. If n is not the child of b, then b is buggy.
If n is the child of b, then either n is correct, and thus b is buggy; or n is wrong and
hence, it is buggy because it has no children.

Lemma 2 (Soundness of projections and collapses). Given a collapsed or projected
node v = (b,m1; . . . ;mn,e) in an EF. If v is buggy, then it contains a buggy method.

Proof. We have two possibilities: (1) v is a collapsed node. In this case v has not chil-
dren, and because v is wrong, (b,m1; . . . ;mn,e) 6∈ I ; therefore, trivially, at least one
method mi, 1 ≤ i ≤ n, is buggy. (2) v is a projected node. This case is impossible be-
cause a projected node cannot be buggy. The reason is that if all the children of v are
correct, then v is correct by Definition 4 using the inference rule Tr. Otherwise, at least
one child is wrong, but then, v cannot be buggy by Definition 5.

Theorem 1 (Completeness and soundness of EFs). Given an EF with a wrong root,
it contains a buggy node which is associated with a buggy method.

Proof. The first point is proved by Proposition 1, while the second one is proved by
Lemmas 1 and 2.

Theorem 2 (Chain Collapse Correctness). Let t =(V,E) and t ′=(V ′,E ′) be two EFs,
being the root of t wrong, and let C ⊂V be a chain such that all nodes in the chain are
leaves and they have the same associated method. Given t ′ = collapseChain(t,C),

1. t ′ contains a buggy node.
2. Every buggy node in t ′ is associated with a buggy method.

20 D. Insa, J. Silva, A. Riesco

Proof. For the first item, only leaf nodes can be collapsed, therefore, the root node could
only be collapsed if it is the only node of t. However, even in this case we have that
@v ∈V such that (v→ r) ∈ E being r the root of t. Therefore, according to Definition 7,
r is not a chain and thus it cannot be collapsed. Hence, the root of t ′ is the same as the
root of t, and thus t ′ contains a buggy node by Proposition 1.

Now, we prove that any buggy node of t ′ is associated with a buggy method. Let
v ∈V be the parent node of the chain C, and let w ∈V ′ be the collapsed node of C. We
consider three cases:

– u ∈ V ′,v 6= u 6= w is buggy. In this case the collapse does not influence the buggy
node u and thus the claim follows by Lemma 1.

– v is buggy in t ′. This case is trivial, because v is wrong and w is correct by Defi-
nition 5. Therefore, the new node w can be inferred with the rule Tr and thus the
method in v is wrong according to Lemma 1.
This case is particularly interesting because it reveals a phenomenon: node v is not
changed by the transformation and thus it belongs to both trees t and t ′. However, it
could be possible that v is not buggy in t but it is buggy in t ′. This happens because
w has somehow hidden some error in the chain—some wrong intermediate result
that was visible in the chain is now hidden because only the initial and final contexts
are shown—, revealing a new bug located in v.

– w is buggy in t ′. Then, either the result or the final context of w are wrong. Hence,
since both the result and the final context are produced by the nodes in C, we
know that at least one node c ∈ C is also wrong. Because c is a leaf and it is
wrong, then it is a buggy node in t and it is associated with a buggy method m
by Lemma 1. According to Algorithm 1 w is associated with a method execution
(b,m0 . . .m . . .mn,e), and thus it is associated with a buggy method.

Theorem 3 (Chain Projection Correctness). Let t = (V,E) and t ′ = (V ′,E ′) be two
EFs, and let C ⊂V be a chain such that t ′ = projectChain(t,C).

1. All buggy nodes in t are also buggy nodes in t ′.
2. Every buggy node in t ′ is associated with a buggy method.

Proof. Let v∈V be the parent node of the chain C, and let w∈V ′ be the projected node
of C. We consider an arbitrary buggy node u ∈ V and show that it is also buggy in t ′.
Five cases are possible:

– u is the root of t. It is easy to see that t ′ has the same root as t, since the node
added by projectChain requires a parent node in the tree (i.e., the root cannot be
projected). Thus, if the root of t is buggy, then the root of t ′ is also buggy.

– u 6= v,u 6= w and u 6= c ∈C. In this case the projection does not influence the buggy
node u nor its children and thus u is also buggy in t ′.

– u = v. This means that u is the parent of the chain C. If it is buggy, then by Defi-
nition 5 all nodes in C are correct. Then, as shown in the proof of Lemma 2, w is
correct. Hence, u is also buggy in t ′.
In the general case, v will be buggy in t, and also in t ′ (∀c ∈ C, c will be correct;
and thus w is also correct). However, it could be possible that v is correct in t,
two nodes c1,c2 ∈C were wrong, and their combined (wrong) effects produced a
correct result. In that case, both errors would be hidden in the projection node (but
of course they would remain in c1 and c2). As a result, a new buggy node (v) not
present in t would appear in t ′.

Speeding Up Algorithmic Debugging Using Balanced Execution Trees 21

– u = c∈C. This means that c is wrong and all its children correct. Since the children
of c have not been modified by projectChain, c was buggy in t and it is also buggy
in t ′.

In all cases, the buggy node is associated with a buggy method by Lemmas 1 and 2.

22 D. Insa, J. Silva, A. Riesco

Fig. 6. Algorithmic Debugging session of Mergesort.

B Case of Study: Mergesort

In this appendix we show a real application of our algorithm using our implementation.
In particular, we show the result of balancing a Mergesort’s EF. The following version of
Mergesort algorithm was initially extracted from Wikipedia (http://es.wikipedia.
org/wiki/Ordenamiento_por_mezcla#Java) and then modified to include one bug
in function merge: it does not update positions appropriately.

Method main declares an object of class mergesort, initializes the variable x with
the list {3,1,2}, and sorts x with OrderMerge. Finally, the result is stored in variable
y, and it is printed:

import java.util.Random;

public class mergesort{
public static void main(String[] args) {
mergesort m = new mergesort();
int[] x = {3,1,2};
int[] y;
y=m.OrderMerge(x);
for(int i = 0; i < y.length; i++){

System.out.println(y[i]);
}

}

Speeding Up Algorithmic Debugging Using Balanced Execution Trees 23

Method OrderMerge implements the mergesort algorithm: First, it splits the list
given as argument; then, it sorts each fragment and merges them together to obtain the
final result:

public int[] OrderMerge(int[] L) {
int n = L.length;
if (n > 1){

int m = (int) (Math.ceil(n/2.0));
int [] L1 = new int[m];
int [] L2 = new int[n-m];
for (int i = 0; i < m; i++){

L1[i] = L[i];
}
for (int i = m; i < n; i++){

L2[i-m] = L[i];
}
L = merge(OrderMerge(L1), OrderMerge(L2));

}
return L;

}

Method merge introduces the elements of the (sorted) list received as arguments
in an ordered fashion in a new list, which is returned as the result. However, we have
introduced an error: when the element in the first array is smaller than the one in the
second array, it is introduced in the new array, but the position is not updated. Thus, the
next element introduced overwrites its value:

public int[] merge(int[] L1, int[] L2){
int[] L = new int[L1.length+L2.length];
int i = 0;
while ((L1.length != 0) && (L2.length != 0)) {

if (L1[0] < L2[0]){
L[i] = L1[0];
// The previous line is erroneous,
// it should be:
//L[i++] = L1[0];
L1 = delete(L1);
if (L1.length == 0){

while (L2.length != 0) {
L[i++] = L2[0];
L2 = delete(L2);

}
}

}
else{

L[i++] = L2[0];
L2 = delete(L2);
if (L2.length == 0) {

24 D. Insa, J. Silva, A. Riesco

while (L1.length != 0) {
L[i++] = L1[0];
L1 = delete(L1);

}
}

}
}
return L;

}
}

Finally, method delete removes the first element of the list received as argument:

public int[] delete(int [] l){
int [] L = new int[l.length-1];
for(int i = 1; i < l.length; i++){

L[i-1] = l[i];
}
return L;

}

If we execute the main method of the class, we observe that the initial list, {3,1,2},
is sorted to {2,3,0}. Since the expected result was {1,2,3}, there must be a bug in the
code. At this point we can use a conventional debugger and place breakpoints at some
parts of the code to try to figure out if the variables are updated correctly at those points.
Then add new breakpoints and so on.

An alternative is to use our debugger. When we load mergesort.java in the debugger
we see the information shown in Figure 6. In the main panel we can observe a part of the
EF associated with Mergesort. The debugger uses colors to distinguish between those
nodes that are wrong (in red), and those nodes that are correct (in green). The validity
of grey nodes is unknown, and thus they are suspicious of being buggy. Of course, the
programmer can inspect any node at any moment, and she can also direct the debugging
session manually as it happens with breakpoints. But in general, the programmer allows
the debugger to automatically direct the search for the bug, because it always selects the
node that better divides the suspicious area.

In the figure, the debugger has automatically selected a node related with the method
OrderMerge, and it has popped up the question associated with this node:

mergesort.OrderMerge({3,1})={1,3}?

Clearly the answer to the question is Valid because the elements of the array have
been ordered correctly. Note also that it is not even necessary to look at the implemen-
tation of the method to answer the question; i.e., to answer we focus on the objective
of the method (we only have to know that this method orders an array), and we do not
need to know the operational details (it does not matter how it was implemented).

The information associated to each node is displayed in the panel at the right (the
object inspector). It is similar to the “variable watch view” used in traditional debuggers:
It allows us to inspect all objects in the scope of this method. Note that the information

Speeding Up Algorithmic Debugging Using Balanced Execution Trees 25

Fig. 7. EF associated with Mergesort.

Fig. 8. Balanced EF associated with Mergesort.

is classified so that we can see the arguments and the result separately; and creation,
deletion or changes in any object are highlighted with colors.

The EF associated with Mergesort is displayed in Figure 7, where OM abbreviates
OrderMerge. An standard algorithmic debugger would traverse this tree as follows:

Starting Debugging Session...

(1) NO (2) YES (3) YES (4) NO (8) YES (9) YES (10) YES

Bug found in method:
merge(int[] L1, int[] L2) of class Mergesort

Fortunately, using our balancing algorithm, the debugger can transform the EF in
Figure 7 to produce the EF of Figure 8. Nodes (5) and (6); (8), (9) and (10); and, (11)
and (12), have been collapsed. The tool automatically detected that they form chains
and collapsed them to form a single question. For instance, the new collapsed node (7)
in Figure 8 contains the following question: “Having the lists L1={1,3} and L2={2},
if we delete two elements from list L1, and one element from list L2; do we obtain the
lists L1={} and L2={}?”

26 D. Insa, J. Silva, A. Riesco

Although larger trees would not fit in this paper, we can already see the pattern of
collapse for this example: merging two lists of sizes n1 and n2, that in general produces
n1+n2+1 nodes of the debugging tree (one node for merge and n1+n2 for delete),
only produces two nodes in the collapsed tree. Note that this improvement not only
reduces the number of questions asked to the user, it also enhances the computation of
the debugging tree, since the number of nodes is much smaller.

With the balanced EF, the traversal is:
Starting Debugging Session...

(1) NO (2) YES (3) YES (4) NO (7) YES

Bug found in method:
merge(int[] L1, int[] L2) of class Mergesort

