
Dynamic Slicing of Concurrent Specification LanguagesI

M. Llorensa, J. Olivera, J. Silvaa,∗, S. Tamaritb

aDepartamento de Sistemas Informáticos y Computación
Universitat Politècnica de València

Valencia, Spain
bBabel Research Group

Fac. Informática, Universidad Politécnica de Madrid
Campus de Montegancedo, s/n. 28660 Boadilla del Monte, Spain

Abstract

Dynamic slicing is a technique to extract the part of the program (called slice)
that influences or is influenced, in a particular execution, by a given point of
interest in the source code (called slicing criterion). Since a single execution is
considered, the technique often uses a trace of this execution to analyze data
and control dependencies. In this work we present the first formulation and
implementation of dynamic slicing in the context of CSP. Most of the ideas
presented can be directly applied to other concurrent specification languages
such as Promela or CCS, but we center the discussion and the implementa-
tion on CSP. We base our technique on a new data structure to represent CSP
computations called track. A track is a data structure which represents the
sequence of expressions that have been evaluated during the computation, and
moreover, it is labelled with the location of these expressions in the specifica-
tion. The implementation of a dynamic slicer for CSP is useful for debugging,
program comprehension, and program specialization, and it is also interesting
from a theoretical perspective because CSP introduces difficulties such as heavy
concurrency and non-determinism, synchronizations, frequent absence of data
dependence, etc.

Keywords: Concurrent Programming; CSP; Slicing.

IThis work has been partially supported by the EU (FEDER) and the Spanish Ministerio
de Economía y Competitividad under grant TIN2013-44742-C4-1-R and by the Generalitat
Valenciana under grant PROMETEOII/2015/013 (SmartLogic). Salvador Tamarit was par-
tially supported by Madrid regional projects N-GREENS Software-CM (S2013/ICE-2731),
and by European Union project POLCA (STREP FP7-ICT-2013.3.4 610686).
∗Corresponding author
Email addresses: mllorens@dsic.upv.es (M. Llorens), fjoliver@dsic.upv.es (J.

Oliver), jsilva@dsic.upv.es (J. Silva), stamarit@babel.ls.fi.upm.es (S. Tamarit)

Preprint submitted to Parallel Computing January 25, 2016

1. Introduction

Communicating Sequential Processes (CSP) [12, 25] is one of the most
widespread concurrent specification languages. The study and transformation of
CSP specifications often uses different analyses such as deadlock analysis [17],
reliability analysis [13], security analysis [23] and program slicing [32], which
are based on a data structure able to represent computations through the use
of traces [5].

However, standard CSP traces are not adequate for those analyses that need
to relate the trace with the source code. One of these analyses is dynamic slicing
[30, 26], a technique to extract the part of a program (called dynamic slice)
associated with a given slicing criterion. Concretely, a dynamic slice is the part
of the program that influences or is influenced by a given point of interest in
the source code for a given single execution of a program. In this work we claim
that tracks [22] are an ideal data structure for dynamic slicing, and based on
tracks, we present the first formulation and implementation of dynamic slicing
in the context of CSP.

A CSP track is a data structure that represents the sequence of expressions
that have been evaluated during one computation, labelled with the location
of these expressions in the specification. In contrast, a (standard) CSP trace
is the sequence of events that occur during the computation [25]. Therefore, a
CSP track is much more informative than a CSP trace because the former not
only contains a lot of information about original program structures but it also
explicitly relates the sequence of events with the parts of the specification that
caused these events.

Our implementation is the first dynamic program slicer for CSP specifi-
cations. It implements different versions of our technique that are useful for
different goals such as debugging, program comprehension and program spe-
cialization. In all cases, the slicing process is completely automatic. The user
only needs to load a CSP specification, specify a slicing criterion, and press a
button. Then, the slicer automatically produces a computation and extracts
the dynamic slice of this computation associated with the slicing criterion.

For the specification of the slicing criterion, we propose the use of a fresh
channel (by default called slice) that can be located at any place(s) of the
specification. Events of this channel do not interfere the execution of the spec-
ification and they are treated by the slicer as internal events (thus, they do
not appear in the trace nor in the track). Allowing the use of more than one
point is particularly interesting to face the problem of highly concurrent and
non-deterministic processes. It is even possible to define the slicing criterion as
a synchronized event, thus forcing the slicing criterion to happen in a specific
synchronization. This is a novel idea that is introduced with our technique. To
illustrate the slicing process and its internal data structure (the track) we use
the following example.

Example 1. Consider the CPU diagram at the top of Figure 1 used to simulate
the process scheduler of a CPU. The CPU contains three main components: an

2

Arithmetic Logic Unit (ALU), a Control Unit (CU), and a processes scheduler
with a queue. The ALU is controlled by the CU. Only one process can access
the CU each time. Therefore, the scheduler is in charge of granting access to
the CU. For this, it uses a round robin strategy using the queue. In the figure,
messages between components use solid arrows for query messages, and dashed
arrows for answers.

This system can be modeled with the CSP specification1 at the bottom of the
figure (for the time being, the reader can ignore the difference between black
and grey colors). The specification is buggy. It is syntactically correct, but the
traces produced are not the expected ones. In particular, one can generate the
following trace: 〈alu.3, working.3, cui.3, result.3, operation.3〉 that should be
interpreted as: Process 3 requires access to the ALU, Process 3 continues work-
ing, Process 3 gets access to the CU, ALU produces a result for Process 3, CU
asks ALU to solve an operation of Process 3.

Clearly, the two last events are in the wrong order. At this time we have
a bug symptom, but we have to manually inspect the code to understand the
problem. We are interested in determining what parts of the specification con-
ducted the execution to produce event result.3, hence, we mark (it is marked
with a box in the specification) expression result.X of process Process(X) as
the slicing criterion. Our slicing technique automatically extracts the dynamic
slice produced for that slicing criterion. It only contains the black code, which
is enough to produce the error. Thus, it must contain a bug.

Looking again at the diagram in Figure 1, we can see that the processes and
the CPU communicate via two messages: alu.proc and result.proc. There-
fore, it is clear that channels alu and result should be synchronized between the
processes and the CPU. However, if we observe process SYSTEM in the slice, we
can see that channel result has been accidentally replaced by answer. This is
also obvious because process Process does not contain channel answer. There-
fore, we can correct the error:

SYSTEM = CPU ||
{alu,answer}

(Process(1) ||| Process(2) ||| Process(3))

should be

SYSTEM = CPU ||
{alu,result}

(Process(1) ||| Process(2) ||| Process(3))

For the computation of slices we use tracks. For instance, a part of the
track associated with the computation that produced the bug in Example 1 is
depicted in Figure 2. In the track, a directed graph, each node represents a term
in the source code (it is easy to identify, e.g., the processes because their names
are written in some nodes, and because the line and column of each expression
is included in the node). Arcs are of two types: control-flow arcs (one-way solid
arcs) and synchronizations (two-way dashed arcs). Control-flow arcs somehow

1We refer those readers non familiar with CSP syntax to Appendix A where we provide a
brief introduction to CSP.

3

channel operation, answer, cuo, cui, alu, working, result: {0..3}
channel shift, deq, empty
channel enq, next, left, right, comm: {0..3}

MAIN = SYSTEM

SYSTEM = CPU ||
{alu,answer}

(Process(1) ||| Process(2) ||| Process(3))

Process(X) = alu!X → working.X → result.X → SKIP

CPU = (Sched ||
{enq,deq,next,empty}

Queue) ||
{cui,cuo}

(CU ||
{operation,answer}

ALU)

Sched = Sched_idle

Sched_idle = alu?proc → cui!proc → Sched_busy

Sched_busy = cuo?proc → (result.proc → Sched_check)
2 alu?proc → enq!proc → Sched_busy

Sched_check = deq → (empty → Sched_idle
2 next?proc → cui!proc → Sched_busy)

CU = cui?proc → operation.proc → answer.proc → cuo!proc → CU

ALU = operation?proc → answer!proc → ALU

Queue = (DQ(0) ||
{left,right,shift}

BUFF)\{left,right,shift}

DQ(2) = deq → shift → X(2)

DQ(i) = enq?x → (left!x → shift → DQ(i+1))
2 deq → (empty → DQ(0) ≮ i==0 ≯ X(i))

X(i) = right?y → (next!y → DQ(i-1)) 2 shift → X(i)

BUFF = (CELL [[right < comm]] ||
{comm}

CELL [[left < comm]])\{comm}

CELL = left?x → shift → right!x → CELL

Figure 1: CPU diagram and its specification in CSP

4

represent a timeline. They represent the transition from one term to another
term during the evaluation of the specification. Synchronizations always connect
two events that happened at the same time. All this provides some interesting
properties:

1. One can follow control-flow arcs to know the order in which source code
terms where evaluated.

2. One node represents one specific term in one specific evaluation instant
(control-flow arcs do not form loops).

3. A node with more than one synchronization arc represents a multiple
synchronization (it should not be confused with a set of independent syn-
chronizations at different moments), that is, all channels in a path of
synchronization arcs must occur at the same time.

Thanks to these properties, a slice can be computed in linear time with a
single traversal of the track. In particular, a backward dynamic slice can be
computed traversing the track backwards from the slicing criterion. Hence, in
the figure, those nodes colored in grey are the slice obtained selecting result.X
as the slicing criterion (the node with the bold line).

Example 1 illustrates how dynamic slicing can be used for debugging, sig-
nificantly reducing the amount of code that must be inspected to find a bug.
Besides debugging, dynamic slicing could be used for program comprehension.
Different slices show the parts of the specification really involved in one partic-
ular computation. Thus, they can help to understand the actual meaning of the
specification.

Another interesting application is program specialization. Note that the slice
produced is not executable, but it could be made executable by replacing the
removed parts by STOP, or by → STOP if the removed expression has a prefix.
For instance, process SYSTEM could be redefined as:

SYSTEM = CPU ||
{alu,answer}

(STOP ||| Process(3))

Hence, this transformation allows us to extract executable slices. The specialized
specification contains all the necessary parts of the original specification whose
execution leads to the slicing criterion (and then, the specialized specification
finishes).

The rest of the paper has been organized as follows. First, in Section 2 we
present and discuss the related work. In Section 3 we introduce some definitions
and notation. Next, in Section 4, we present the formulation of dynamic slicing
via tracking in the context of CSP. We describe our implementation and its
empirical evaluation in Section 5. Finally, Section 6 concludes.

2. Related Work

Since it was originally defined by Weiser [32], program slicing has been ap-
plied to different formalisms that are not strictly programming languages, like

5

Figure 2: Partial track of the CPU specification

attribute grammars [27], hierarchical state machines [11], Petri nets [14], etc.,
and different slicing techniques have been specifically defined for concurrent
programs (e.g., for analyzing concurrency bugs [31], or for race detection [29]).

Unfortunately, very little work has been carried out on slicing concurrent
specification languages, and it is practically missing in CSP. Some notable ex-
ceptions are [4, 3, 21] that were proposed in the context of the static analysis
of CSP. In the area of static slicing, analyses are often based on the use of a
data structure that approximates all possible derivations of a CSP specifica-
tion. Of course, this is radically different to our approach because a track is a
dynamic structure that could be infinite, while their data structures are finite
representations of possibly infinite derivations. Moreover, tracks are confident
data structures, while their data structures are approximations. The simili-
tude with our work appears in the fact that some of their data structures also

6

use a mapping to the source code, and thus they are able to relate a deriva-
tion with the part of the source code that is needed to perform this derivation.
For instance, Brückner and Wehrheim [4] proposed a data structure based on
the standard program dependence graph [8] to slice CSP-OZ specifications or
CSP-OZ-DC specifications [3], ignoring CSP synchronization and taking a LTL
formulae constructed with OZ’s variables as slicing criterion. It is useful for pro-
gram slicing but it is insufficient for other analyses that need a context-sensitive
graph [16] (i.e., each different process call has a different representation). Later,
[21] proposed the Context-sensitive Synchronized Control Flow Graph (CSCFG)
(a similar data structure that was context-sensitive and takes into account CSP
synchronization) and two static analyses based on this graph that can be applied
to CSP.

Dynamic slicing [15] however is missing in CSP. To the best of our knowl-
edge, this work defines the first adaptation of dynamic program slicing for CSP.
Of course, there exist different dynamic analyses and tools able to simulate spec-
ifications and analyze, e.g., deadlocks (often based on the stable failures model),
and also the circumstances under which processes can livelock (often based on
the divergences model) [25]. Two of the most important analysis tools for CSP
are ProB [18, 19] and FDR3 [10]. Both of them allow the user to dynamically
generate and explore the possible traces of a specification. Probably, the data
structure produced by FDR3’s debugger is the most similar to our notion of
tracks. As it happens with our tracks, the debug viewer can represent several
behaviors of particular machines all together, and how they relate (each behavior
is represented with a sequence of events, and events that are vertically aligned
are synchronised). But our tracks explicitly represent the relation between the
sequence of events, and the source code that produced these events, in such a
way that the analyst knows exactly what part of the code is being activated
when an event, a choice, a parallel execution, etc. happens. Moreover, graphs
produced by FDR3 are labelled transition systems (LTS), thus nodes represent
states, and arcs model transitions through the occurrence of events. Contrarily,
tracks are not LTS. In a track, nodes are not states, but terms of the source
code (such as prefixes, choice operators or parallel operators).

There exist tools to convert CSP programs into other traditional languages
such as C++ or Java. And these languages have available dynamic slicers. Thus,
one may ask wether it is possible (or useful) to translate a CSP specification
to an equivalent C program, slice the C program, and translate the sliced C
program to CSP. The short answer is no, because the current technology to do
this is not mature enough.

If we think about C++, the long answer is that CSP++2 is a software
synthesis tool for making specifications written in the machine-readable dialect
of CSP (CSPM 3) executable via C++. Once the code has been transformed to
C++, we could use a C++ dynamic program slicer. However, to the best of

2http://www.uoguelph.ca/~gardnerw/csp++/
3http://www.cs.ox.ac.uk/ucs/cspm.pdf

7

our knowledge, most of existing slicing tools for C/C++ perform static slicing
(such as Frama-C 4—only for the C language—or CodeSurfer5). One of the few
publicly available dynamic slicing tools for C/C++ is Giri6 that implements
dynamic backwards slicing in LLVM 7 compiler. Giri supports three ways of
specifying the slicing criterion: the return instruction at the main function,
source code line number and LLVM instruction number. For a given input,
it reports the dynamic slice of the program execution from the slice starting
point in terms of LLVM instructions as well as the source code line numbers.
Disappointingly, once we have produced the C++ slice, there does not exist a
translation to go back to CSP. Thus, the slice should be interpreted at C++
level.

We have used this software and, unfortunately, the transformed C++ code
is very (very!) different from the original CSP specification, and hard to un-
derstand, even if you know C++. In particular, it is hard to even identifying
the original processes, choices, etc. in the transformed code. Only an expert
in C++ familiarized with the transformation can interpret the dynamic slice
with respect to the original CSP specification. Moreover, a slice formed by
C++ line numbers is much less intuitive than the graphical slices produced by
CSP-Tracker. In addition, CSP-Tracker can return an executable slice, Giri no.

If we focus on Java, among tools to convert CSP to Java, we can find JCir-
cus8 a tool that automatically translates Circus programs into Java. It is based
on a translation strategy that uses the JCSP9 library to implement some of
the CSP constructs of Circus10 (a formal language that combines the Z and
CSP notations). The operational semantics of Circus presents some important
differences with respect to CSPM .

If we were able to translate CSP to Java, we could then use the JSlice11

and JavaSlicer12 dynamic slicing tools for Java programs. In his PhD thesis,
Hammacher13 compared JSlice and JavaSlicer, and he concluded that JavaSlicer
is superior. In any case, neither of them would be better than CSP-Tracker. On
the one hand, JSlice is not maintained since 2008 —it only works for versions
of JDK previous to 1.4—. Moreover, JSlice does not produces a graphical view
of the slice. On the other hand, JavaSlicer is able to produce graphical slices
but, unfortunately, this only works for very (very!) small graphs, because of the
poor layouting algorithms shipped with JUNG. Even if we produced a slice of

4http://frama-c.com/
5http://www.grammatech.com/research/technologies/codesurfer
6https://github.com/liuml07/giri
7http://llvm.org/
8https://www.cs.york.ac.uk/circus/tools/jcsp.php
9http://www.cs.kent.ac.uk/projects/ofa/jcsp/

10https://www.cs.york.ac.uk/circus/
11http://jslice.sourceforge.net/
12https://www.st.cs.uni-saarland.de/javaslicer/
https://github.com/hammacher/javaslicer

13https://www.st.cs.uni-saarland.de/publications/files/
hammacher-bachthesis-2008.pdf

8

the transformed Java code, currently, there is no tool to convert a Java program
to a CSP specification. Thus, slices should be interpreted at the level of Java.

3. Preliminary definitions and notation

In this section we introduce some notation, and provide definitions used in
the rest of the paper. We start with a mechanism to decompose CSP specifica-
tions.

Traditionally, in imperative languages, program slicing works at the level of
code lines. This means that program slices are formed by a subset of the lines
in the original code. This is clearly inappropriate for CSP where code is not
organized in lines, but in expressions. Hence, we want to reduce the granularity
level of slices to the level of expressions. Indeed, we want to maximally reduce
the granularity level thus being able to identify any single literal in a CSP
specification.

To uniquely identify each literal in a CSP specification we use labels (that
we call specification positions), which roughly correspond to nodes in the CSP
specification’s abstract syntax tree. A specification position [22] is a pair (N,w)
where N is the name of a CSP process and w is a chain of natural numbers
separated by dots (we use Λ to denote the empty chain).

Example 2. The following CSP specification has been labelled with specification
positions (they are underlined):

MAIN(MAIN,0) = P(a)(MAIN,1) ‖
{b}

(MAIN,Λ)(b(MAIN,2.1)→(MAIN,2)STOP(MAIN,2.2))

P(x)(P,0) = (x(P,1.1)→(P,1)SKIP(P,1.2))≮x = c≯(P,Λ)(b(P,2.1)→(P,2)SKIP(P,2.2))

All terms are uniquely labelled because labels keep the order of the associated
abstract syntax tree:

We also need to define the notions of rewriting step and derivation. For this,
we need to base our definition on some CSP semantics. Our implementation is
based on the standard CSP semantics (see, e.g., [25]), but here, in the theoretical
development, the semantics is left open. In CSP, event-based semantics evolve

9

processes due to the occurrence of events of either an alphabet Σ, the internal
event τ , or the success event X, which denotes the successful termination of a
process, often indicated with Ω. We allow the use of any particular semantics

provided that it is formed of rules
Θ

P
e−→ P ′

where P and P ′ are processes, Θ is

a possibly empty set of rewriting steps, and e is an event. An example of such
a semantics can be found in, e.g., [21] and in Appendix A.

Definition 1 (Rewriting Step, Derivation, Subderivation). Given a CSP
process P , a rewriting step for P , denoted by P Θ

 P ′, is the transformation of
P into P ′ by using a rule of the CSP semantics. Therefore, P Θ

 P ′ iff a rule

of the form
Θ

P
e−→ P ′

is applicable, where e ∈ Σ ∪ {τ,X} and Θ is a (possibly

empty) set of rewriting steps. Given a CSP process P0, we say that the sequence
D = P0

Θ0 . . .
Θn Pn+1, n ≥ 0, is a derivation of P0 iff ∀ i, 0 ≤ i ≤ n, Pi

Θi Pi+1

is a rewriting step. A subderivation of D is any D′ = Pi
Θi . . .

Θj
 Pj+1,

0 ≤ i < j ≤ n. We say that the derivation is complete iff there is no possible
rewriting step for Pn+1. We say that the derivation has successfully finished iff
Pn+1 is Ω.

Example 3. One (possible) complete derivation of Example 2 is the deriva-
tion of Figure 3 where the rules applied in each rewriting step are labelled with
their names (with subderivations as subindexes) in the standard CSP semantics:
(Process Call), (Synchronized Parallelism 1), (Synchronized Parallelism 3), (Conditional
Choice 2) and (Prefixing) (abbrev. (PC), (SP1), (SP3), (CC2) and (Pref), respec-
tively). For instance, E1

(SP1 PC)
E2 means that expression E1 is transformed

into E2 with a rewriting step performed with the standard semantics rule (Syn-
chronized Parallelism 1) that in turn performs a subderivation using the standard
semantics rule (Process Call). All terms that trigger the rules of the seman-
tics are labelled with their specification positions (in grey). Observe that this
derivation has not successfully finished.

MAIN(MAIN,0)
(PC)

P(a)(MAIN,1) ‖
{b}

(MAIN,Λ)

(b→ STOP)

(SP1 PC)

((a→ SKIP) ≮ a = c ≯(P,Λ) (b→ SKIP)) ‖
{b}

(b→ STOP)

(SP1 CC2)

(b(P,2.1) →(P,2) SKIP) ‖
{b}

(b(MAIN,2.1) →(MAIN,2) STOP)

(SP3 Pref)

SKIP(P,2.2) ‖
{b}

STOP

(SP1 SKIP)

Ω ‖
{b}

STOP

Figure 3: Derivation associated with the specification of Example 2

A trajectory of a CSP derivation is a sequence formed by the specification
positions of the expressions that trigger the rules of the semantics (in the eval-
uation order) in the derivation. To establish a concrete evaluation order in the

10

derivation we consider that, in a rule
Θ

P
e−→ P ′

, the term evaluated in this step

is P , and the associated specification position is the root of the tree formed by
term P . For instance, if P = a → SKIP || Q(3), whose root is ||, then the
specification position evaluated is the one associated to ||. There is only one
exception: if P is a prefixing of the form aα →β R, whose root is →, then we
consider that α is evaluated first, and then β.

If Θ contains one single rewriting step, then P is evaluated first, and then
the term evaluated in Θ. If Θ contains more than one rewriting step (e.g., in the
standard CSP operational semantics, only two rewriting steps are possible, and
this means that two processes are being synchronized), then the terms evaluated

in Θ are evaluated at the same time. Finally, in P Θ
 P ′

Θ′

 P ′′, P is evaluated
before P ′, and the terms evaluated in Θ are evaluated before the terms evaluated
in Θ′.

Definition 2 (Trajectory of a CSP derivation). Given a CSP derivation
D = P0

Θ0 . . . Pn
Θn Pn+1, n ≥ 0, a trajectory of D for a given input x is

the sequence of sets of specification positions 〈{α}, ..., {..., γ}〉 associated to the
terms evaluated in each rewriting step of the derivation D in the evaluation
order, where α = (P0, 0), and γ is the specification position of the last term
evaluated in process Pn.

For instance, the trajectory of the derivation in Figure 3 is: 〈{(MAIN, 0)},
{(MAIN,Λ)}, {(MAIN, 1)}, {(MAIN,Λ)}, {(P,Λ)}, {(MAIN,Λ)}, {(P, 2.1), (MAIN, 2.1)}, {(P, 2)},
{(MAIN, 2)}, {(MAIN,Λ)}, {(P, 2.2)}〉.

4. Dynamic Slicing in CSP

Traditionally, dynamic slicing has been based on the concept of trajectory
[15]. Given an execution of an imperative program, the trajectory of this ex-
ecution is a list with the sequence of instructions executed (in the execution
order).

Definition 3 (Dynamic slicing criterion [15]). Let T be a trajectory of pro-
gram P on input x. A slicing criterion of program P executed on input x is a
triple C = (x, Iq, V), where I is an instruction at position q on T and V is a
subset of variables in P .

Later, the meaning of Iq was changed by “the instruction I when it is executed
the qth time” [1, 2]. In the following, we will use this second meaning for being
the most extended.

Clearly, this definition is inappropriate for CSP for two fundamental reasons.
First, CSP is not an imperative language, and thus it is not formed with in-
structions. Hence, I does not make sense in CSP. Moreover, the use of variables
is not always necessary (many CSP specifications do not use variables), thus V
is not a good choice to determine what we are interested in.

11

Hence, we need to provide a new definition of slicing criterion suitable for
CSP. Basically, the problem is that I and V were designed to select a point in
an imperative program. In CSP, rather than dividing the code in instructions,
it is divided into processes which in turn are divided into expressions that can
be further decomposed in terms. Therefore, a point in a CSP specification
should refer to an expression or a term. Thus, we use specification positions as
a mechanism to identify expressions.

On the other hand, what determines a CSP computation are events. In fact,
there exist several models to study CSP computations and their expressivity,
and they all rely on events and traces of events [12, 25]. Hence, instead of using
variables (V), in CSP it seems more adequate to use events as the relevant
execution information. Thus, a slicing criterion should specify a particular event
of interest that should be identified as a term in some process definition.

We can provide now a first definition of dynamic slicing criterion for CSP.

Definition 4 (CSP dynamic slicing criterion (version 1)). Let S be a
CSP specification, and T the trajectory of a derivation of S for a given in-
put x. A slicing criterion for T is a pair C = (x, sq), where s is a specification
position of S, and q > 0 is an integer denoting the qth occurrence of s in T .

Note that this definition defines one point in the trajectory. Hence, this
definition is valid for both forwards (collecting those specification positions that
may be affected by that point) and backwards (collecting those specification
positions that may affect that point) slicing. In the following, we will use the
term dynamic slicing to implicitly refer to backwards dynamic slicing.

We could base our definition of dynamic slice in CSP on the standard notion
of dynamic slice (i.e., a subset of the original program formed by all those in-
structions that do affect the slicing criterion in all possible trajectories induced
by x). However, due to the combinatorial explosion of trajectories in CSP (even
if no input is provided, due to parallelism) we can be more precise, and only
consider one derivation when computing slices. Roughly speaking, a dynamic
slice in CSP is formed by the set of specification positions that affect the slicing
criterion in a given derivation. Of course, this is very vague, because we have
no idea of what “affect” means, since the standard notion of data dependence
and control dependence is not applicable to CSP.

Therefore, to properly define dynamic slices, we need to define first what
“affect” means. Intuitively, given a concrete derivation, a term t1 does influence
another term t2, if the later cannot be computed when the former is replaced
by STOP. This means that t1 is needed to compute t2 in that derivation.

For the definition of influence, we introduce the notion of STOP-substitution
and STOP-subderivation. Roughly, a STOP-substitution of a CSP process is the
same process where a subprocess has been replaced by STOP. It is a way of
preventing this subprocess to be executed.

Definition 5 (STOP-substitution). Let P be a CSP process, and let α be an
arbitrary specification position in P . A STOP-substitution of P at α, denoted
with Subs(P, α), is process P where the term at α has been substituted by STOP.

12

Example 4. Consider the following STOP-substitution:

Subs(P(MAIN,1) ‖
{b}

(MAIN,Λ)Q(MAIN,2) ,(MAIN,1)) = STOP(MAIN,1) ‖
{b}

(MAIN,Λ)Q(MAIN,2)

A STOP-subderivation of a given derivation D is a derivation that performs
a subsequence of the rewriting steps in D, in the same order, but where some
terms have been replaced by STOP. This concept is very useful to define CSP
slices, because it allows us to know whether a term is needed in a derivation to
reach a slicing criterion (another term). Clearly, if a term t is replaced by STOP,
and the derivation can still reach the slicing criterion, then we can say that t
does not influence the computation of the slicing criterion in that particular
derivation.

Definition 6 (STOP-subderivation). Given two derivations:
D = P0

Θ0 . . .
Θn Pn+1, n ≥ 0

D′ = P0
Θ0 . . .

Θi−1
 Pi

Θi P ′i+1 . . .
Θj
 P ′j+1, 0 ≤ i < j ≤ n

D′ is a STOP-subderivation of D if and only if:

• P0
Θ0 . . .

Θi−1
 Pi is a subderivation of D,

• P ′i+1 is a STOP-substitution of Pi+1 at some α, and

• the trajectory of Pi
Θi P ′i+1 . . .

Θj
 P ′j+1 is a subsequence of the trajectory

of Pi
Θ0 . . .

Θn Pn+1.

It is important to highlight that the notion of subsequence used in the pre-
vious definition is the standard mathematical notion (i.e., a subsequence is a
sequence that can be derived from another sequence by deleting some elements
without changing the order of the remaining elements). This is important be-
cause this ensures that D and D′ follow the same control path. Concretely, D′
performs the same rewriting steps than D except for those that cannot be done
because the evaluated term has been replaced by STOP.

With a STOP-subderivation we can formally define a notion of influence be-
tween terms in a derivation.

Definition 7 (Influence in a Derivation). Let T be the trajectory of a deriva-
tion D = P0

Θ0 . . .
Θn Pn+1, n ≥ 0. Let α and β specification positions of terms

in Pi and Pj, 0 ≤ i < j ≤ n + 1, respectively. We say that α does influ-
ence β (α ⇒ β), in D if and only if there exists a STOP-subderivation of D:
D′ = P0

Θ0 . . .
Θi−1
 P ′i

Θi . . .
Θj−1
 P ′j, 0 ≤ i < j ≤ n+ 1,

and the following holds:

• P ′i is the STOP-substitution Subs(Pi, α), and

• β does not exist in P ′j, or β in P ′j is STOP.

13

Based on the definition of STOP-subderivation and influence, we provide a
formal definition of dynamic slice for CSP.

Definition 8 (Dynamic Slice). Let S be a CSP specification, let C = (x, sq)
be a slicing criterion for S, and T the trajectory of a derivation of S for a given
input x. A dynamic slice associated with C is formed by the set of specification
positions: Slice = {α ∈ T | α⇒∗ t}, where t is the qth occurrence of s in T .

4.1. Dynamic slicing of CSP based on tracks
In all paradigms, the efficient computation of dynamic slices has been done

using a data structure that represents an execution such as the Dynamic Depen-
dence Graph [1] (used in imperative languages) or the Redex Trails [24] (used in
functional languages). Neither of these data structures are appropriate for CSP.
We claim that tracks are an ideal data structure to compute dynamic slices in
CSP.

Definition 9 (Track). Given a CSP specification S, and a trajectory T of a
derivation D of S for a given input x, the track of T is a directed acyclic graph
G = (N,Ec, Es), where N is a set of nodes uniquely identified with a natural
number and labelled with specification positions (e.g., aα where a is the node
and α is a specification position), and arcs are divided into two groups:

• control-flow arcs (Ec) are a set of one-way arcs (denoted with 7→) repre-
senting the control-flow between two nodes, and

• synchronization arcs (Es) are a set of two-way arcs (denoted with e)
representing the synchronization of two (event) nodes;

and

1. Ec contains a control-flow arc aα 7→ a′β iff there exists a dynamic control
dependence between α ∈ T and β ∈ T , and

2. Es contains a synchronization arc ae a′ for each synchronization occur-
ring in D where a and a′ are the nodes of the synchronized events.

The only nodes in N are the nodes induced by Ec and Es.

For the purpose of this work, how tracks are constructed is not relevant.
The interested reader is referred to [22] where there is a formalization of tracks
(including the formal definition of dynamic control dependence) and their con-
struction. The important property of tracks that is relevant for dynamic slicing
is that there is a one-to-one relationship between a given computation of a
CSP specification and a track. Hence, tracks uniquely represent computations
because they just represent a trajectory with explicit information about syn-
chronizations. The track associated with the trajectory of the derivation of
Figure 3 is shown in Figure 4 (for the time being ignore the different shapes and
colors of nodes).

14

Figure 4: Track associated with the trajectory of the derivation in Figure 3

Lemma 1 (Slicing criterion in a track). Let S be a CSP specification, let
C = (x, sq) be a slicing criterion for S, and let G = (N,Ec, Es) be the track
associated with a derivation of S for the input x. sq uniquely identifies a single
node in N or a set of synchronized nodes in N .

Proof. It follows from the fact that (i) the track contains a node with the
specification position of each element in the trajectory of the derivation, and (ii)
nodes keep the order of the trajectory through control arcs. Hence, according to
the slicing criterion, there must exist at least q nodes with specification position
s, and

• there exists only one node with specification position s in position q, or

• there exist more than one node with specification position s in position q,
but they must be synchronized, thus, they all happen at the same time,
and hence, in the same position (q).

Lemma 1 relates the slicing criterion with a track and, moreover, it states
that a slicing criterion is really a single node of the track, or a set of nodes
connected by synchronization arcs. Thus, the slicing criterion can be specified
by selecting just one node. For instance, given the CSP specification of Example
2 and a slicing criterion C = ({}, (P, 2.1)1), in the track of Figure 4, C is the
node identified with number 4 (the node with the bold line).

Definition 10 (Track Slice). Let S be a CSP specification, let C = (x, sq)
be a slicing criterion for S, and let G = (N,E) be the track associated with a
derivation of S for the input x. The backward track slice associated with C and
G is formed by the set of specification positions of those nodes in N reachable
from a backward traversal of G from the node in N identified by sq.

As an example, in the track of Figure 4, those nodes colored in grey are the
track slice obtained selecting the node with the bold line as the slicing criterion.

We can ensure that a track slice is a dynamic slice for the following reasons:

• There is a one-to-one relation between track and trajectory,

• (aα 7→ a′β) implies α⇒ β, and

• (aα e a′β) implies α⇒ β and β ⇒ α.

15

Therefore, track slices are a means to compute dynamic slices with a cost linear
with respect to the size of the track.

4.2. A generalized dynamic slicing criterion
We can generalize the definition of dynamic slicing criterion using a set of

specification positions instead of a single one.

Definition 11 (CSP dynamic slicing criterion (version 2)). Let S be a
CSP specification, and T the trajectory of a derivation of S for a given in-
put x. A slicing criterion for T is a pair C = (x, {s}q), where {s} is a set of
specification positions of S, and q > 0 is an integer denoting the qth occurrence
in T of the specification positions in {s}.

Using this generalized definition of slicing criterion slices can be obtained in
the same way.

Example 5. Consider again the CSP specification in Example 2. If we are in-
terested in the part of the specification executed before one of the two branches
of the parallelism operator is executed for the first time, we can define the dy-
namic slicing criterion C = (x, {(MAIN, 1), (MAIN, 2)}1). Observe that (due to the
restriction imposed by the synchronization) one branch must be always executed
before the other. Therefore, this criterion would produce the slice shown in the
track of Figure 5 (it is formed by the set of specification positions of those nodes
colored in grey).

Figure 5: Slice of Example 5

Definition 11 is general enough as to identify any set of expressions in the
specification (not only channels, because the set of specification positions can
refer to any literal, e.g., process names, parallel operators, choice operators,
etc.). This is very convenient for debugging, and for program comprehension.
However, when analyzing a CSP specification in practice, analysts are usually
interested in the occurrence of events, regardless of where in the specification
they appear.

Therefore, we provide another definition of slicing criterion more oriented
to the implementation. It is a particular case of Definition 11 where a set of
channels is used instead of a set of specification positions.

16

Definition 12 (CSP dynamic slicing criterion (version 3)). Let S be a
CSP specification, and T the trajectory of a derivation of S for a given in-
put x. A slicing criterion for T is a pair C = (x, {a}q), where {a} ⊆ Σ (a
subset of the specification channels), and q > 0 is an integer denoting the qth
occurrence of channels of {a} in T .

A slicing criterion with Definition 12 for the CSP specification in Example 5
is, e.g., C = (x, {b}1). Obviously, this is equivalent to the slicing criterion
C = (x, {(MAIN, 2.1), (P, 2.1)}1), and the associated slice is the same (the one
shown in Figure 4).

4.3. Correctness and completeness
In program slicing, the general objective is to produce techniques that are

complete. Correctness has been proven undecidable in the general case (it would
imply to compute the minimal slice) [32]. Hence, the slices produced with our
technique are complete but not necessarily correct. Concretely, given a slicing
criterion C = (x, {a}q), the slice produced always contains all the specification
positions needed to produce a trace for the input x such that the trace con-
tains at least q elements of {a}. But it is also possible that the slice contains
specification positions that are not needed to produce that trace.

Theorem 1 (Slice completeness). Let S be a CSP specification, and let C =
(x, {a}q) be a slicing criterion for S. The slice associated with C contains all
specification positions needed to produce a trace t for the input x such that
t ∈ Σ∗, {a} ⊆ Σ, and t ↓ {a} = q.

Proof idea. Let G = (N,E) be the track associated with a derivation of S
for the input x. First, it is trivial to extend Lemma 1 to consider a set of
events instead of a single one. Therefore, by Lemma 1 we know that C refers
to either one single node in the track, or to a set of synchronized nodes. In
both cases, the slice associated with C collects all nodes traversing backwards
control dependence arcs and synchronization arcs from the nodes associated
with the slicing criterion. By Def. 12, t contains at least q elements of {a}, i.e.
t ↓ {a} = q. Moreover, according to Theorem 3 (Track correctness) in [22], G
contains all events in trace t keeping their order with control dependence arcs.
Therefore, the specification positions in the slice can reproduce the same trace
t for the input x until the events in {a} appear q times.

Theorem 2 (Slice incorrectness). Let S be a CSP specification, and let C =
(x, {a}q) be a slicing criterion for S. The slice associated with C can contain
specification positions not needed to produce a trace t for the input x such that
t ∈ Σ∗, {a} ⊆ Σ, and t ↓ {a} = q.

Proof. We proof this theorem with a counterexample showing that a slice can
collect unnecessary specification positions. Consider the following CSP specifi-
cation:

17

MAIN(MAIN,0) = P(MAIN,1) ‖
{a}

(MAIN,Λ) Q(MAIN,2)

P(P,0) = P(P,1) 2(P,Λ) (a(P,2.1)→(P,2)SKIP(P,2.2))

Q(Q,0) = a(Q,1)→(Q,Λ)SKIP(Q,2)

A track associated with this specification and the slice computed for the slicing
criterion C = ({}, {(P, 2.1)}1) are shown bellow.

Clearly, this slice is not correct, because it includes specification position (P, 1),
which is not needed to produce the trace 〈a〉 (the left branch of the choice is a
loop that do not contribute to the trace, but it is included in the slice).

5. Implementation and Empirical Evaluation

We developed a tool called CSP-Tracker that implements a CSP interpreter
with a tracker and a slicer. The interpreter executes a CSP specification and
simultaneously produces the track associated with the performed derivation.
Then, the user can specify a slicing criterion and the slice is automatically
computed.

For the specification of the slicing criterion in the CSP specification, a fresh
channel (called slice) can be placed at any place(s) of the specification. It is
also allowed the use of more than one slicing point (i.e, placing slice at different
locations), which is very convenient in presence of highly concurrent and non-
deterministic processes. It is even possible to specify the slicing criterion as
a synchronized event, thus forcing the slicing criterion to happen in a specific
synchronization.

Example 6. In the following CSP specification, the programmer has specified
a synchronization as the slicing criterion (those events inside the boxes):

MAIN = P ||
{ slice }

Q

P = a → b → slice → SKIP

Q = a → b → c → slice → SKIP

18

Because slice is part of the synchronization set in the parallelism operator,
it can only happen as a synchronization between P and Q. The slice will contain
all parts of the specification needed to produce this synchronization.

For the purpose of slicing, tracks are an internal data structure totally trans-
parent for the user. However, tracks can be also a useful tool to graphically in-
spect the computation before or after specifying a slicing criterion. Hence, the
tracker incorporates mechanisms to produce colored graphs that represent the
tracks in an intuitive way. In CSP-Tracker, both the tracking and slicing pro-
cesses are completely automatic. Once the user has loaded a CSP specification,
he can (automatically) produce a derivation and the tool internally generates
the associated track. Then, the tool asks for the number of occurrence of slice
he is interested in. This information is enough to generate the slice. Both the
track and the trace, and also the slice, can be stored in a file, or displayed in
the screen by generating Graphviz 14 graphs.

CSP-Tracker is publicly available including its source code as a GitHub
repository:

https://github.com/mistupv/csp_tracker/

There is also a web interface useful to test the tool. It can be found at:

http://kaz.dsic.upv.es/csp_tracker

Figure 6 shows a screenshot of the interface of the tool showing the exe-
cutable slice of the specification in Example 1.

5.1. Architecture of CSP-Tracker
The information collected by CSP-Tracker is dynamic, and thus the analyses

performed are very precise. However, it is prepared to also integrate static anal-
yses. CSP-Tracker has been implemented in Erlang15. The election of Erlang
was very conscious because Erlang is one of the most efficient languages for the
use of multiple processes and concurrent programming [33, 7]; and it provides
concurrent capabilities that enhance the execution of CSP specifications with
the use of efficient message passing. In particular, with Erlang we can use truly
concurrent processes to implement interleaving and synchronized parallelism.

Figure 7 summarizes the internal architecture of CSP-Tracker. In the figure,
the dark rectangles represent modules that are described in the following:

• ProB’s CSP parser: The CSP parser is part of ProB [18, 19], which is
one of the most extended IDE for CSP. It translates a CSP specification
into a Prolog representation. This Prolog structure acts as an intermediate
language that is prepared to perform other analyses for CSP. For instance,

14http://www.graphviz.org/
15http://www.erlang.org/

19

Figure 6: Screenshot of the web interface of CSP-Tracker

the tool SOC [20] uses this Prolog representation to perform different static
analyses.

This module is in charge of assigning specification positions. While in the
theoretical framework (for the sake of simplicity) we use natural numbers
to represent specification positions, in the implementation we use lines
and columns to identify literals which is much more convenient and useful
for the programmer. This can be observed in Figure 2. For instance, node
4 with literal CPU has the specification position from (7,10) to (7,13),
which means that CPU appears in the source code between columns 10 and
13 of line 7.

• Compiler Prolog - Erlang: It uses a Prolog module to produces an Er-
lang representation equivalent to the Prolog structure. This step does not
imply any semantic transformation. This is just a change in the syntactic
representation that is almost straightforward because the syntax of Erlang
was initially based on Prolog, so there are many similarities between them.

• scheduler: This module initializes and coordinates the other modules.
First, it loads the Erlang code produced and then it creates all the Erlang
processes needed by the tool. Finally, it starts the execution of the initial
CSP process (by default MAIN) to generate the track. Once the track has

20

Figure 7: CSP-Tracker’s Architecture

been generated, it traverses the track from the slicing criterion to extract
the slice.

• codeserver: This module specifies a process that runs uninterruptedly
during the generation of the track. It behaves as a server that stores all
the information about the code of the CSP processes. It waits for requests
and serves them. A request is in fact a message that contains a process
call. Then, codeserver returns a message containing the right hand side
of the called process with the parameters substituted by the actual values
of the arguments in the call.

• printer: This module also specifies a process that runs uninterruptedly
and acts as a server. In this case, the requests contain information that
should be used to print the trace of the execution or to generate the part
of the track that represents the ongoing execution. To graphically show
tracks, we use Graphviz.

• csp_process: This module creates one Erlang process for each CSP pro-
cess in the specification. All created processes run in parallel and synchro-
nize via message passing when needed. Each of these processes interacts
with codeserver and printer to perform process calls and generate the
graph when required. For instance, the execution of a prefixing a → P
calls printer to print a in the shell and add the corresponding nodes and
arcs to the track. Then, it calls codeserver to get the right hand side of
P, and create a new process that represents this right hand side.

• csp_parsing: This module is basically a library with common function-
ality for the other modules.

21

• csp_slicer: This module is in charge of mapping the slicing criterion to
the track (i.e., identifying the corresponding node), and then traversing
the track backwards from the slicing criterion to collect the slice. How
the programmer specifies the slicing criterion was one of the problems we
faced. Given a CSP code, specifying the slicing criterion (i.e., one specific
term, and a number) can be awkward for the programmer whether it is
specified with specification positions or with line and column. We finally
found a very easy solution that avoids the problem of manually identifying
terms in the specification. The programmer can specify a slicing criterion
by just placing a fresh channel (called slice) in the point of interest.
Then, the tool asks for the desired occurrence of events of this channel.
This is simple, and very powerful and expressive, because it allows the
programmer to specify more than one point of interest, thus potentially
focussing on any number of events of interest.

Example 7. In the following CSP specification, the programmer has spec-
ified two different points for the slicing criterion (those inside the boxes):

channel request, printout, netAccess, slice

MAIN = Server ||
{request,printout}

(Printer1 ||| Printer2)

Printer1 = request?X → printout.X → slice → Printer1

Printer2 = netAccess → request?X → printout.X → slice → Printer2

Server = request!42 -> printout.42 -> Server

This means that we are interested in all parts of the specification needed
to print a document (no matter what printer does it). The slicer would
automatically ask “What occurrence are you interested in?”. If we answer
1, then only one of the printers is needed. If we answer, e.g., 5, then,
depending on the trace, both printers could participate in the slice. This
flexibility of the slicing criterion that can be located at any place, and
that is composed of one or more points of interest has the expressivity of
simultaneous slicing [6]. Because slice can be placed at any point, we can
compute slices for several (not necessarily the same) events, just before the
execution of a specific process or synchronization, etc.

• csp_slicer_output: This module extracts a slice from the nodes col-
lected in the track. The slice is composed of all specification positions
of the nodes collected. This is useful for debugging, but useless, e.g., for
program specialization, because these specification positions alone would
produce a syntactically incorrect specification. Therefore, this module also
replaces the gaps in the specification by STOP. Hence, two outputs are pos-
sible: (i) a non-executable part of the specification useful for debugging

22

(see Figure 1), or also (ii) a well-formed CSP specification able to produce
the same computation until the slicing criterion is reached (see Figure 6).

5.2. Empirical evaluation
We conducted several experiments to empirically evaluate CSP-Tracker.

These experiments provide a precise and quantitative idea of the performance
of the execution, track generation, and slice computation.

For the evaluation, we selected a set of heterogeneous benchmarks from
public CSP repositories. All of them have been previously used to test other
CSP tools and techniques. The source code of the benchmarks can be found at:

https://github.com/mistupv/csp_tracker/tree/master/benchmarks/

In order to evaluate the performance of our tool, we strictly followed the
methodology proposed in [9, 28]. All benchmarks were executed in the same
hardware configuration: Intel R© Xeon R© Processor E5504 (4 cores, 4M Cache,
2.00 GHz) with 16GB RAM. During the execution of the benchmarks all pro-
cesses of the system except CSP-Tracker were stopped to avoid interference of
external programs. Each benchmark was repeatedly executed 1001 times with
a timeout of 2 seconds. To ensure real independence, the first iteration was
always discarded (to avoid influence of dynamically loaded libraries persisting
in physical memory, data persisting in the disk cache, etc.). Thus, we obtained
1000 statistical values. Then, we computed the 0.99 confidence interval across
the computed values from the different 1000 executions.

This process was repeated for each of the 10 benchmarks (10,000 executions
in total), and it produced the set of measures shown in Table 1. We computed
both the arithmetic and the harmonic mean to study the effect of statistical
dispersion, which was sufficiently low as to use the arithmetic mean in our table
results.

The threshold of 2 seconds was selected, both in the experiments and in the
web interface, because it is enough to produce long tracks composed of more
than 1500 nodes. The good scalability of the tool permits to generate long
Erlang computations composed of many parallel process in 2 seconds. In the
web interface the threshold is needed for security reasons, so that our server
cannot be attacked with demands for infinite or very long computations. In the
experiments, the threshold is useful to compare the track produced by different
specifications (with different levels of complexity, number of parallel processes,
number of synchronizations, etc.) executed exactly the same time.

In the tables, we use the notation [a b c] that represents a symmetric 0.99
confidence interval between a and c with center in b. Times are measured in
milliseconds and memory sizes are represented in bytes. Each column in the
tables is described in the following:

• Benchmark is the name of the benchmark.

• To measure time performance we have:

23

Benchmark CSP2Erlang (ms) Runtime (ms) Generate Slice (ms)
ABP.csp [480.03 499.71 519.39] [807.13 1054.07 1301.00] [17.01 23.21 29.41]
ATM.csp [313.60 314.86 316.12] [298.41 357.09 415.77] [14.31 15.75 17.18]
Buses.csp [124.91 125.61 126.30] [1.10 1.11 1.11] [0.85 0.86 0.87]
CPU.csp [188.35 189.29 190.23] [10.16 10.23 10.31] [1.82 1.83 1.84]
Disk.csp [192.10 192.94 193.78] [23.61 23.86 24.12] [5.50 5.56 5.63]
Loop.csp [128.53 129.20 129.87] [2006.23 2006.53 2006.82] [18.47 18.61 18.75]
Oven.csp [197.75 198.70 199.65] [35.13 39.43 43.73] [3.49 3.60 3.71]
ProdCons.csp [137.01 137.84 138.68] [2005.67 2005.94 2006.21] [19.46 19.57 19.68]
ReadWrite.csp [143.11 144.05 144.99] [2004.57 2004.93 2005.28] [21.95 22.66 23.38]
Traffic.csp [161.36 162.02 162.69] [6.02 6.47 6.92] [0.19 0.24 0.29]

Average [206.68 209.22 212.17] [719.80 750.97 782.13] [10.31 11.19 12.07]

(a) Execution time results

Benchmark #Nodes #Control Edges #Sync. Edges
ABP.csp [101.07 135.85 170.63] [79.15 105.12 131.09] [8.84 12.67 16.50]
ATM.csp [353.60 393.97 434.34] [235.65 261.36 287.08] [55.88 63.14 70.39]
Buses.csp [24.00 24.00 24.00] [16.00 16.00 16.00] [3.00 3.00 3.00]
CPU.csp [96.24 96.53 96.82] [66.74 66.92 67.10] [9.75 9.80 9.86]
Disk.csp [147.48 148.41 149.34] [100.49 101.08 101.67] [21.00 21.17 21.34]
Loop.csp [1578.87 1579.72 1580.58] [930.45 930.95 931.45] [277.30 277.45 277.60]
Oven.csp [154.78 161.86 168.95] [107.49 112.05 116.61] [50.62 53.50 56.39]
ProdCons.csp [1590.76 1591.41 1592.05] [930.87 931.24 931.62] [263.66 263.77 263.89]
ReadWrite.csp [1489.52 1490.56 1491.60] [1013.36 1014.03 1014.71] [202.70 203.16 203.63]
Traffic.csp [59.50 62.44 65.37] [41.87 43.70 45.53] [4.42 4.77 5.12]

Average [559.59 568.46 577.37] [352.21 358.25 364.27] [89.72 91.54 92.77]

(b) Track size results

Benchmark Memory Size (Bytes) Total (ms)
ABP.csp [11081.55 14972.37 18863.19] [1311.01 1576.98 1842.95]
ATM.csp [42118.79 47043.26 51967.73] [627.51 687.70 747.88]
Buses.csp [2487.00 2487.00 2487.00] [126.87 127.57 128.28]
CPU.csp [10138.70 10172.23 10205.76] [200.40 201.36 202.31]
Disk.csp [16517.61 16629.78 16741.95] [221.42 222.36 223.32]
Loop.csp [177843.37 177941.84 178040.32] [2153.48 2154.34 2155.20]
Oven.csp [19702.38 20642.42 21582.47] [237.27 241.73 246.20]
ProdCons.csp [167874.83 167944.98 168015.14] [2162.36 2163.35 2164.35]
ReadWrite.csp [161929.20 162170.57 162411.94] [2169.92 2171.64 2173.36]
Traffic.csp [6322.20 6640.38 6958.56] [167.96 168.73 169.51]

Average [61601.56 62664.48 63727.41] [937.82 954.70 1005.34]

(c) Memory size and total time needed to produce a slice

Table 1: Benchmark results showing CSP-Tracker performance

– CSP2Erlang is the time needed to compile the CSP program to an
equivalent Erlang representation,

– Runtime is the time needed to execute the Erlang program (with a
timeout of 2 seconds). The generation of the track is done by process
printer (see Figure 7) in parallel (at the same time that the program
is being executed). The time needed to generate the track is almost
unappreciable (0.5% of the runtime),

– Generate slice is the time needed to slice the track and generate
the final CSP slice, and

– Total time is the sum of the previous three measures. It repre-
sents the total amount of time needed by CSP-Tracker to execute a
CSP benchmark, generate the track associated to the execution, and
produce the final slice.

24

(a) Track size with respect to runtime (b) Track growth rate with respect to run-
time

Figure 8: Trend rate of the track growth.

• To measure memory performance we have:

– #Nodes is the number of nodes that form the track,

– #Control Edges is the number of control edges that form the track,

– #Sync. Edges is the number of synchronization edges that form the
track, and

– Memory Size, the size in the hard disk of the track generated (stored
as a .dot file).

In the tables we can see that computing slices is a very efficient task (less
than 25 ms. in all cases). Of course, the total time depends on how long the
computation is, but compilation from CSP to Erlang and slicing are of one order
of magnitude less than execution. Regarding memory consumption, the biggest
slice that can be computed is a slice that includes the whole track. Therefore,
in column Memory Size we can see that it is as an average lower than 65 KB.

To study the trend rate of the track growth, we performed experiments with
bigger timeouts and progressively measured the size of the track until we had
enough data to approximate the cost function. This is shown in Figure 8(a).
This figure shows a very similar growing rate for the three examples shown. As
in the other experiments, in the three cases the result shown is the average of
repeating the experiment 1000 times.

The function described in the figure is y = x1/2, which corresponds to a
polynomial (sublinear) cost. Therefore, if we measure the relation between the
size of the graph and the runtime (which corresponds to the track generation
speed), we get Figure 8(b). In this case, the function obtained is similar to
y = x−1/2. The interpretation of these figures is that the generation of the track
slows down (less nodes are generated by unit of time) as the system becomes
more complex (i.e., with more processes, more synchronizations, etc.).

The interested reader has available the web interface (http://kaz.dsic.
upv.es/csp_tracker) with several already prepared examples to test the tool
and its performance.

25

5.3. Dynamic slicing vs static slicing for CSP in practice
In this section we illustrate that our CSP dynamic slicer complements al-

ready existing CSP static slicers (see, e.g., [3, 20]). And, in particular, we show
with an example how our dynamic slices are (in general) much more precise
than the static slices produced by previous tools.

Consider the machine readable CSP specification in Figure 9 (ignore for the
time being the underlining and the different colors). This specification defines a
server that accepts different requests from clients: (i) request getvalue consults
the server’s state, (ii) request stop halts the server; and there are four types
of requests that change the server’s state: (iii) inc increases the state, (iv) dec
decreases the state, (v) reset sets the state to zero, and (vi) setvalue sets the
state to a given value. Four clients send in parallel their requests to the server.
Clients INC and DEC are supposed to check the server’s state before they change
it. If the state is zero, they should stop the server. Probably, the reader has
already noticed that INC behaves correctly, but DEC is buggy, because it does
not take into account that other clients are concurrently changing the state of
the server. Due to this bug, it is possible to produce a computation where the
final state of the server is not zero when it is halted. We can easily see this
situation with the track in Figure 10, where the difference between light and
dark nodes can be ignored for the time being.

In this track, the last state of the server is -1 (see node 60), which is a wrong
state. We can select this node as the slicing criterion, and produce a dynamic
slice to see what part of the code contributed to this wrong state. The dynamic
slice in the track of Figure 10 is composed of the grey nodes. These nodes
correspond to the black code in Figure 9. Note that only the code associated
with clients DEC and RESET is part of the slice, because in this concrete execution
the other clients do not participate.

In contrast, if we use a static slicer with the same slicing criterion (i.e., event
last), we get the slice shown in Figure 9 that is formed by the underlined code.
This slice has been computed with the static slicer SOC [20]. Observe that a
static slicer must consider all possible executions, and thus it includes code from
the four clients, producing a much bigger slice (the dynamic slice is a subset of
the static slice). Hence, if we want to analyze a particular execution, dynamic
slices are more adequate and precise than their static counterparts.

6. Conclusions

This work defines the first adaptation of dynamic program slicing for CSP.
The first main conclusion is that the traditional notion of slicing criterion is
inappropriate for CSP, and thus we have proposed a new formulation of dynamic
program slicing in the context of this language. The second main conclusion is
that tracks are an ideal data structure to compute dynamic slices in CSP. Tracks
represent a single execution and they contain all the information (including links
to the source code) needed for slicing. Moreover, tracks allow us to compute
slices in linear time.

26

—————————————————————————————————–
-- Server’s commands
channel inc, dec, reset, setvalue, getvalue, stop

channel req, val, last -- Communication and output

-- Several clients send requests to a server in parallel
MAIN = (SERVER(1) [|{|req, val|}|] CLIENTS(10))

[|{|last|}|]

last?x -> SKIP

-- Four kinds of clients exist. They all are interleaved.
CLIENTS(x) = DEC ||| INC ||| RESET ||| SET(x)

-- The server has a state that can be changed by the clients’ requests.
SERVER(state) = (req.inc -> SERVER(state+1))

[] (req.dec -> SERVER(state-1))
[] (req.reset -> SERVER(0))
[] (req.setvalue -> val?state -> SERVER(state))
[] (req.getvalue -> val!state -> SERVER(state))
[] (req.stop -> last!state -> SKIP)

-- Client INC increments the state of the server
INC = req!getvalue -> val?current ->

if (current == 0)
then req!stop -> SKIP
else req!inc -> INC

-- Client DEC decrements the state of the server
DEC = req!getvalue -> val?current -> DEC_TILL(current)

DEC_TILL(0) = req!stop -> SKIP
DEC_TILL(other) = req!dec -> DEC_TILL(other-1)

-- Client RESET resets the state of the server to zero
RESET = req!reset -> RESET

-- Client SET(x) sets the state of the server to x
SET(x) = req!setvalue -> val!x -> SET(x)

—————————————————————————————————–

Figure 9: CSP specification of a system with a server and four clients running in parallel

27

Figure 10: Track associated with an execution of the code in Figure 9

28

In our theoretical formulation we redefined for CSP the notion of dynamic
slice and dynamic slicing criterion. In particular, we propose the use of a partic-
ular occurrence of an event as the point of interest in the execution. This point
of interest corresponds to exactly one node of the track associated with the com-
putation. Events instead of variables are more appropriate for CSP given the
event-based nature of this language. We also propose and discuss other variants
of the slicing criterion that can be useful in different situations. These variants
are novel and interesting because they imply considering various nodes in the
track, or various terms in the source code.

Finally, we have implemented the first dynamic slicer for CSP based on
tracks. It is publicly available and open-source.

References

[1] Agrawal, H., Horgan, J.R.: Dynamic Program Slicing. In: Fischer, B.N.
(eds.) ACM SIGPLAN’90 Conf. on Programming Language Design and
Implementation (PLDI), pp. 246–256. ACM, New York, NY, USA (1990)

[2] Binkley, D., Gallagher, K.B.: Program Slicing. Advances in Computers 43,
1–50 (1996)

[3] Brückner, I.: Slicing Concurrent Real-Time System Specifications for Ver-
ification. In: Davies, J. and Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591,
pp. 54–74. Springer, Heidelberg (2007)

[4] Brückner, I., Wehrheim, H.: Slicing an Integrated Formal Method for Ver-
ification. In: Lau, K.K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785,
pp. 360–374. Springer, Heidelberg (2005)

[5] Chitil, O.: A Semantics for Tracing. In: Arts, T., Mohnen, M. (eds.) 13th
Int’l Workshop on Implementation of Functional Languages (IFL’01), pp.
249–254. Ericsson Computer Science Laboratory, Sweden (2001)

[6] Danicic, S., Harman, M.: Program Slicing Using Functional Networks (in-
vited paper). In: Ulidowski, I. (ed.) 4th. RIMS Workshop on Concurrency
Theory and Applications, pp. 54–65. Kyoto University, Japan (1996)

[7] Díaz, J., Muñoz-Caro, C., Niño, A.: A Survey of Parallel Programming
Models and Tools in the Multi and Many-Core Era. IEEE Transactions on
Parallel and Distributed Systems 23(8), 1369–1386 (2012)

[8] Ferrante, J., Ottenstein, K.J., Warren, J.D.: The Program Dependence
Graph and Its Use in Optimization. ACM Transactions on Programming
Languages and Systems 9(3), 319–349 (1987)

[9] Georges, A., Buytaert, D., Eeckhout, L.: Statistically Rigorous Java Perfor-
mance Evaluation. In: Gabriel, R.P., Bacon, D.F., Lopes, C.V., Jr., G.L.S.

29

(eds.) 22nd Annual ACM SIGPLAN Conf. on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA’07), pp. 57–76.
ACM, New York, USA (2009)

[10] Gibson-Robinson, T., Armstrong, P. J., Boulgakov, A., Roscoe,A. W.:
FDR3 - A Modern Refinement Checker for CSP. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 187–201. Springer,
Heildeberg (2014)

[11] Heimdahl, M., Whalen, M.: Reduction and Slicing of Hierarchical State
Machines. In: Jazayeri, M., Schauer, H. (eds.) ESEC/FSE 1997. LNCS,
vol. 1301, pp. 450–467. Springer, Heildeberg (1997)

[12] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA (1985)

[13] Kavi, K.M., Sheldon, F.T., Shirazi, B., Hurson, A.R.: Reliability Analysis
of CSP Specifications using Petri Nets and Markov Processes. In: 28th
Annual Hawaii Int’l Conf. on System Sciences (HICSS-28), vol. 2 (Software
Technology), pp. 516–524. IEEE Computer Society, Washington, DC, USA
(1995)

[14] Khan, Y.I., Guelfi, N.: Survey of Petri nets Slicing. Tech. rep., Computer
Science and Communications Research Unit, Faculty of Science, Technology
and Communication, University of Luxembourg, Luxembourg (2013)

[15] Korel, B., Laski, J.W.: Dynamic Program Slicing. Information Processing
Letters 29(3), 155–163 (1988)

[16] Krinke, J.: Context-Sensitive Slicing of Concurrent Programs. In: 11th
ACM SIGSOFT Symposium on Foundations of Software Engineering
(ESEC/FSE’03), pp. 178–187. ACM, New York, NY, USA (2003)

[17] Ladkin, P., Simons, B.: Static Deadlock Analysis for CSP-Type Commu-
nications. In: Fussell, D., Malek, M. (eds.) Responsive Computer Systems:
Steps Toward Fault-Tolerant Real-Time Systems, Chapter 5, Kluwer Aca-
demic Publishers (1995)

[18] Leuschel, M., Butler, M.J.: ProB: an Automated Analysis Toolset for the B
Method. Journal of Software Tools for Technology Transfer 10(2), 185–203
(2008)

[19] Leuschel, M., Falampin, J., Fritz, F., Plagge, D.: Automated Property Ver-
ification for Large Scale B Models with ProB. Formal Aspects of Computing
23(6), 683–709 (2011)

[20] Leuschel, M., Llorens, M., Oliver, J., Silva, J., Tamarit, S.: SOC: a Slicer
for CSP Specifications. In: Puebla, G., Vidal, G. (eds.) 2009 ACM SIG-
PLAN Symposium on Partial Evaluation and Semantics-based Program
Manipulation (PEPM’09), pp. 165–168. ACM, New York, NY, USA (2009)

30

[21] Leuschel, M., Llorens, M., Oliver, J., Silva, J., Tamarit, S.: Static Slicing
of Explicitly Synchronized Languages. Information and Computation 214,
10–46 (2012)

[22] Llorens, M., Oliver, J., Silva, J., Tamarit, S.: A Tracking Semantics for
CSP. In: Bolduc, C., Desharnais, J., Ktari, B. (eds.) MPC 2010. LNCS,
vol. 6120, pp. 248–270. Springer, Heildeberg (2010)

[23] Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-Key Proto-
col Using FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS,
vol. 1055, pp. 147–166. Springer, Heidelberg (1996)

[24] Ochoa, C., Silva, J., Vidal, G.: Dynamic slicing based on redex trails. Pro-
ceedings of the 2004 ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-based Program Manipulation (PEPM’04). pp. 123–134. ACM,
Verona, Italy (2004)

[25] Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA (2005)

[26] Silva, J.: A Vocabulary of Program Slicing-Based Techniques. ACM Com-
puting Surveys 44(3), 12 (2012)

[27] Sloane, A., Holdsworth, J.: Beyond Traditional Program Slicing. In: Int’l
Symp. on Software Testing and Analysis, pp. 180–186. ACM Press, San
Diego, CA (1996)

[28] Souilah, I., Francalanza, A., Sassone, V.: A Formal Model of Provenance
in Distributed Systems. In: Cheney, J. (ed.) First Workshop on the The-
ory and Practice of Provenance (TaPP’09), pp. 1–11. USENIX Association
(2009)

[29] Tallam, S., Tian, C., Gupta, R.: Dynamic Slicing of Multithreaded Pro-
grams for Race Detection. In: 24th IEEE International Conference on Soft-
ware Maintenance (ICSM’08), pp. 97–106. IEEE Computer Society (2008)

[30] Tip, F.: A Survey of Program Slicing Techniques. Journal of Programming
Languages 3(3), 121–189 (1995)

[31] Weeratunge, D., Zhang, X., Sumner, W.N., Jagannathan, S.: Analyzing
Concurrency Bugs Using Dual Slicing. In: Tonella, P., Orso, A. (eds.) 19th
Int’l Symposium on Software Testing and Analysis (ISSTA’10), pp. 253–
264. ACM, New York, USA (2010)

[32] Weiser, M.: Program Slicing. IEEE Transactions on Software Engineering
10(4), 352–357 (1984)

[33] Zhao, X., Jamali, N.: Supporting Deadline Constrained Distributed Com-
putations on Grids. In: Jha, S., gentschen Felde, N., Buyya, R., Fedak,
G. (eds.) 12th IEEE/ACM Int’l Conf. on Grid Computing (GRID’11), pp.
165–172. IEEE Computer Society (2011)

31

Appendix A. The syntax and semantics of CSP

We recall in this appendix the syntax of CSP. Figure A.11 summarizes the
syntax constructs used in CSP specifications. A specification is viewed as a
finite set of process definitions. The left-hand side of each definition is the name
of a process, which is defined in the right-hand side (abbrev. rhs) by means
of an expression that can be a call to another process or a combination of the
following operators:

(Prefixing) It specifies that the compound object CO must happen before pro-
cess P . Compound objects represent events and communications.

(Internal choice) The system chooses non-deterministically to execute one of the
two processes P or Q.

(External choice) It is identical to internal choice but the choice comes from the
external environment (e.g., the user).

(Conditional choice) It is a choice that depends on a condition, i.e., it is equiv-
alent to if Bool then P else Q.

(Sequential composition) It specifies a sequence of two processes. If the first one
(successfully) finishes, the second can start.

(Synchronized parallelism) Both processes are executed in parallel with a set
{EVn} of synchronized events. In absence of synchronizations both pro-
cesses can execute in any order. Whenever a synchronized event a ∈
{EVn} happens in one of the processes it must also happen in the other at
the same time. Whenever the set of synchronized events is not specified, it
is assumed that processes are synchronized in all common events. A par-
ticular case of parallel execution is interleaving where no synchronizations
exist (i.e., {EVn} = ∅). It is often denoted with the operator |||.

(Hiding) Process P is executed with a set of hidden events {EVn}. Hidden
events are not observable from outside the process, and thus, they cannot
synchronize with other processes.

(Renaming) Process P is executed with a set of renamed events specified with
the total mapping <. An event a renamed as b behaves internally as a but
it is observable as b from outside the process.

(Skip) It is a process that successfully finishes. It allows us to continue the next
sequential process if any.

(Stop) Synonymous with deadlock. It is a process that finishes and it does not
allow the next sequential process to continue if any.

The domain Σ of events contains basic symbols such as a that can be com-
pounded to produce communications:

32

(Input) It is used to receive a message from another process. For instance, if
A ⊆ Σ is any set of events and, for each x ∈ A, we have defined a process
P (x), then c?x : A→ P (x) defines the process which accepts any element
a of A and then behaves like the appropriate P (a).

(Output) It is complementary to the input. In this case, c!x is used to send
message x.

We allow events that have been constructed out of any finite number of parts
using the infix dot ‘.’ (which is assumed to be associative), e.g., c.a.

Domains
M,N . . . ∈ N (Process names)
P,Q . . . ∈ P (Processes)
a, b . . . ∈ Σ (Events)
x, y . . . ∈ ΣV (Events with variables)

S ::= {D1, . . . , Dn} (Entire specification)
D ::= N = P (Process definition)

| N(EVn) = P (Parameterized process) EVn = EV1, . . . , EVn

P ::= M (Process call)
| M(EVn) (Parameterized process call)
| CO → P (Prefixing)
| P u Q (Internal choice)
| P 2 Q (External choice)
| P ≮ Bool ≯ Q (Conditional choice)
| P ; Q (Sequential composition)
| P ||

{EVn}
Q (Synchronized parallelism)

| P\{EVn} (Hiding)
| P [[<]] (Renaming) < ⊆ ΣV × ΣV
| SKIP (Skip)
| STOP (Stop)

CO ::= EV | CO?EVI | CO!EV (Compound Object)

EVI ::= EV | v : T (Input event with Variables) T ⊆ Σ,
v is a variable

EV ::= a | v | EV.EV (Event with Variables) v is a variable

Bool ::= true | false | Bool ∨Bool (Boolean expression)
| Bool ∧Bool | ¬Bool
| EV = EV | EV 6= EV

Figure A.11: Syntax of CSP specifications

33

We now recall the standard operational semantics of CSP as defined by
A.W. Roscoe [25]. It is presented in Figure A.12 as a logical inference system.
A state of the semantics is a process to be evaluated called the control. The
inference system starts with an initial state, and the rules of the semantics are
used to infer how this state evolves. When no rules can be applied to the current
state, the computation finishes. The rules of the semantics change the states of
the computation due to the occurrence of events. The set of possible events is
Σ ∪ {τ,X}. Events in Σ = {a, b, . . .} are visible from the external environment,
and can only happen with its co-operation (e.g., actions of the user). The special
event τ cannot be observed from outside the system and it is an internal event
that happens automatically as defined by the semantics. X is a special event
representing the successful termination of a process. We use the special symbol
Ω to denote any process that successfully terminated.

In order to perform computations, we construct an initial state (e.g., MAIN)
and (non-deterministically) apply the rules of Figure A.12. The intuitive mean-
ing of each rule is the following:

((Parameterized) Process Call) In a process call, the call is unfolded and the
right-hand side of process N becomes the new control. In a parameterized
process call, the behavior is the same, but in this case we use function
subs to substitute in rhs(N) all variables xn by the actual values of the
parameters an.

(Prefixing) When event co occurs, process P becomes the new control. The only
way communications are introduced into the operational semantics is via
the prefixing operation co→ P . In general, co may be a compound object,
perhaps involving much computation to work out what it represents. The
prefix co may represent a range of possible communications and bind one
or more identifiers in P . comms(co) is the set of communications described
by co. We deal only with closed terms: processes with no free identifiers.
Using this, it is possible to handle most of the situations that can arise,
making sure that each identifier has been substituted by a concrete value
by the time we need to know it. For a ∈ comms(co), subs(a, co, P) is
the result of substituting the appropriate part of a for each identifier in P
bound by co. This equals P if there are no identifiers bound.

(SKIP) After SKIP, the only possible event is X, which denotes the successful
termination of the (sub)computation with the special symbol Ω. There is
no rule for Ω (neither for STOP), hence, this (sub)computation has finished.

(Internal Choice 1 and 2) The system, with the occurrence of the internal event
τ , (non-deterministically) selects one of the two processes P or Q which
is the new control.

(External Choice 1, 2, 3 and 4) The occurrence of τ develops one of the branches.
The occurrence of an event e 6= τ is used to select one of the two processes
P or Q and the control changes according to the event.

34

(Process Call) (Parameterized Process Call)

N
τ−→ rhs(N) N(an)

τ−→ subs(an, xn, rhs(N))

where N(xn) = rhs(N) ∈ S
with xn ∈ ΣV ∧ an ∈ Σ

(Prefixing) (SKIP)

(co→ P)
a−→ subs(a, co, P)

a ∈ comms(co)
SKIP

X−→ Ω

(Internal Choice 1) (Internal Choice 2)

(P uQ)
τ−→ P (P uQ)

τ−→ Q

(External Choice 1) (External Choice 2)

P
τ−→ P ′

(P 2 Q)
τ−→ (P ′ 2 Q)

Q
τ−→ Q′

(P 2 Q)
τ−→ (P 2 Q′)

(External Choice 3) (External Choice 4)

P
e−→ P ′

(P 2 Q)
e−→ P ′

e ∈ Σ ∪ {X}
Q

e−→ Q′

(P 2 Q)
e−→ Q′

e ∈ Σ ∪ {X}

(Conditional Choice 1) (Conditional Choice 2)

(P ≮ Bool ≯ Q)
τ−→ P

if Bool = true
(P ≮ Bool ≯ Q)

τ−→ Q
if Bool = false

(Sequential Composition 1) (Sequential Composition 2)

P
e−→ P ′

(P ;Q)
e−→ (P ′;Q)

e ∈ Σ ∪ {τ}
P

X−→ Ω

(P ;Q)
τ−→ Q

(Synchronized Parallelism 1) (Synchronized Parallelism 2)

P
e′−→ P ′

(P ||
X

Q)
e−→ (P ′ ||

X

Q)

(e = e′ ∈ Σ\X) ∨
(e = τ ∧ e′ ∈ {τ,X})

Q
e′−→ Q′

(P ||
X

Q)
e−→ (P ||

X

Q′)

(e = e′ ∈ Σ\X) ∨
(e = τ ∧ e′ ∈ {τ,X})

(Synchronized Parallelism 3) (Synchronized Parallelism 4)

P
a−→ P ′ Q

a−→ Q′

(P ||
X

Q)
a−→ (P ′ ||

X

Q′)
a ∈ X

(Ω||
X

Ω)
X−→ Ω

(Hiding 1) (Hiding 2)

P
a−→ P ′

(P\B)
τ−→ (P ′\B)

a ∈ B
P

e−→ P ′

(P\B)
e−→ (P ′\B)

(e ∈ Σ∧e 6∈ B) ∨ (e = τ)

(Hiding 3)

P
X−→ Ω

(P\B)
X−→ Ω

(Renaming 1) (Renaming 2)

P
e′−→ P ′

(P [[<]])
e−→ (P ′[[<]])

(e, e′ ∈ Σ ∧ e′ < e) ∨
(e = e′ = τ)

P
X−→ Ω

(P [[<]])
X−→ Ω

Figure A.12: CSP’s operational semantics

35

(Conditional Choice 1 and 2) The condition Bool is evaluated. If it is true, pro-
cess P is put in the control, if it is false, process Q is.

(Sequential Composition 1) In P ;Q, P can evolve to P ′ with any event except
X. Hence, the control becomes P ′;Q.

(Sequential Composition 2) When P successfully finishes (with event X), Q can
start. Note that X is hidden from outside the whole process becoming τ .

(Synchronized Parallelism 1 and 2) When an event e 6∈ X or events τ or X occur
in a branch, the corresponding process (either P or Q) evolves accordingly.
Note that X is hidden from outside the whole process becoming τ .

(Synchronized Parallelism 3) When a visible event a ∈ X happens, it is required
that both processes synchronize, P and Q are executed at the same time
and the control becomes P ′ ||

X

Q′.

(Synchronized Parallelism 4) When both processes have successfully terminated
the control becomes Ω and the event X is visible from outside.

(Hiding 1 and Hiding 2) When event a ∈ B (B ⊆ Σ) occurs in P , it is hid-
den, and thus changed to τ so that it is not observable from outside P .
Contrarily, when event a 6∈ B occurs in P , it behaves normally.

(Hiding 3) When P finishes (X happens), the control becomes Ω.

(Renaming 1) Whenever an event a happens in P , it is renamed to b (a < b)
so that, externally, only b is visible. Renaming has no effect on events
renamed to themselves (a < a), τ and X.

(Renaming 2) When P finishes (X happens), the control becomes Ω.

36

