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Abstract. Algorithmic debugging is a semi-automatic debugging technique that
is present in practically all mature programming languages. In this paper we claim
that the state of the practice in algorithmic debugging is a step forward compared
with the state of the theory. In particular, we argue that novel techniques for algo-
rithmic debugging cannot be supported by the standard internal data structures,
such as the Execution Tree (ET), used in this technique, and hence a generaliza-
tion of the standard definitions and algorithms is needed. We identify two specific
problems of the standard formulation and implementations of algorithmic debug-
ging, and we propose a reformulation to solve both problems. The reformulation
has been done in a paradigm-independent manner to make it useful and reusable
in different programming languages.

1 Introduction

One of the most important debugging techniques is Algorithmic Debugging (AD) [27].
This technique has experienced a significant advance in the last decade. Concretely, new
techniques have been proposed to improve performance [9, 15], to improve scalability
[11], to improve interaction with the user [6], and to improve GUIs [12, 13]. The matu-
rity of these techniques has eventually led to the integration of algorithmic debuggers
into sophisticated programming environments. Two interesting cases are [12] and [11],
which combine AD with the standard debugging perspective of Eclipse [1]. The main
advantage of AD is its high level of abstraction. It is even possible to debug a program
without looking at the source code.

Example 1. Let us assume the existence of a buggy Java code composed of three meth-
ods: int add(int x, int y) sums its two arguments, boolean isEven(int x) re-
turns true if its only argument is even, or false otherwise; and, int sumNumbers(int[]
array, String eo) takes an array of integers and sums the elements that are even or
odd depending on the value of the second argument. Therefore, with the following
method invocation:

i n t [ ] a r r a y = { 1 , 2 , 3 } ;
i n t sum = sumNumbers ( a r r a y , " odd " ) ;

the result should be 4. Nevertheless, due to a bug in the code, the result is 3.
Thanks to AD, with only this information (without knowing anything about the

source code) we can identify the buggy method. For instance, if we debug this program



with the Hybrid Debugger for Java (HDJ),1 we obtain the following debugging session
(questions are generated by HDJ, and answers are provided by the user):

Starting Debugging Session:

(1) sumNumbers({1,2,3},"odd")=3? No

(2) isEven(2)=true? Yes

(3) isEven(3)=false? Yes

(4) add(0,3)=3? Yes

Bug found in method "sumNumbers" with the call "sumNumbers({1,2,3},"odd")".

Hence, an AD session is just a dialogue where the debugger asks questions and the
user answers them. The Java code associated with this debugging session is depicted in
Figure 1.

( 1 ) i n t add ( i n t x , i n t y ) {
( 2 ) re turn x + y ;
( 3 ) }

( 4 ) boolean i s Ev en ( i n t x ) {
( 5 ) re turn ( x % 2) == 0 ;
( 6 ) }

( 7 ) i n t sumNumbers ( i n t [ ] a r r a y , S t r i n g eo ) {
( 8 ) i n t sum = 0 ;
( 9 ) f o r ( i n t i = 1 ; i < a r r a y . l e n g t h ; i ++) {
( 1 0 ) i f ( eo . e q u a l s ( " even " ) && i sEv en ( a r r a y [ i ] ) )
( 1 1 ) sum = add ( sum , a r r a y [ i ] ) ;
( 1 2 ) i f ( eo . e q u a l s ( " odd " ) && ! i sEv en ( a r r a y [ i ] ) )
( 1 3 ) sum = add ( sum , a r r a y [ i ] ) ;
( 1 4 ) }
( 1 5 ) re turn sum ;
( 1 6 ) }

Fig. 1. Java program to sum the even or odd numbers of an array

What the debugger internally does is to generate a data structure that represents the exe-
cution of the program. This data structure, often called Execution Tree (ET), is depicted
in Figure 2. The ET has a node for each method invocation.2 Each node normally con-
tains a reference to the method that is being executed, the value of its arguments, the
old and new values of the variables that may be changed within the execution, and its
returned value. The debugger just traverses the ET asking the user about the validity of
the nodes (i.e., nodes are marked as correct or wrong) until a buggy node is found. A
node is buggy when it is wrong, and all of its children (if any) are correct.

The main properties of AD are the following:

Theorem 1 (Correctness of AD [23]). Given an ET with a buggy node n, the method
associated with n contains a bug.

Theorem 2 (Completeness of AD [27]). Given an ET with a bug symptom (i.e., the
root is wrong), provided that all the questions generated by the debugger are correctly
answered, then, a bug will eventually be found.

1 http://www.dsic.upv.es/~jsilva/HDJ/
2 In the ET, nodes represent computations. Hence, depending on the underlying paradigm, they

can represent methods, functions, procedures, clauses, etc. Our discussions in this paper can be
applied to both the imperative and the declarative paradigms, but, for the sake of concreteness,
we will focuss the discussion on the imperative paradigm and our examples on Java.



Fig. 2. ET generated for the program in Figure 1

1.1 Contributions of this work

In this work, we propose a new redefinition of AD in such a way that: (i) It is paradigm-
and language-independent, and thus it is reusable by other researchers. (ii) It is a conser-
vative generalization of the traditional formulation of AD, in such a way that many pre-
vious AD techniques are a particular case of this new formulation. (iii) It is formulated
in a way that definitions of the data structures, properties, strategies, and algorithms are
specified separately, so that they can be reused and/or concretized in a particular case.
(iv) It states that the output of an algorithmic debugger should contain dynamic infor-
mation (i.e., it should not include non-executed code). And, (v) it allows the debugger
to ask questions about a code inside a method (and not only about the whole method).

2 Some problems identified in current algorithmic debuggers

We have been actively working in the area of AD for the last 10 years. This paper
somehow summarizes and criticizes our own work to make a step forward. We claim
that almost all current algorithmic debuggers—at least all that we know, including the
most extended, which we compared in [7], and including our own implementations—
have fundamental problems that were somehow inherited from the original formulation
of AD [27].

In particular, we claim that the original formulation of AD, and most of the later
definitions and implementations are obsolete with respect to the last advances on the
practical side of AD. For instance, two important problems of the standard definitions
of AD are the granularity and the static nature of the found errors (AD reports a whole
routine as buggy). We can illustrate these problems observing again the debugging ses-
sion of Example 1: The whole method sumNumbers is pointed out as buggy. This is very
imprecise specially if sumNumbers were a method with a lot of code. However, AD re-
searchers and developers are used to this behavior, and they would argue that this is the
normal output of any algorithmic debugger. However, from an engineering perspective,
this is quite surprising because the analysis performed by the debugger is by definition
dynamic (in fact, the whole program is actually executed). Hence, the debugger should
know that line 11 of Figure 1 is never executed, and thus it should not be reported as
buggy. This leads us to our first proposition: The information reported by an algorith-
mic debugger should be dynamic instead of static. That is, the output of the algorithmic
debugger should be the part of the method that has been actually executed to produce
the bug, instead of the whole method.

We think that this problem comes from the first implementations of AD and it has
been inherited in latter theoretical and practical developments. In fact, if we execute



this program with the debuggers: Buddha [26], DDT [4], Freja [21], Hat-Delta (and its
predecessor Hat-Detect) [8], B.i.O. [3], Mercury’s Algorithmic Debugger [19], Münster
Curry Debugger [18], Nude [20], DDJ [13], and HDJ [11], they all would output the
whole sumNumbers as buggy together with a counterexample that produces the bug (the
found buggy node). Unfortunately, none of these debuggers make further use of the
counterexample. An option would be that the debuggers use dynamic program slicing
(to be precise, dynamic chopping) [30] to minimize the code shown as buggy.

Traditionally, AD reports a whole method as buggy. To reduce the granularity of
the reported errors, new techniques have appeared (see, e.g., [16, 5]) that allow for de-
bugging inside a method. Unfortunately, the standard definition of ET is not prepared
for that. In fact, some of the recent transformations defined for AD do not fit in the
traditional definition of the data structures used in this discipline. For instance, the Tree
Balancing technique presented in [15], or the zooming technique presented in [5] can-
not be represented with standard AD data structures such as the Evaluation Dependence
Tree [24].

This lack of a common theoretical framework with standard data structures that
are powerful enough as to represent recent developments makes researchers to reinvent
the wheel once and again. In particular, we have observed that researchers (including
ourselves) have produced local and partial formalizations to define their debuggers for
a particular language and/or implementation (see, e.g., [6, 16, 15]). These theoretical
developments are hardly reusable in other languages, and thus, they only serve as a
formal description of their system, or as a means to prove results.

3 Related Work

Algorithmic debugging has been applied to all mature languages. All current implemen-
tations use a sort of ET to represent computations. Even in those lazy implementations
of AD where the execution of the front-end and the back-end is interleaved (see, e.g.,
[22]), the construction of the ET is needed before the program can be debugged. Along
the years each paradigm has adopted a well-defined and studied data structure to repre-
sent the ET.

3.1 A Little Bit of History

Algorithmic debugging started in the seminal work by Shapiro with the notion of con-
tradiction backtracking using “crucial experiments” within Popper’s philosophical dic-
tum of conjectures and refutations [28]. Hence, the first notion of ET appeared in the
context of the logic paradigm. Shapiro used refutation trees as ETs. Later implementa-
tions of AD in the logic paradigm such as NU-Prolog [31, 2] also used refutation trees.

In the context of the functional paradigm, the data structure used was proposed
by Henrik Nilsson and Jan Sparud: The Evaluation Dependence Tree (EDT). They first
proposed this data structure as a record of the execution [24], and then, as an appropriate
ET for AD [25]. The EDT is particularly useful to represent lazy computations by hiding
non-computed terms. In fact, the own EDT can be computed lazily as in [22]. The most



successful implementations of AD for the functional paradigm are based on the EDT.
Notable cases are the Freja [21], Hat-Delta [8], and Buddha [26] debuggers.

In multi-paradigm languages such as Mercury, TOY, or Curry, the ET is also repre-
sented with either a proof tree or an EDT. Examples of debuggers for these languages
are the Mercury Debugger [19], the Münster Curry Debugger [18], DDT [4], and B.i.O
[3].

In the imperative paradigm, a redefinition of the EDT was used. It has been often
called Execution Tree [10, 13], but, conceptually, it is equivalent to the EDT, and it can
be seen as a dynamic version of the Call Graph where every single call generates a
different node in the graph, and thus no cycles are possible (i.e., it is a tree).

3.2 Modern Implementations

All the debuggers mentioned in the previous sections are somehow “standard” in the
sense that they are based on the standard definition of the ET (either the refutation
trees or the EDT). However, in the last 5 years, there has been a new trend in AD tools:
Researchers have implemented new techniques that go beyond the standard definition of
the ET. Contrarily to the previously described tools, modern algorithmic debuggers are
not standalone tools. They are plugins that can be integrated as part of an IDE. Examples
of these debuggers are JHyde [12] and HDJ [11], being both of them part of Eclipse.
Precisely because they are integrated into a development environment, they have direct
access to dynamic information—they can even manipulate the JVM at runtime—that
can be used to enhance the debugging sessions. In particular, the following techniques
go beyond the standard ET: (i) Tree compression hides nodes of the ET (it breaks the
standard parent-child relation in the ET). (ii) Tree balancing introduces new artificial
nodes in the ET (it breaks the standard definition of ET node). (iii) Loop expansion and
(iv) ET zooming decompose ET nodes (they break the standard definition of ET node).
We are not aware of any definition of ET able to represent the previous four techniques.

4 Paradigm-Independent Redefinition of Algorithmic Debugging

Some of our last developments for AD cannot be formalized with the standard AD
formulation. In a few cases, we just skipped the formalization of our technique and
provided an implementation. In other cases we wanted to prove some properties, and
thus we formalized (for one specific language, e.g., Java) the part of the system affected
by those properties. Other developments were done for other paradigms, e.g., the func-
tional paradigm, and we also formalized a different part of the system with different
data structures. We have observed the same behavior in other researchers, and clearly,
this is due to the lack of a standard solution.

We want to provide a definition of AD that is paradigm-independent (i.e., it can be
used by either imperative- or declarative- languages). From the best of our knowledge,
there does not exist such a formal definition of AD. Hence, in this section we formulate
AD in an abstract way. The main generalization of our new formulation is to consider
that ET nodes are not necessarily routines as in previous definitions (see, e.g., [24]).
Contrarily, we allow ET nodes to contain any piece of code. This permits AD to report



any code as buggy, and not only routines, thus potentially reducing the granularity of
the reported errors to single expressions.

In the following, we will only call Execution Tree to our new definition, and we
will call Routine Tree (RT) to the traditional definition (that we also formalize in the
next sections). Because our new definition is a conservative generalization, the RT is a
particular case of the ET as it can be observed in the UML model of Figure 3.

Fig. 3. UML model representing the structure of the execution tree

Observe that an execution node can be specialized depending on the piece of code
it represents. In particular, we specialize three kinds of execution nodes named Routine
Node, Projection Node, and Collapse Node. They correspond to definitions that already
exist in the literature (see [10, 15]), but other kinds of nodes could appear in the future.

4.1 The Execution Tree

In this section we introduce some notation and formalize the notion of Execution Tree
used in the rest of the paper. We want to keep the discussion and definitions in this sec-
tion paradigm-independent. Hence, we consider programs as state transition systems.

Definition 1 (Program). A program P = {W, I,R,C} consists of:

– W: A set of states.
– I: A set of starting states, such that I ⊆W.
– R: A transition relation, such that R⊆W ×W.
– C: A source code, composed of a set of statements.

Definition 2 (Computation). A computation is a maximal sequence of states s1,s2, . . .
such that:

– s1 is a starting state, i.e., s1 ∈ I.
– (si,si+1) ∈ R for all i≥ 1 (and i≤ n−1, if the sequence is of the finite length n).

A finite segment si,si+1, . . . ,s j where 1≤ i < j ≤ n is called a subcomputation.

In the source code of a program, we consider statements3 as the basic execution unit.
Therefore, in the following, the source code of a program P is a set of statements

3 Note the careful use of the word “statement" to refer to either imperative instructions, declar-
ative expressions, etc.



st1,st2, . . . ,stn that produces the computation s0,s1, . . . ,sm for a given starting state
s0. We cannot provide a specific model of computation if we want to be paradigm-
independent, thus we do not define the relation between statements and the transition
relation R. This is possible (and convenient) thanks to the abstract nature of algorithmic
debugging. In particular, algorithmic debugging only needs an initial state, a code, and a
final state to identify bugs. No matter how the code makes the transition from the initial
state to the final state. The user will decide whether this transition is correct or not.

Because the considered execution unit is the statement, it is possible to identify a
bug in a single statement. This contrasts with traditional algorithmic debugging where
routines are the execution units, and thus a whole routine is always reported as buggy.

We also use the notion of code fragment of a program P, which refers to any subset
of statements in the source code C of P that produces a subcomputation si, . . . ,s j with
0 ≤ i < j ≤ m. Code fragments often represent functions or loops in a program, but
they can also represent blocks, single statements, or even function calls together with
the whole called function.

Intuitively, not all the statements in a given code c that produces a computation C are
actually executed. Some parts of the code are not needed to produce the computation
(e.g., because they are dead code, because some condition does not hold, etc.). The
projection of c modulo C is a subset of c where the unneeded code in c to produce C
has been removed. Projections are often computed with dynamic slicing [30].

Definition 3 (Code Projection). Given a code fragment c and a computation Cc =
s0, . . . ,sn produced by c from a given initial state s0, a projection of c modulo Cc is a
code fragment that contains the minimum subset of c needed to produce the computation
Cc.

We assume that each state in W is composed of pairs variable-value. The initial and
final states, si and s j, describe the effects of a given code fragment c. All three together
form a code behavior.

Definition 4 (Code Behavior). Given a code fragment c and a computation Cc =
s0, . . . ,sn produced by c from a given initial state s0, the code behavior of Cc is a triple
(s0,PCc(c),sn), where PCc(c) is the projection of c modulo Cc.

Code behavior corresponds to the questions asked by the debugger. These questions
are along the lines of Should the code c with the initial state s0 produce the final state
sn?, or Code c produced sn from s0, is that correct? Many previous definitions of AD
(see, e.g., [22, 5]) define the code behavior as the triple (s0,c,sn), which corresponds
to the execution of a routine c, and usually the debugger only needs to show the call
to c instead of showing both the call to c and the own routine c. Definition 4, however,
introduces two important novelties:

– It allows c to be any code fragment, and not only a routine.
– It substitutes c by a projection of c modulo Cc, thus the code associated with a code

behavior only contains the code actually needed to produce that behavior.

This dynamic notion is much more precise than the usual static notion that considers
(the complete code of) a routine.



Definition 5 (Intended Model). Given a program P = {W, I,R,C}, an intended model
M for P is a set of tuples (si,P (c),s j) where si,s j ∈W and P (c) is a projection of a
code fragment c⊆C.

Each tuple of the form (si,P (c),s j) specifies that the execution of code P (c) from state
si leads to state s j. Intuitively, an intended model of a program contains the set of code
behaviors that are correct with respect to what the programmer had in mind when he
programmed these codes. It is used as a reference point against which one can compare
computations to determine whether they are correct or wrong.
We are now in a position to define the nodes of an execution tree.

Definition 6 (Execution Node). Let P = {W, I,R,C} be a program. Let Cc be a com-
putation produced by a code fragment c ⊆C. Let M be an intended model for P. The
execution node induced by Cc is a pair (B , S ) where:

1. B is the code behavior of Cc, and
2. S is the state of the node, which can be either:

– undefined, or

– the correctness of B with respect to M :
{

correct if B ∈M
wrong if B 6∈M

Observe that an execution node contains (inside B) the source code PCc(c) responsible
of the computation it represents. Hence, if this node is eventually declared as buggy,
its associated code is uniquely identified. This definition of execution node is general
enough as to represent previous nodes that are used in different techniques. For in-
stance, if the code of the node is a function, it can be represented as a routine node.
Similarly, projection nodes and collapse nodes, introduced in [15], are special nodes
that agglutinate the code of several other nodes. Clearly, they are also particular cases
of our general definition.

In order to properly define execution trees, we need to define first a relation between
execution nodes that specifies the parent-child relation.

Definition 7 (Execution Nodes Dependency). Let N be a set of execution nodes. Given
an execution node nc ∈ N induced by a computation Cc, and an execution node nc′ ∈ N
induced by a subcomputation Cc′ of Cc, we say that nc directly depends on nc′ (expressed
as nc

N→ nc′ ) if and only if there does not exist an execution node nc′′ ∈ N induced by
subcomputation Cc′′ of Cc, such that Cc′ is a subcomputation of Cc′′ .

Observe that this dependency relation is intransitive, which is needed to define the
parent-child relation in a tree. Hence, provided that we have three execution nodes,
n1,n2,n3, if n1

N→ n2
N→ n3 then n1 6

N→ n3.

Example 2. Given the following program:
CODE:
x ++; y ++; x=x+y ;

and the initial state (x=1,y=2) we can generate the following execution nodes (among
others):



ET NODES:
( i n i t i a l s t a t e ) code ( end s t a t e )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
node 1 : ( x =1 , y =2) x ++; y ++; x=x+y ; ( x =5 , y =3)
node 2 : ( x =1 , y =2) x ++; y ++; ( x =2 , y =3)
node 3 : ( x =2 , y =3) x=x+y ; ( x =5 , y =3)
node 4 : ( x =2 , y =2) y ++; ( x =2 , y =3)

with N={node 1, node 2, node 3, node 4}
we have node 1 N→ node 2 N→ node 4 and node 1 N→ node 3

Finally, we define an execution tree. It essentially represents the execution of a code in
a structured way where each node represents a sub-execution of its parent. Formally,

Definition 8 (Execution Tree). Let Cc be a computation produced by a code fragment
c. An Execution Tree (ET) of Cc is a tree T = (N,E) where:

– ∀n ∈ N, n is the execution node induced by a subcomputation of Cc,
– The root of the ET is the execution node induced by Cc,
– ∀(n1,n2) ∈ E . n1

N→ n2.

This definition is a generalization of the usual call tree (CT), which in turn comes from
the refutation trees initially defined for AD in [28, 27]. One important difference be-
tween them is that, given a computation Cc produced by a code fragment c, the CT
associated with Cc is unique because it is only formed of routine nodes. In contrast,
there exist different valid ETs associated with Cc due to the flexibility introduced by the
execution nodes (i.e., with routine nodes only one set N is possible, while with execu-
tion nodes different sets N are possible). This flexibility of having several possible valid
ETs to represent one computation is interesting because it leaves room for transforming
the ET and still being an ET. Contrarily, the CT cannot be transformed because it would
not be a CT anymore.

Once the ET is built, the debugger traverses the ET asking the oracle about the
correctness of the information stored in each node. Using the answers, the debugger
identifies a buggy node that is associated with a buggy code of the program. We can
now formally define the notion of buggy node.

Definition 9 (Buggy Node). Let T = (N,E) be an execution tree. A buggy node of T
is an execution node n = (B,S) ∈ N where:

(i) S = wrong, and
(ii) ∀n′ = (B ′,S ′) ∈ N, (n,n′) ∈ E . S ′ = correct.

Moreover, we say that a buggy node n is traceable if and only if:
(iii) ∀n′ = (B ′,S ′) ∈ N, (n′,n) ∈ E∗ . S ′ = wrong.

We use E∗ to refer to the symmetric and transitive closure of E. This is the usual def-
inition of buggy node (see, e.g., [23]): a wrong node with all its children correct. We
also introduce the notion of traceable. Roughly, traceable buggy nodes are those buggy
nodes that may be directly responsible of the wrong behavior of the program (their ef-
fects are visible in the root of the tree). This property makes them debuggable by all
AD strategies that are variants of Top-Down (see [29]).



Lemma 1 (Buggy Code). Let T be an ET with a buggy node ((s,d,s′),S) whose chil-
dren are ((s1,d1,s′1),S1), ((s2,d2,s′2),S2) . . . ((sn,dn,s′n),Sn). Then, d \

⋃
1≤i≤n

di contains

a bug.

Note that we use (s,d,s′) meaning (s,PCc(c),s
′) for some c, and \ is the set difference

operator.

Proof (Buggy Code). Trivial adaptation from the proof by Lloyd [17] for Prolog.

Lemma 1 illustrates what (buggy) code should be shown to the user. When a buggy
node is detected, the (buggy) code shown to the user is the code of the buggy node
minus the code of its children.

4.2 Routine Tree

In this section we formalize the notion of RT used in most AD literature as a particular
case of the ET. We call routine tree to this specialization of the ET to make explicit its
multi-paradigm nature, because routines can refer to functions, procedures, methods,
predicates, etc. We first define a routine node, which is a specialization of an execution
node.

Definition 10 (Routine Node). A routine node is an execution node ((s0,PCc(c),sn),S)
where code fragment c only contains:

– a routine call r, together with
– all the code of the routines directly or indirectly called from r.

Therefore, in a routine node, s0 and sn are, respectively, the states just before and after
the execution of the called routine. Almost all implementations reduce c to the routine
call, and they skip the code of the own routine.

Definition 11 (Routine Tree). A routine tree is an execution tree where all nodes are
routine nodes.

4.3 Search Strategies for AD

Once the ET is built, AD uses a search strategy to select one node. During many years,
the main goal of most AD researchers has been the definition of better strategies to re-
duce the search space after every answer, and to reduce the complexity of the questions.
A survey of search strategies for AD can be found in [29]. In our formalization, a search
strategy is just a function that analyzes the ET and returns an execution node (either the
next node to ask, or a buggy node).

Definition 12 (Strategy). A search strategy is a function whose input is an execution
tree T = (N,E) and whose output is an execution node n = (B,S) ∈ N such that:

1. S = undefined, or
2. n is a buggy node.



4.4 AD Transformations

Some of the last research developments in AD have focussed on the definition of trans-
formations of the ET. The goal of these transformations is to improve the structure of
the ET before the debugging session starts, so that search strategies become more effi-
cient. Some of these transformations cannot be applied to a routine tree. For this reason,
we include this section to classify the kinds of transformations that have been defined
so far, and establish a hierarchy so that future transformations can be also classified in.

There exist three essential elements in the front-end of an algorithmic debugger. The
modification of any of them can lead to a different final output of the front-end (i.e., a
different ET). Therefore, we classify the transformations in three different levels:

– Transformations of the source code: Transformations of the source code such as
inlining are used to reduce the size of the ET by hiding routines. Contrarily, trans-
formations such as loops to recursion [14] are used to augment the size of the ET
to reduce the granularity of the reported buggy code (a loop instead of a routine).
In general, users should not be aware of the internal transformations applied by the
debugger, thus the code fragment shown to the user should be the original code.

– Transformations of the execution: Transforming the way in which the source code
is executed can change the generated ET. One example is changing eager evalua-
tion by lazy evaluation. Another example is passing arguments by value instead of
passing them by reference. We are not aware of any implementation that includes
this kind of transformations.

– Transformations of the ET: Transforming the ET can significantly reduce the num-
ber of questions generated. In general, the ET is transformed with the aim of mak-
ing search strategies to behave as a dichotomic search. Hence, they try to produce
balanced ETs [15], or also deep trees that can be cut in the middle. Other transfor-
mations such as Tree compression [9] try to avoid the repetition of questions about
the same routine, or try to improve the understandability of questions. This is the
case of the Node simplification transformation, which reduces all terms to normal
form [6].

In Figure 4 we classify four AD transformations already available in the state of the
art. Two of them, tree balancing and loop expansion produce ETs that are not routine
trees.

4.5 An AD Scheme

Finally, we describe Algorithm 1, a general schema of an algorithmic debugger that
includes all phases, from the generation of the ET to the reported bug. This algorithm
gives an idea of how and when, the ET, the transformations, the oracle, and the search
strategies participate in the whole debugging process.

The main function performs the two phases of AD (Lines 1-2) and then returns a
buggy code of the program (Line 3). In the first phase (getExecutionTree function) the
ET is created performing all possible transformations in the source code (Line 1), in
the execution (Line 3) and in the ET (Line 5). Once the ET is created, the second phase



Fig. 4. AD transformations hierarchy

(debugTree function) starts. During this phase, the debugger traverses the ET selecting
nodes with a search strategy (Line 2). The selectNode function is an implementation of
one of the search strategies in the literature. There has been a lot of research for more
than a decade concerning which should be the node to ask. A survey can be found in
[29]. No matter what strategy is used, selectNode returns a node to ask (the state of
the node is undefined), or a buggy node (the state of the node is wrong (Line 3)). Once
a node has been selected, the debugger asks the oracle about its correctness (Line 5).
The oracle provides the intended interpretation to the algorithm. With the answer of the
oracle, the debugger updates the state of the nodes of the ET (Lines 5-7). Note that the
answer of the oracle can affect the state of several nodes. This effectively changes the
information of the ET, and thus, at this moment, a new ET transformation could be used
to optimize the ET (Line 8). Then, the process is repeated selecting more nodes. When
the strategy finds a buggy node (Lines 3-4) or it cannot select more nodes (Line 1) the
second phase finishes and the debugger returns (see getCode function) the buggy code
associated with the found buggy node (see Lemma 1), or it returns a message indicating
that there does not exist a bug (it is indicated with ⊥ in Line 3), respectively. The last
case happens, e.g., when all nodes are reported as correct.

5 Conclusion

In this paper we report about some of the problems identified in the current state of
the art of AD. One of the problems identified is that much of the recent work in the
area does not fit into the standard notions and definitions of AD. In particular, we claim
that practically all current definitions of the ET are obsolete with respect to the new
proposed techniques.

To solve this situation we propose a generalization of AD able to represent all ex-
istent AD transformations. We make this abstraction considering theoretical develop-
ments done for a particular language or technique that are generalized, but also consid-
ering novel implementations of AD that include techniques that have not been formal-
ized.



Algorithm 1 Main algorithm of an Algorithmic Debugger

Input: A program P and its input i.
Output: A buggy code c in P, or ⊥ if no bug is detected in P.
Initializations: A = /0 // Set of answers provided by the oracle

begin
1) T = getExecutionTree(P, i)
2) n = debugTree(T )
3) return getCode(n,T )

end

function debugTree(T = (N,E))
begin
1) while (∃(B ′,S ′) ∈ N,S ′ = undef ∨wrong)
2) (B,S) = selectNode(T ) // Strategy
3) if (S = wrong) then
4) return (B,S)
5) answer = askOracle(B)
6) A = A ∪ (B,answer)
7) updateStates(A ,N)
8) T = executionTreeTransformations(T )
9) return ⊥

end

function getExecutionTree(P, i)
begin
1) P′ = sourceCodeTransformations(P)
2) EP′ = executeProgram(P′, i)
3) E ′P′ = executionTransformations(EP′)
4) T = generateExecutionTree(E ′P′)
5) T ′ = executionTreeTransformations(T )
6) return T ′

end

function getCode(n,T = (N,E))
begin
1) if (n = ((s0,d,sn),S)) then
2) return d \

⋃
(n,((s′0,di,s′n),S ′))∈E

di

3) return ⊥
end

The main objectives of this work are two: First, putting together different ideas
that have appeared in many works of AD. Putting these ideas together provides a wide
perspective that allows us to make a step forward in the abstraction and generalization
of the theoretical side of AD. In addition, it allows for classifications and taxonomies
to help understanding the state of the art. Second, our new formulation of AD tries
to save time. Many researchers have defined once and again similar concepts used in
different languages and tools. We provide a paradigm-independent definition that is
general enough to represent all current techniques, and it can be easily instantiated to
any particular language.

Our plan for the immediate future work is to extend the model to also consider
concurrency. Our ETs can represent concurrency, but Algorithm 1 completely ignores
it. We want to study how concurrency should be represented, asked about, answered,
and presented to the user when a bug is found. We will initially implement a debugger
for concurrent programs. Then, we will try to generalize the model.
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