
Debugging with Incomplete and Dynamically
Generated Execution Trees?

David Insa and Josep Silva

Universidad Politécnica de Valencia, Camino de Vera s/n, E-46022 Valencia, Spain.
{dinsa,jsilva}@dsic.upv.es

Abstract. Declarative debugging is a powerful debugging technique
that has been adapted to practically all programming languages. How-
ever, the technique suffers from important scalability problems in both
time and memory. With realistic programs the huge size of the execution
tree handled makes the debugging session impractical and too slow to be
productive. In this work, we present a new architecture for declarative
debuggers in which we adapt the technique to work with incomplete ex-
ecution trees. This allows us to avoid the problem of loading the whole
execution tree in main memory and solve the memory scalability prob-
lems. We also provide the technique with the ability to debug execution
trees that are only partially generated. This allows the programmer to
start the debugging session even before the execution tree is computed.
This solves the time scalability problems. We have implemented the tech-
nique and show its practicality with several experiments conducted with
real applications.

1 Introduction

Declarative debugging is a semi-automatic debugging technique that has been
extended to practically all paradigms, and many techniques [9, 3, 14, 6, 5] have
been defined to improve the original proposal [12]. The technique produces a
dialogue between the debugger and the programmer to find the bugs. Essentially,
it relies on the programmer having an intended interpretation of the program. In
other words, some computations of the program are correct and others are wrong
with respect to the programmer’s intended semantics. Therefore, declarative
debuggers compare the results of sub-computations with what the programmer
intended. By asking the programmer questions or using a formal specification
the system can identify precisely the location of a program’s bug.

Traditionally, declarative debugging consists of two sequential phases: The
construction of an Execution Tree (ET) which is an intermediate data structure
that represents the execution of the program including all subcomputations; and

? This work has been partially supported by the Spanish Ministerio de Ciencia e In-
novación under grant TIN2008-06622-C03-02, by the Generalitat Valenciana under
grant ACOMP/2009/017, and by the Universidad Politécnica de Valencia (Program
PAID-06-08).



the exploration of the ET with a given strategy to find the bug. A survey can
be found in [15].

This technique is very powerful thanks to the ET, because it guarantees that
the bug will be found whenever the programmer answers the questions of the
debugger. Unfortunately, with realistic programs, the ET can be huge (indeed
gigabytes) and this is the main drawback of this debugging technique, because
scalability has not been solved yet: If the ET is stored in main memory, the
debugger is out of memory with big ETs that do not fit. If, on the other hand, it
is stored in a database, debugging becomes a slow task because some questions
need to explore a big part of the ET; and also because storing the ET in the
database is a time-consuming task.

Modern declarative debuggers allow the programmer to freely explore the
ET with graphical user interfaces (GUI) that represent computations [4]. The
scalability problem also translates to these features, because showing the whole
ET (or even the part of the ET that participates in a subcomputation) is often
not possible due to memory overflow reasons.

In some languages, the scalability problem is inherent to the current technol-
ogy that supports the language and cannot be avoided with more accurate imple-
mentations. For instance, in Java, current declarative debuggers (e.g., JavaDD
[7] and DDJ [4]) are based on the Java Platform Debugger Architecture (JPDA)
[10] to generate the ET. This architecture uses the Java Virtual Machine Tools
Interface, a native interface which helps to inspect the state and to control the
execution of applications running in the Java Virtual Machine (JVM). Unfortu-
nately, the time scalability problem described before also translates to this ar-
chitecture, and hence, any debugger implemented with the JPDA will suffer the
scalability problems. For instance, we conducted some experiments to measure
the time needed by JPDA to produce the ET1 of a collection of medium/large
benchmarks. Results are shown in column ET time of Table 1. Note that, in
order to generate the ET, the JVM with JPDA needs some minutes, thus the
debugging session would not be able to generate the first question until this time.

In this work we propose a new implementation model that solves the three
scalability problems, namely, memory, time and graphical visualization of the
ET. Clearly, the ET is the bottleneck of the technique, and sometimes (e.g.,
in Java) it is not possible to generate it fast. Therefore, our model is based on
the following question: Is it possible to start the debugging session before having
computed the whole ET? The answer is yes.

We propose a framework in which the debugger uses the (incomplete) ET
while it is being dynamically generated. Roughly speaking, two processes run in
parallel. The first process generates the ET and stores it into both a database (the
whole ET) and main memory (a part of the ET). The other process starts the
debugging session by only using the part of the ET already generated. Moreover,
we use a three-cache memories system to speedup the generation of questions

1 These times corresponds to the execution of the program, the production of the ET
and its storage in a database.



and to guarantee that the debugger is never out of memory (including the GUI
components).

2 A New Architecture for Declarative Debuggers

This section presents a new architecture in which declarative debugging is not
done in two sequential phases, but in two concurrent phases; that is, while the
ET is being generated, the debugger is able to produce questions. This new ar-
chitecture solves the scalability problems of declarative debugging. In particular,
we use a database to store the whole ET, and only a part of it is loaded to main
memory.

Moreover, in order to make the algorithms that traverse the ET independent
of the database caching problems, we use a three-tier architecture where all the
components have access to a virtual execution tree (VET). The VET is a data
structure which is identical to the ET except that some nodes are missing (not
generated yet) or incomplete (they only store a part of the method invocation)
Hence, standard strategies can traverse the VET because the structure of the
ET is kept.

The VET is produced while running the program. For each method invoca-
tion, a new node is added to it with the method parameters and the context
before the call. The result and the context after the call are only added to the
node when the method invocation finishes.

Let us explain the components of the architecture with the diagram in Fig-
ure 1. Observe that each tier contains a cache that can be seen as a view of the
VET. Each cache is used for a different task:

Persistence cache. It is used to store the nodes of the VET in the database.
Therefore, when the whole VET is in the database, the persistence cache is
not used anymore. Basically, it specifies the maximum number of completed
nodes that can be stored in the VET. This bound is called persistence bound
and it ensures that main memory is never overflowed.

Logic cache. It defines a subset of the VET. This subset contains a limited
number of nodes (in the following, logic bound), and these nodes are those
with the highest probability of being asked, therefore, they should be re-
trieved from the database. This allows us to load in a single database trans-
action those nodes that are going to be probably asked and thus reducing
the number of accesses to the database.

Presentation cache. It contains the part of the VET that is shown to the
user in the GUI. The number of nodes in this cache should be limited to
ensure that the GUI is not out of memory or it is too slow. The presentation
cache defines a subtree inside the logic cache. Therefore, all the nodes in
the presentation cache are also nodes of the logic cache. Here, the subtree is
defined by selecting one root node and a depth (in the following, presentation
bound).



Fig. 1. Architecture of a scalable declarative debugger

The whole VET does not usually fit in main memory. Therefore, a mechanism
to remove nodes from it and store them in a database is needed. When the
number of complete nodes in the VET is close to the persistence bound, some of
them are moved to the database, and only their identifiers remain in the VET.
This allows the debugger to keep the whole ET structure in main memory and
use identifiers to retrieve nodes from the database when needed.

Example 1. Consider the following trees:

The tree at the left is the VET of a debugging session where gray nodes are
those already completed (their associated method invocation already finished);
black nodes are completed nodes that are only stored in the database (only their
identifiers are stored in the VET), and white nodes are nodes that have not been
completed yet (they represent a method invocation that has not finished yet).
It could be possible that some of the white nodes had a children not generated



yet. Note that this VET is associated with an instant of the execution; and new
nodes could be generated later. The tree in the middle is the part of the VET
referenced by the logic cache, in this case it is a tree, being n the root node and
a depth of four, but in general it could contain unconnected nodes. Similarly,
the tree at the right is the part of the VET referenced by the presentation cache,
with m the root node and a depth of three. Note that the presentation cache is
a subset of the logic cache.

The behavior of the debugger is controlled by four threads that run in parallel,
one for the presentation tier (thread 3), two for the logic tier (threads 1 and
4) and one for the persistence tier (thread 2). Threads 1 and 2 control the
generation of the VET and its storage in the database. They collaborate via
synchronizations and message passing. Threads 3 and 4 communicate with the
user and generate the questions. They also collaborate and are independent of
threads 1 and 2. A description of the threads and their behavior specified with
pseudo-code follows:

Thread 1 (Contruction of the VET) This thread is in charge of construct-
ing the VET. It is the only one that communicates with the JPDA and
JVM. Therefore, we could easily construct a declarative debugger for an-
other language (e.g., C++) by only replacing this thread. Basically, this
thread executes the program and for every method invocation performed, it
constructs a new node stored in the VET. When the number of complete
nodes (given by function completeNodes) is close to the persistence bound,
this thread sends to thread 2 the wake up signal. Then, thread 2 moves some
nodes to the database. If the persistence bound is reached, thread 1 sleeps
until enough nodes have been removed from the VET and it can continue
generating new nodes.

Algorithm 1 Contruction of the VET (Thread 1)
Input: A source program P
Output: A VET V
Initialization: V = ∅

repeat
(1) Run P with JPDA and catch event e

case e of
new method invocation I:

(2) create a new node N with I
(3) add N to V

method invocation I ended:
(4) complete node N associated with I
(5) If completeNodes(V)== persistenceBound/2
(6) then send to thread 2 the wake up signal
(7) If completeNodes(V)== persistenceBound
(8) then sleep
until P finishes or the bug is found



Thread 2 (Controlling the size of the VET) This thread ensures that the
VET always fits in main memory. It controls what nodes of the VET should
be stored in main memory, and what nodes should be stored in the database.
When the number of completed nodes in the VET is close to the persistence
bound thread 1 wakes up thread 2 that removes some2 nodes from the VET
and copies them to the database. It uses the logic cache to decide what nodes
to store in the database. Concretely, it tries to store in the database as many
nodes as possible that are not in the logic cache, but always less than the
persistence bound divided by two. When it finishes, it sends to thread 1 the
wake up signal and sleeps.

Algorithm 2 Controlling the size of the VET (Thread 2)
Input: A VET V
Output: An ET stored in a database

repeat
1) Sleep until wake up signal is received

repeat
2) Look into the persistence cache for the next completed node N of the VET
3) if N is not found
4) then wake up thread 1
5) break
6) else store N in the database
7) if N is the root node then exit

Thread 3 (Interface communication) This thread is the only one that com-
municates with the user. It controls the information shown in the GUI with
the presentation cache. According to the user’s answers, the strategy se-
lected, and the presentation bound, this thread selects the root node of
the presentation cache. This task is done question after question according
to the programmer answers, ensuring that the question asked (using func-
tion AskQuestion), its parent, and as many descendants as the presentation
bound allows, are shown in the GUI.

Algorithm 3 Interface communication (Thread 3)
Input: Answers of the user
Output: A buggy node

repeat
(1) ask thread 4 to produce a question
(2) update presentation cache and GUI visualization
(3) answer = AskQuestion(question)
(4) send answer to thread 4
until a buggy node is found

2 In our implementation, it removes half of the nodes. Our experiments reveal that
this is a good choice because it keeps threads 1 and 2 continuously running in a
producer-consumer manner.



Thread 4 (Selecting questions) This thread chooses the next question ac-
cording to a given strategy using function SelectNextQuestion that imple-
ments standard strategies. With the node selected, the logic cache is updated
and all the nodes in the logic cache are loaded from the database. This is
done with function UpdateLogicCache that uses the node selected as the
root, and the logic bound to compute the logic cache. All the nodes that
belong to the new logic cache and that do not belong to the previous logic
cache are loaded from the database using function FromDatabaseToET.

Algorithm 4 Selecting questions (Thread 4)
Input: A strategy S and a VET V
Output: A buggy node

repeat
(1) question = SelectNextQuestion(V,S)
(2) missingNodes = UpdateLogicCache()
(3) If (question 6∈ V) then V = FromDatabaseToET(V,missingNodes)
(4) send question to thread 3
(5) get answer from thread 3
until a buggy node is found

2.1 Redefining the Strategies for Declarative Debugging

In Algorithm 4, a strategy is used to generate the sequence of questions by
selecting nodes in the VET. Nevertheless, all declarative debugging strategies
in the literature have been defined for ETs and not for VETs where incomplete
nodes can exist. All of them assume that the information of all ET nodes is
available. Clearly, this is not true in our context and thus, the strategies would
fail. For instance, the first node asked by the strategy top-down and its variants
is always the root node of the ET. However, this node is the last node completed
by Algorithm 3. Hence, these strategies could not even start until the whole ET
is completed, and this is exactly the problem that we want to avoid.

Therefore, in this section we propose a redefinition of the strategies for declar-
ative debugging so that they can work with VETs.

A first solution could be to define a transformation from a VET with in-
complete nodes to a VET where all nodes are completed. This can be done by
inserting a new root node with the equation 1 = 0. Then, the children of this
node would be all the completed nodes whose parent is incomplete. In this way,
(i) all nodes of the produced ET would be completed and could be asked; (ii)
the parent-child relation is kept in all the subtrees of the ET; and (iii) it is
guaranteed that at least one bug (the root node) exists. If the debugging session
finishes with the root node as buggy, it means that the node with the “real” bug
(if any) has not been completed yet.

Example 2. Consider the following VETs:



In the VET at the left, gray nodes are completed, and white nodes are in-
complete. This VET can be transformed into the VET at the right where all
nodes are completed. The new artificial root is the black node which ensures
that at least one buggy node exists.

From an implementation point of view, this transformation is inefficient and
costly because the VET is being generated continuously by thread 1, and hence,
this transformation should be done repeatedly question after question. In con-
trast, a more efficient solution is to redefine the strategies so that they ignore
incomplete nodes. For instance, top-down [1] only asks for the descendants of a
node that are completed and that do not have a completed ancestor. Similarly,
Binks top-down [2] would ask first for the completed descendant that in turn
contains more completed descendants. D&Q [12] would ask for the node that
divides the VET in two subtrees with the same number of completed nodes, and
so on. We refer the interested reader to the source code of our implementation
that is publicly available and where all strategies have been reimplemented for
VETs.

Even though the architecture presented has been discussed in the context
of Java, it can work for other languages with very few changes. Observe that
the part of an algorithmic debugger that is language-dependent is the front-end,
and our technique relies on the back-end. Once the VET is generated, the back-
end can handle the VET mostly independent of the language. In particular, the
strategies can traverse the VET being unaware of the meaning of the questions.

3 Implementation

We have implemented the technique presented in this paper and integrated it
into DDJ 2.4. The implementation has been tested with a collection of real
applications (e.g., an interpreter, a parser, a debugger, etc).

Table 1 summarizes the results of the experiments performed. These experi-
ments have been done in an Intel Core2 Quad 2.67 GHz with 2GB RAM.

The first column contains the names of the benchmarks. For each benchmark,
the second and third columns give an idea of the size of the execution. Fourth
and fifth columns are time measures. Finally, sixth and seventh columns show
memory bounds. Concretely, column variables number shows the number of
variables participating (possibly repeated) in the execution considered. Column
ET size shows the size in Mb of the ET when it is completed, this measure



Benchmark var. num. ET size ET time node time cache lim. ET depth

argparser 8.812 2 Mb 22 s. 407 ms. 7/7 7
cglib 216.931 200 Mb 230 s. 719 ms. 11/14 18
kxml2 194.879 85 Mb 1318 s. 1844 ms. 6/6 9
javassist 650.314 459 Mb 556 s. 844 ms. 7/7 16
jtstcase 1.859.043 893 Mb 1913 s. 1531 ms. 17/26 57
HTMLcleaner 3.575.513 2909 Mb 4828 s. 609 ms. 4/4 17

Table 1. Benchmark results

has been taken from the size of the ET in the database (of course, it includes
compaction). Column ET time is the time needed to finish the ET. Column
node time is the time needed to complete the first node of the ET. Column
cache limit shows the presentation bound and the depth of the logic cache of
these benchmarks. After these bounds, the computer was out of memory. Finally,
column ET depth shows the depth of the ET after it was constructed.

Observe that a standard declarative debugger is hardly scalable to these real
programs. With the standard technique, even if the ET fits in main memory
or we use a database, the programmer must wait for a long time until the ET
is completed and the first question can be asked. In the worst case, this time
is more than one hour. Contrarily, with the new technique, the debugger can
start to ask questions before the ET is completed. Note that the time needed to
complete the first node is always less than two seconds. Therefore, the debugging
session can start almost instantaneously.

The last two columns of the table give an idea of how big is the ET shown
in the GUI before it is out of memory. In general, five levels of depth is enough
to see the question asked and the part of the computation closely related to
this question. In the experiments only HTMLcleaner was out of memory when
showing five levels of the ET in the GUI.

All the information related to the experiments, the source code of the bench-
marks, the bugs, the source code of the tool and other material can be found at
http://www.dsic.upv.es/˜jsilva/DDJ

4 Conclusions

Declarative debugging is a powerful debugging technique that has been adapted
to practically all programming languages. The main problem of the technique is
its low level of scalability both in time and memory. With realistic programs the
huge size of the internal data structures handled makes the debugging session
impractical and too slow to be productive.

In this work, we propose the use of VETs as a suitable solution to these
problems. This data structure has two important advantages: It is prepared to
be partially stored in main memory, and completely stored in secondary memory.
This ensures that it will always fit in main memory and thus solves the memory
scalability problem. In addition, it can be used during a debugging session before



it is completed. For this, we have implemented a version of standard declarative
debugging strategies able to work with VETs. This solves the time scalability
problem as demonstrated by our experiments.

In our implementation, the programmer can control how much memory is
used by the GUI components, and by the strategies thanks to the use of three
cache memories. The most important result is that experiments confirm that,
even with large programs and long running computations, a debugging session
can start to ask questions after only few seconds.

References

1. E. Av-Ron. Top-Down Diagnosis of Prolog Programs. PhD thesis, Weizmanm
Institute, 1984.

2. D. Binks. Declarative Debugging in Gödel. PhD thesis, University of Bristol, 1995.
3. R. Caballero. A Declarative Debugger of Incorrect Answers for Constraint

Functional-Logic Programs. In Proc. of the 2005 ACM SIGPLAN Workshop on
Curry and Functional Logic Programming (WCFLP’05), pages 8–13, New York,
USA, 2005. ACM Press.

4. R. Caballero. Algorithmic Debugging of Java Programs. In Proc. of the 2006
Workshop on Functional Logic Programming (WFLP’06), pages 63–76. Electronic
Notes in Theoretical Computer Science, 2006.

5. R. Caballero, N. Mart́ı-Oliet, A. Riesco, and A. Verdejo. A declarative debugger
for maude functional modules. Electronic Notes Theoretical Computer Science,
238(3):63–81, 2009.

6. T. Davie and O. Chitil. Hat-delta: One Right Does Make a Wrong. In Seventh
Symposium on Trends in Functional Programming, TFP 06, April 2006.

7. H. Girgis and B. Jayaraman. JavaDD: a Declarative Debugger for Java. Technical
Report 2006-07, University at Buffalo, March 2006.

8. G. Kokai, J. Nilson, and C. Niss. GIDTS: A Graphical Programming Environment
for Prolog. In Workshop on Program Analysis For Software Tools and Engineering
(PASTE’99), pages 95–104. ACM Press, 1999.

9. I. MacLarty. Practical Declarative Debugging of Mercury Programs. PhD thesis,
Department of Computer Science and Software Engineering, The University of
Melbourne, 2005.

10. Sun Microsystems. Java Platform Debugger Architecture - JPDA. Available from
URL: http://java.sun.com/javase/technologies/core/toolsapis/jpda/.

11. H. Nilsson and P. Fritzson. Algorithmic Debugging for Lazy Functional Languages.
Journal of Functional Programming, 4(3):337–370, 1994.

12. E.Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1982.
13. J. Silva. An Empirical Evaluation of Algorithmic Debugging Strate-

gies. Technical Report DSIC-II/10/09, UPV, 2009. Available from URL:
http://www.dsic.upv.es/~jsilva/research.htm#techs.

14. J. Silva. Algorithmic debugging strategies. In Proc. of International Symposium on
Logic-based Program Synthesis and Transformation (LOPSTR 2006), pages 134–
140, 2006.

15. J. Silva. A Comparative Study of Algorithmic Debugging Strategies. In Proc. of the
International Symposium on Logic-based Program Synthesis and Transformation
(LOPSTR’06), pages 143–159. Springer LNCS 4407, 2007.


