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Abstract—This work presents DDJ, an algorithmic debugger
for Java. The main advantage of DDJ with respect to previous
algorithmic debuggers is its scalability. DDJ has a new archi-
tecture based on the use of cache memories that allows it to
scale both in time and memory. In addition, it includes new
techniques that allow the debugger to start the debugging session
even before the execution tree has been produced. We present the
new architecture, and describe the main features of this debugger
together with a usage scenario.

I. INTRODUCTION

Debugging is one of the most important tasks in the software
development process. It is necessary in all paradigms and
programming languages both during the development and
during the maintenance of software systems. In Shapiro’s
words [16]:

“It is evident that a computer can neither construct
nor debug a program without being told (...) what
problem the program is supposed to solve (...) No
matter what language we use to convey this informa-
tion, we are bound to make mistakes. Not because
we are sloppy and undisciplined, as advocates of
some program development methodologies may say,
but because of a much more fundamental reason:
we cannot know, at any finite point in time, all the
consequences of our current assumptions.”

Unfortunately, the efforts of the scientific community in
producing usable and scalable debuggers has been historically
low. One important example is the lack of an algorithmic
debugger in Java. The debugging of Java programs has tra-
ditionally been done with the use of breakpoints that allow
us to execute the program step by step, and inspect compu-
tations (manually) at a given point. However, the adaptation
of semi-automatic debugging techniques such as algorithmic
debugging has not been successfully done, and neither Sun
Java Studio Creator, Borland JBuilder, NetBeans, JCreator, nor
Eclipse implements an algorithmic debugger.

To the best of our knowledge there has been only one
attempt (the algorithmic debugger JDD [10]) of implementing
an algorithmic debugger for Java. Other debuggers exist that
incorporate declarative aspects such as the Eclipse plugin
JavaDD [8] or the Oracle JDeveloper’s declarative debugger
[7] however, they are not able to automatically produce ques-
tions and to control a search to automatically find the bug.
This means that they lack of current strategies for algorithmic

debugging implemented in standard algorithmic debuggers of
declarative languages such as Haskell (Hat-Delta [6]) or Toy
(DDT [4]).

The main drawback of JDD is that it suffers from important
scalability problems: the internal data structure needed for
algorithmic debugging—the so called Execution Tree (ET)—
is huge (indeed gigabytes) and it does not usually fit in main
memory. Even with the use of a database the construction of
the ET is costly (e.g., minutes). This is the main cause of
the lack of algorithmic debuggers for imperative and object-
oriented languages such as Java.

For instance, we conducted some experiments to measure
the time needed by JDD to start a debugging session! with a
collection of medium/large benchmarks. Results are shown in
column JDD of Table I. Note that, in order to generate the ET,
JDD needs some minutes, thus the debugging session cannot
start before this time.

[ Benchmark | JbD |  DDJ |
argparser 22 s. 407 ms.
cglib 230 s. 719 ms.
kxml2 1318 s. 1844 ms.
javassist 556 s. 844 ms.
jtstcase 1913 s. 1531 ms.
HTMLcleaner | 4828 s. 609 ms.

TABLE I

BENCHMARK RESULTS

In this work we present the Declarative Debugger for Java
(DDJ), a new implementation based on the old JDD but
with a completely new architecture that incorporates many
new features that make the debugging process scalable. In
particular, column DDJ of Table I shows the time needed to
start a debugging session with DDJ?.

II. ToOL DESCRIPTION

This section describes the main features of DDJ, and it
explains why its new architecture allows the debugger to scale
up in time and memory.

IThese times correspond to the execution of the program, the production
of the ET and its storage in a database.

2These times correspond to the execution of the program up to the
generation of the first ET node and its storage in a database.



A. Architecture

The architecture of DDJ is new not only for Java, but for all
paradigms. DDJ is the first algorithmic debugger that allows
us to debug a program at the same time that the ET is being
generated, and it is the first implementation that automatically
balances the ETs to reduce the number of questions asked.

The architecture of DDJ is summarized in Figure 1. It
uses the Java Platform Debugger Architecture (JPDA) [19]
to generate the ET. This architecture uses the Java Virtual
Machine Tools Interface, a native interface which helps to
inspect the state and to control the execution of applications
running in the Java Virtual Machine (JVM). Therefore, with
JPDA the debugger can execute the source code and inspect
the state of the memory at any time. In order to solve the
memory scalability problem, DDJ uses a database to store the
ET. Therefore, it can work with ETs of any size. Moreover,
to avoid that the graphical memory is exhausted, only a part
of the ET is shown in the GUI (e.g., the part associated
to the current question); the user can configure the amount
of ET nodes shown in the GUL In order to solve the time
scalability problem, DDJ implements an algorithm that allows
strategies to work with uncompleted ET nodes. This means
that the debugger can start the debugging session when a
subcomputation has been already executed (i.e., when the ET
has at least one node completed), but the program is still
running, and thus, the ET is incomplete.
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Fig. 1. Architecture of DDJ

The architecture is composed of three tiers that modularize
the processes and limit the memory used in the graphical
memory (presentation tier), in main memory (logic tier) and
in secondary memory (persistence tier).

All the components of the architecture are described bellow:

GUI: The GUI is independent of the other components. It
can be adapted to interact with other oracles apart from the
user.

Database: The database stores the complete ET and it
is independent of the architecture. The connection is done
via JDBC, thus any database could be used. The current
distribution uses MySQL by default.

JPDA / JVM: JPDA is used to control the execution of
the source code in the JVM in order to produce the ET.
The architecture only communicates with this component via
thread 1; therefore, the debugger could be easily adapted for
another language (e.g., C++) by only changing thread 1.

Virtual ET: A copy of the ET in the database is always
in main memory. However, this copy called “virtual ET” only
contains the structure of the ET, being the nodes empty. When
it is required, the information of a cluster of nodes is loaded
from the ET to the virtual ET. This allows us to control how
much memory is used by the virtual ET.

Presentation Cache: It contains the subset of the ET shown
in the GUL

Logic Cache: It contains the subset of the ET stored in the
virtual ET.

Persistence Cache: It contains a subset of nodes computed
by JPDA that will be stored in the database with a single
transaction. This clustering mechanism allows us to reduce
the number of accesses to the database.

Thread 1: It constructs the virtual ET.

Thread 2: It stores the ET in the database.

Thread 3: It interacts with the user.

Thread 4: It controls what nodes of the ET are stored (also)
in the virtual ET. It implements all the algorithmic debugging
strategies.

B. Functionality

An enumeration of the main features and functionalities of
DDJ follows:

1) Algorithmic debugging strategies. The strategy used
strongly influences the performance of algorithmic de-
bugging [18]. DDJ is the algorithmic debugger that
currently implements more strategies, and moreover, it
allows the user to change the strategy during a debug-
ging session. Currently, 10 strategies are implemented:
Top down [1], Single stepping [16], Heaviest first [2],
More rules first [17], both Shapiro [16] and Hirunkitti’s
[9] Divide & query, Divide by rules & query [17] and
the three Hat Delta heuristics [6].

2) GUI. Many algorithmic debuggers (e.g., Hat or Buddha)
lack of a GUI because they are based on a semi-
automatic search. However, the user can provide useful
information to the debugger if she is allowed to freely
(manually) explore the ET. This allows her, for instance,
to select a subtree of the ET (e.g., the suspicious one
or the one associated to the last changes, etc.) instead
of selecting always the whole ET. It also allows her
to change the state of some nodes and thus avoid the
exploration of correct parts of the ET.

Clearly, having a graphical (and interactively explorable)
ET can speed up the debugging session. However, this
comes with a cost: the graphical components are heavy,



3)

4)

5)

[ Steps [ Output

| Comments |

1.- Load a program The ET is shown in the GUI Select the .class file and dependencies (if any),

and provide the arguments (if any)

2.- Select a strategy | The GUI shows a question

It is also possible to freely explore the ET
and debug the program manually

3.- Answer questions The ET is pruned in the GUI Possible answers:
and a new question is shown correct, wrong, I don’t know, trusted
(...) (...) Step 3 is repeated until the bug is found
4.- Locate the bug Bug highlighted in the source code
TABLE II

USAGE SCENARIO

and the whole ET does not usually fit in the graphical
memory. To solve this situation, DDJ provides a clus-
tering mechanism (based on the use of the presentation
cache) that permits to load the part of the ET that (i) is
required by the user, or (ii) is required by the strategy
being used. This mechanism automatically controls that
the current node is shown in the GUI with a number
of directly related nodes (ancestors, successors, siblings,
etc.); ensuring that the amount of graphical memory used
is limited.

Portability. The architecture of DDJ is similar to the
architecture of a compiler. There is a front-end that
depends on the source language, and a back-end that
is independent of the source language and only depends
on the intermediate representation that in this case is the
ET. This means that the GUI, the database, the strategies,
and all the components of the back-end are mostly
independent of the language that is being debugged.
Therefore, if we change the front-end, e.g., to work with
C++, the debugger could debug C++ programs by only
changing the implementation of thread 1.

Uncompleted ETs. Another feature that makes DDJ
different from the other debuggers is that DDJ is able to
work with uncompleted ETs. This feature does not only
speed up the debugging session but it also allows us to
make algorithmic debugging scalable. Traditional algo-
rithmic debugging is based on two sequential phases:
producing an ET and exploring the ET. In DDJ both
phases can be overlapped so that the user is able (if
desired) to start the debugging session long before the
ET is completed, saving the user a waste of time (see
Table I), since the generation of the ET is the bottle
neck in algorithmic debugging. This feature has required
the reimplementation and adaptation of the debugging
strategies to work with uncompleted ETs [12].
Balancing ETs. DDIJ is the first implementation of a
novel technique [11] that allows to reduce the number of
questions asked to the user during the debugging session.
This technique is able to automatically balance ETs by a
transformation that collapses some nodes and introduces
new nodes. The result is an ET that is often bigger than
the original, but it is more efficient when it is explored
by the strategies.

III. USAGE SCENARIO

This section describes a typical usage scenario with DDJ.
We describe the scenario in which the user decides to use the
guided search for the bug. In this case, the debugger uses a
strategy to search for the error, and the debugging session is
semi-automatic, because the user only has to answer questions.

A summary of the steps described in the usage scenario is
shown in Table II.

Step 1: The first step in a debugging session is to load
the buggy program. This can be done with the
window shown in Figure 2 where we see that the
file vector.class is selected. This file communicates
with other files that implements sorting algorithms
such as quicksort. In addition to the .class, it is
possible to select the dependencies that the program
will use, and the arguments used for the execution
of the program. In this example the arguments are
10 and 20.

Select java file...

Classes: | = dass w |

Select a program: Browse...

Remove

[sort

Programs: |WiEEsE

: | Select all
c:\documents and settings\administrador \escritorio\pruebasls EEe g

Deselect all

Sesions:
Select & classpath: F

Select a JAR file:

Classpaths:

Arguments:

10 20|

[ Load ] [ Close J

Fig. 2. Assistant to load a Java program

With this information, DDJ executes the program
provided and gradually produces the associated ET.
A portion of the ET associated to the program loaded
is shown in the main pan of Figure 3. Even if the
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public static void quickSort(int[] vector, int first, int last)
inti =first;
intj =last;
int pivot = vector[{first +last) / 2);
do

whie (vectorl] < pivo)
i+4;

Fig. 3. Question produced by DDJ

ET is incomplete, the debugging session can start. In
this case the debugger will only ask for those nodes
that have been already completed, and, therefore, the
user is able to determine whether the computation of
the node is correct or not.

Step 2: Once a program has been loaded, the debugging

session can start either manual or guided by the de-
bugger. During a debugging session, at any moment,
the user can change to manually or guided debugging
several times. In manual debugging, the user can
explore the ET and select wrong computations or
discard computations that are correct. It is also pos-
sible to mark computations as trusted (e.g., because
the code is reused, it is already tested, etc.). When
a node is marked as trusted, the debugger automati-
cally searches for all computations associated to the
trusted code, and they are automatically discarded
(i.e., marked as correct).

In guided debugging, the user only needs to choose
the strategy to use (e.g., top-down) and start the
debugging session with a single click.

Step 3: When the debugging session is guided, it is a

dialogue between the debugger and the user. The
debugger selects a node according to the strategy

selected and ask to the user whether the computation
of this node is correct. To answer the question, the
user can inspect (it is interactively shown in the GUI)
all the variables of the program that are in the scope
of this computation. These variables are shown with
their values before and after the execution so that the
user can inspect the effects of the computation.

If the result of the computation is what the user
expected, then the answer is correct and the node and
its descendants are automatically marked as correct
and thus discarded in the search for the bug. In the
case that the user is sure that the method appearing
in the question of the debugger is well implemented,
she can answer trusted. As described before, this
produces that all the nodes associated to this method
are also marked as correct.

On the other hand, if the result is not the ex-
pected, then the answer is wrong. This means that
the execution of this node is wrong, and thus, the
error has been generated by itself or by any of its
descendant nodes. Finally, if the user does not know
what is the expected result of the node, then she can
answer I don’t know, and the debugger will continue
the search not taking into account this node and
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Fig. 4. Buggy source code highlighted by DDJ

producing a new question.

For instance, in Figure 3 we see DDJ with the ET of
vector.class loaded. We see in the main pan the part
of the ET associated with a quicksort computation.
Some nodes are dark and others are light because
the user already answered some of them stating their
correctness. At this screenshot, DDJ is asking the
question:

quickSort (int[] vector, int 5, int 9) --> void
where the values of the argument ‘vector’ are shown
in the pan at the right. Here, those variables that
changed during the call are in red and their initial
and final values are shown. For instance, array[9]
had initially value 7 and it was changed to 18.

The intended meaning of this call to quicksort is
to order the values in the positions located between
position 5 and 9 (both included). In the pan we see
that the initial values were [11, 15, 10, 18, 7], and
the final values are [7, 10, 15, 11, 18]. Therefore, the
user should mark this computation as wrong.

After every answer of the user, the debugger uses
the information provided to prune the ET and select
a new question for the user. This process is repeated
until the bug is found.

At any moment, it is possible to save the debugging
session recording the answers of the user.

Step 4: After the dialogue with the user, the debugger
identifies one node of the ET as buggy. This node
is responsible of the wrong behavior of the program,
and thus the source code associated to it contains
the bug. When the bug is found, DDJ shows a
message indicating the method that produced the
wrong behavior and allowing the user to see the
part of the source code that contains the bug (see
Figure 5).

An error has been found at method
Sart.quickSort{int[], int, int)

View code Close

Fig. 5. Bug found

Figure 4 shows the source code pan (at the bottom)
where the user can see the source code associated
with any node of the ET. In this screenshot, the part
of the code associated to the buggy node is high-
lighted. Observe that during the debugging session,



the user does not need to control the execution of the
program or use breakpoints and she does not even
need to see the source code.

IV. ToOL INFORMATION

DDJ has been completely implemented in Java. It contains
about 20400 LOC and it uses SWT for the graphical visualiza-
tion, which is standard and hence, it can be used in different
operative systems. Thanks to JDBC, DDJ can interact with
different databases. The current distribution includes both a
MySQL and Access databases. The last release of the debugger
is distributed in English, Spanish and French.

All described functionalities in this paper are completely
implemented in the last stable release. This version is open
and publicly available at:

http://www.dsic.upv.es/ “jsilva/DDJ

In this website, the interested reader can find installation steps,
examples, demonstration videos and other useful material.

V. CONCLUSION

Algorithmic debugging is a technique widely extended in
the declarative paradigm. Since its introduction, many im-
plementations have been distributed for functional and logic
languages such as Haskell [14], [6], [15], Mercury [13], Toy
[4], [5] or Curry [3]. Nevertheless, the technique has not
been extended to the object-oriented paradigm, and, currently,
there does not exist an implementation for C++ and only one
implementation is distributed for Java.

The main problem of adapting algorithmic debugging to
Java is scalability. In DDJ, we solve the memory scalability
problem by introducing a database and a virtual data structure
that represents the ET in main memory. And we solve the
time scalability problem with a system of caches and with
the ability of debugging incomplete ETs that allow us to
start a debugging session before having generated the ET.
The debugger also includes new features such as a balancing
transformation that speeds up the debugging session.

DDJ is open and freely distributed. As it is completely im-
plemented in Java with standard components we are currently
producing a release that can be installed to Eclipse as a plugin.
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