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Abstract

Static analysis of concurrent languages is a complex task due to the non-deterministic
execution of processes. If the concurrent language being studied allows process synchro-
nization, then the analyses are even more complex (and thus expensive), e.g., due to the
phenomenon of deadlock. In this work we introduce a static analysis technique based on
program slicing for concurrent and explicitly synchronized languages in general, and CSP
in particular. Concretely, given a particular point in a specification, our technique allows
us to know what parts of the specification must necessarily be executed before this point,
and what parts of the specification could be executed before it. Our technique is based
on a new data structure that extends the Synchronized Control Flow Graph (SCFG).
We show that this new data structure improves the SCFG by taking into account the
context in which processes are called and, thus, it makes the slicing process more precise.
The technique has been implemented and tested with real specifications, producing good
results. After formally defining our technique, we describe our tool, its architecture, its
main applications and the results obtained from several experiments conducted in order
to measure the performance of the tool.

Key words: Concurrent Programming, CSP, Program Slicing

1. Introduction

Process algebras such as CSP [10], π-calculus [20] or LOTOS [2] and process modeling
languages such as Promela [11, 22] allow us to specify complex systems with multiple
interacting processes. The study and transformation of such systems often implies dif-
ferent analyses (e.g., deadlock analysis [15], reliability analysis [12], refinement checking
[25], etc.).
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In this work we introduce a static analysis technique for process algebras with explicit
synchronization mechanisms, based on a well-known program comprehension technique
called program slicing [28]. Program slicing is a method for decomposing programs
by analyzing their data and control flow. Roughly speaking, a program slice consists
of those parts of a program that are (potentially) determining the values computed
at some program point and/or variable, referred to as a slicing criterion. Program
slices are usually computed from a Program Dependence Graph (PDG) [7] that makes
explicit both the data and control dependences for each operation in a program. Program
dependences can be traversed backwards or forwards (from the slicing criterion), that is
known as backward or forward slicing, respectively. Additionally, slices can be dynamic
or static, depending on whether a concrete program’s input is provided or not. A survey
on program slicing can be found, e.g., in [26].

Our technique allows us to extract the part of a specification related to a given point
(referred to as the slicing criterion) in the specification. This technique can be very useful
to debug, understand, maintain and reuse specifications; but also as a preprocessing
stage of other analyses and/or transformations in order to reduce the complexity of
the specification. In particular, given a point (e.g., an event) in a specification, our
technique allows us to extract those parts of the specification that must be executed
before the specified point (thus they are an implicit precondition); and those parts of
the specification that could be executed before it. Therefore, the other parts of the
specification cannot be executed before this point.

Example 1. Consider the following specification1:

MAIN = (STUDENT }
tpassu

PARENT) }
tpass,failu

COLLEGE

STUDENT = year1 Ñ (pass Ñ YEAR2 l fail Ñ STUDENT)

YEAR2 = year2 Ñ (pass Ñ YEAR3 l fail Ñ YEAR2)

YEAR3 = year3 Ñ (pass Ñ graduate Ñ STOP l fail Ñ YEAR3)

PARENT = pass Ñ present Ñ PARENT

COLLEGE = fail Ñ COLLEGE l pass Ñ C1

C1 = fail Ñ COLLEGE l pass Ñ C2

C2 = fail Ñ COLLEGE l pass Ñ prize Ñ STOP

In this specification we have three processes (STUDENT, PARENT and COLLEGE) executed
in parallel and synchronized on common events. Process STUDENT represents the three-
year academic courses of a student; process PARENT represents the parent of the student
who gives her a present when she passes a course; and process COLLEGE represents the
college who gives a prize to those students that finish without any fail.

We are interested in determining what parts of the specification must be executed
before the student fails in the second year, hence, we mark event fail of process YEAR2

1In the following, without lack of generality, we will use the Communicating Sequential Processes
(CSP) [10] language as the running language for our examples. We refer those readers non familiar with
CSP syntax to Section 2 where we provide a brief introduction to CSP.
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(thus the slicing criterion is (YEAR2, fail), marked by a box in the above figure). Our
slicing technique automatically extracts the slice consisting of the expressions in black.
We can additionally be interested in knowing what parts could be executed before the same
event. In this case, our technique adds to the slice the underscored parts because they
could be executed (in some executions) before the marked event (observe that the result
of this analysis is always a superset of the result obtained by the previous analysis).
Therefore, this analysis could be used for program comprehension. Note, for instance,
that in order to fail in the second year, the student has necessarily passed the first year.
But, the parent may or may not have given a present to his daughter (even if she passed
the first year) because this specification does not force the parent to give a present to
his daughter until she has passed the second year. Moreover, note that the choice of
process C1 belongs also to the slice. This is due to the fact that the slicing criterion must
synchronize with the event fail of this process; therefore, the choice must be executed
before the slicing criterion.2 This is not so obvious from the specification, and the slice
can help to understand the actual meaning of the specification.

Computing the parts of the specification that could be executed before the slicing cri-
terion can be useful, e.g., for debugging. If the slicing criterion is an event that executed
incorrectly (i.e., it should not happen in the execution), then the slice produced contains
all the parts of the specification that could produce the wrong behavior.

A third application is program specialization. Note that the slices produced are not
executable, but, in both cases, the slices could be made executable by replacing the removed
parts by “STOP” or by “Ñ STOP” if the removed expression has a prefix. Hence, we have
defined a further transformation that allows us to extract executable slices. The specialized
specification contains all the necessary parts of the original specification whose execution
leads to the slicing criterion (and then, the specialized specification finishes).

We have implemented our technique producing the first program slicer for CSP spec-
ifications. In our implementation, the slicing process is completely automatic. Once the
user has loaded a specification, she can select (with the mouse) the point she is interested
in. Obviously, this simple action is enough to define a slicing criterion because the tool
can automatically determine the process and the source position of interest. This imple-
mentation is a tool that has been integrated in the system ProB [16, 4], an animator and
model checker for B and CSP. We will describe this tool in Section 5.

It should be clear that computing the minimum slice of an arbitrary CSP specification
is an undecidable problem. Consider for instance the following CSP specification:

MAIN = P [ Q

P = X ; Q

Q = a Ñ STOP

X = Infinite Process

together with the slicing criterion (Q, a). Determining whether X does not belong to the
slice implies determining whether X terminates, which is undecidable.

The main contributions of this work are the following:

2We could have chosen also to include the fail event of C1 into the slice. This is a matter of taste.
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• We define two new static analyses for process algebras and propose algorithms for
their implementation. Despite their clear usefulness we have not found similar
static analyses in the literature.

• We define the context-sensitive synchronized control flow graph and show its ad-
vantages over its predecessors. This is a new data structure able to represent all
computations of a specification taking into account the context of process calls; and
it is particularly interesting for slicing languages with explicit synchronization.

• We have implemented our technique and integrated it in ProB [16, 4, 17]. Current
releases of ProB are distributed with the slicer as an analysis tool. We present the
implementation and the results obtained with several benchmarks.

The rest of the paper is organized as follows. In Section 2 we give an overview of the
syntax and semantics of a process algebra (CSP) and introduce some notation that will
be used along the article. In this section we also introduce an extension of the standard
operational semantics of CSP. In Section 3 we show that previous data structures used
in program slicing are inaccurate or inappropriate in our context, and we introduce the
Context-sensitive Synchronized Control Flow Graph (CSCFG) as a solution and discuss
its advantages over its predecessors. Our slicing technique is presented in Section 4 where
we introduce two algorithms to slice CSP specifications from their CSCFGs. In Section 5
we present our implementation, we describe the architecture of our tool SOC, and we
show the results of some experiments that reflect the efficiency and performance of the
tool. Next, we discuss some related work in Section 6 and, finally, Section 7 concludes.
All proofs of technical results can be found in Appendix A.

2. Communicating Sequential Processes

In order to keep the paper self-contained, in this section we recall the syntax and
the semantics of the constructs used in our process algebra specifications. We use the
CSP language [10], but the concepts and algorithms can also be applied to other process
algebras. We also introduce here some notation that will be used along the paper.

Figure 1 summarizes the syntax constructions used in our CSP specifications. More
precisely, a specification S is a finite collection of definitions. The left-hand side of each
definition is the name of a different process, that is defined in the right-hand side (rhs)
by means of an expression3 that can be a call to another process or a combination of the
following operators:

Prefixing. It specifies that event x (called the prefix) must happen before P .

Input. It is used to receive a message from another process. Message u is received
through channel c; then process P is executed.

Output. It is analogous to the input, but this is used to send messages. Message u is
sent through channel c; then process P is executed.

3Therefore a process is defined by an expression, and thus, we often use indistinguishably these terms.
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S ::“ D1 . . . Dm (entire specification) Domains
M,N,O . . . P Names (names)
P,Q,R . . . P P (processes)
a, b, c . . . P Σ (events)
u, v, w . . . P V (variables)

D ::“ M “ P (process definition)
| Mpxnq “ P (parameterized process) where xn “ x1, . . . , xn

and xi P ΣY V
P ::“ M (process call)

| Mpxnq (parameterized process call)
| xÑ P (prefixing)
| c?uÑ P (input)
| c!uÑ P (output)
| P [ Q (internal choice)
| P l Q (external choice)
| P ć bool č Q (conditional choice) where bool P ttrue, falseu
| P ||| Q (interleaving)
| P }

X

Q (synchronized parallelism) where X Ď ΣY V

| P ; Q (sequential composition)
| P zX (hiding)
| P vfw (renaming) where f :pΣY Vq Ñ pΣY Vq
| SKIP (skip)
| STOP (stop)

Figure 1: Syntax of CSP specifications

Internal choice. The system chooses (e.g., non-deterministically) to execute one of the
two expressions.

External choice. It is identical to internal choice but the choice comes from outside
the system (e.g., the user).

Conditional choice. It is a choice that depends on a condition, i.e., it is equivalent to
if bool then P else Q.

Interleaving. Both expressions are executed in parallel and independently.

Synchronized parallelism. Both expressions are executed in parallel with a set of
synchronized events. In absence of synchronization both expressions can execute
in any order. Whenever a synchronized event xi, 1 ď i ď n, happens in one of
the expressions it must also happen in the other at the same time. Whenever the
set of synchronized events is not specified, it is assumed that the expressions are
synchronized in all common events.

Sequential composition. It specifies a sequence of two processes. When the first (suc-
cessfully) finishes, the second starts.
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Hiding. Process P is executed with a set of hidden events txnu. Hidden events are not
observable from outside the process, and thus, they cannot synchronize with other
processes.

Renaming. Process P is executed with a set of renamed events specified with the total
mapping f . An event a renamed as b behaves internally as a but it is observable
as b from outside the process.

Skip. It finishes the current process. It allows the next sequential process to continue.

Stop. It finishes the current process; but it does not allow the next sequential process
to continue.

Figure 2 shows the standard operational semantics of CSP as defined by A. W. Roscoe
[24]. This semantics is a logical inference system where a state is formed by a single
expression called the control. The system starts with an initial state, and the rules of the
semantics are used to infer how this state evolves. When no rules can be applied to the
current state, the computation finishes. The rules of the semantics change the states of
the computation due to the occurrence of events. The set of possible events is ΣYtτ,Xu.
Events in Σ “ ta, b, c . . .u are visible from the external environment, and can only happen
with its cooperation (e.g., actions of the user). The special event τ cannot be observed
from outside the system and it happens automatically as defined by the semantics. X is
a special event representing the successful termination of a process. The special symbol
J is used to denote any process that already terminated.

The intuitive meaning of each rule is the following:

((Parameterized) Process Call) The call is unfolded and the right-hand side of
process M is added to the control.

(Prefixing) When event a occurs, process P is added to the control. This rule is
used both for prefixing and communication operators (input and output). Given
a communication expression, either c?u Ñ P or c!u Ñ P , this rule treats the
expression as a prefixing except for the fact that the set of messages appearing in
P is replaced by the communicated events.

(SKIP) After SKIP, the only possible event is X, that denotes the end of the (sub)com-
putation with the special symbol J. There is no rule for J (nor for STOP), hence,
this (sub)computation has finished.

(Internal Choice 1 and 2) The system uses the internal event τ to (non-deterministi-
cally) select one of the two processes P or Q that is added to the control.

(External Choice 1, 2, 3 and 4) The occurrence of τ develops one of the processes.
The occurrence of an event a ‰ τ is used to select one of the two processes P or Q
(the other process is discarded) and the control changes according to the event.

(Conditional Choice 1 and 2) The condition bool is evaluated. If it is true, process
P is put in the control, if it is false, process Q is.

(Synchronized Parallelism 1 and 2) When event a R X or events τ or X happen,
one of the two processes P or Q evolves accordingly, but only a is visible from
outside the parallelism operator.
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(Process Call) (Parameterized Process Call)

M
τ
ÝÑ rhspMq Mpynq

τ
ÝÑ rhs1pMq

where Mpxnq “ rhspMq P S with xn, yn P ΣY V and

rhs1pMq “ rhspMq with xi replaced by yi, 1 ď i ď n

(Prefixing) (SKIP)

paÑ P q
a
ÝÑ P SKIP

X
ÝÑ J

(Internal Choice 1) (Internal Choice 2)

pP [Qq
τ
ÝÑ P pP [Qq

τ
ÝÑ Q

(External Choice 1) (External Choice 2)

P
τ
ÝÑ P 1

pP l Qq
τ
ÝÑ pP 1 l Qq

Q
τ
ÝÑ Q1

pP l Qq
τ
ÝÑ pP l Q1q

(External Choice 3) (External Choice 4)

P
a or X
ÝÑ P 1

pP l Qq
a or X
ÝÑ P 1

Q
a or X
ÝÑ Q1

pP l Qq
a or X
ÝÑ Q1

(Conditional Choice 1) (Conditional Choice 2)

pP ć true č Qq
τ
ÝÑ P pP ć false č Qq

τ
ÝÑ Q

(Synchronized Parallelism 1) (Synchronized Parallelism 2)

P
a or tτ or Xu

ÝÑ P 1

pP }
X

Qq
a or τ
ÝÑ pP 1 }

X

Qq
a R X

Q
a or tτ or Xu

ÝÑ Q1

pP }
X

Qq
a or τ
ÝÑ pP }

X

Q1q
a R X

(Synchronized Parallelism 3) (Synchronized Parallelism 4)

P
a
ÝÑ P 1 Q

a
ÝÑ Q1

pP }
X

Qq
a
ÝÑ pP 1 }

X

Q1q
a P X

pJ}
X

Jq
X
ÝÑ J

Figure 2: CSP’s operational semantics

(Synchronized Parallelism 3) When event a P X happens, it is required that both
processes synchronize, P and Q are executed at the same time and the control
becomes P 1 }

X

Q1.

(Synchronized Parallelism 4) When both processes have successfully terminated the
control becomes J, performing X.
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(Sequential Composition 1) (Sequential Composition 2)

P
a or τ
ÝÑ P 1

pP ;Qq
a or τ
ÝÑ pP 1;Qq

P
X
ÝÑ J

pP ;Qq
τ
ÝÑ Q

(Hiding 1) (Hiding 2) (Hiding 3)

P
a
ÝÑ P 1

pP zBq
τ
ÝÑ pP 1zBq

a P B
P
a or τ
ÝÑ P 1

pP zBq
a or τ
ÝÑ pP 1zBq

a R B
P

X
ÝÑ J

pP zBq
X
ÝÑ J

(Renaming 1) (Renaming 2) (Renaming 3)

P
a
ÝÑ P 1

pP rrRssq
b
ÝÑ pP 1rrRssq

a R b
P
a or τ
ÝÑ P 1

pP rrRssq
a or τ
ÝÑ pP 1rrRssq

a R a
P

X
ÝÑ J

pP rrRssq
X
ÝÑ J

Figure 2: CSP’s operational semantics (cont.)

(Sequential Composition 1) In P ;Q, P can evolve to P 1 with any event except X.
Hence, the control becomes P 1;Q.

(Sequential Composition 2) When P finishes (with event X), Q starts. Note that
X is hidden from outside the whole process becoming τ .

(Hiding 1) When event a P B occurs in P , it is hidden, and thus changed to τ so that
it is not observable from outside P .

(Hiding 2 and Hiding 3) P can normally evolve (using rule 2) until it is finished (X
happens). When P finishes, rule 3 is used and the control becomes J.

(Renaming 1) Whenever an event a happens in P , it is renamed to b (a R b) so that,
externally, only b is visible.

(Renaming 2 and 3) Renaming has no effect on either events renamed to themselves
(a R a), and τ or X events. The rules for renaming are similar to those for hiding.

We illustrate the semantics with the following example.

Example 2. Consider the following CSP specification:

MAIN = (a Ñ STOP) }
tau

(P l (a Ñ STOP))

P = b Ñ SKIP

If we use rhspMAINq as the initial state to execute the semantics, we get the computa-
tion (i.e., sequence of valid state transitions) shown in Figure 3 where the final state is
ppaÑ STOPq }

tau

Jq. This computation corresponds to the execution of the left branch of

the choice (i.e., P) and thus only event b occurs. Each rewriting step is labeled with the
applied rule.

We need to define the notion of specification position that, roughly speaking, is a
label that identifies a part of the specification. Formally,
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(Synchronized
Parallelism 2)

(External Choice 1)

(Process Call)
P

τ
ÝÑ pbÑ SKIPq

pPlpaÑ STOPqq
τ
ÝÑ ppbÑ SKIPqlpaÑ STOPqq

ppaÑ STOPq }
tau

pPlpaÑ STOPqqq
τ
ÝÑ State1

where State1 “ppaÑ STOPq }
tau

ppbÑ SKIPqlpaÑ STOPqqq

(Synchronized
Parallelism 2)

(External Choice 1)

(Prefixing)
pbÑ SKIPq

b
ÝÑ SKIP

ppbÑ SKIPqlpaÑ STOPqq
b
ÝÑ SKIP

State1
b
ÝÑ ppaÑ STOPq }

tau

SKIPq

(Synchronized

Parallelism 2)

(SKIP)
SKIP

X
ÝÑ J

ppaÑ STOPq }
tau

SKIPq
τ
ÝÑ ppaÑ STOPq }

tau

Jq

Figure 3: A computation with the operational semantics in Figure 2

Definition 1. (Position, Specification Position) Given a CSP specification S and a pro-
cess definition M “ P in S, the positions in each P are represented by a sequence of
natural numbers, where Λ denotes the empty sequence (i.e., the root position). They are
used to address the literals of an expression viewed as a tree, and are inductively defined
as follows:

P |Λ “ P
pP opq|1.w “ P |w @ op P tz, vwu
pP op Qq|1.w “ P |w @ op P tÑ,[,l,ćč, |||, ||, ; u
pP op Qq|2.w “ Q|w @ op P tÑ,[,l,ćč, |||, ||, ; u

P |w is undefined otherwise.
A specification position is a pair pM,wq with M “ P P S and w a sequence of

naturals, such that P |w is defined. We use the special specification position pM, 0q for
the left-hand side of the process definition M “ P . We let PospSq denote the set of all
specification positions for processes in S.

In the following we will refer to the literal associated to a specification position α with
litpαq. For instance, in the specification of Example 3 where expressions are labeled with
their associated specification positions, litppMAIN, 1qq “ || and litppMAIN, 1.1qq “ BUS. As
we will work with graphs whose nodes are labeled with specification positions, we often
use PospNq to denote the set of all specification positions associated with the set of
nodes N .

Example 3. In the following specification4 S each expression has been labeled (in grey
color) with its associated specification position so that all labels are unique.

4This is a simplification of a benchmark by Simon Gay to simulate a bus line.
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MAINpMAIN,0q = (BUSpMAIN,1.1q||pMAIN,1qP1pMAIN,1.2q);pMAIN,Λq(BUSpMAIN,2.1q||pMAIN,2qP2pMAIN,2.2q)

BUSpBUS,0q = boardpBUS,1qÑpBUS,ΛqalightpBUS,2.1qÑpBUS,2qSKIPpBUS,2.2q

P1pP1,0q = waitpP1,1qÑpP1,ΛqboardpP1,2.1qÑpP1,2qalightpP1,2.2.1qÑpP1,2.2qSKIPpP1,2.2.2q

P2pP2,0q = waitpP2,1qÑpP2,ΛqboardpP2,2.1qÑpP2,2qpaypP2,2.2.1qÑpP2,2.2qalightpP2,2.2.2.1q

ÑpP2,2.2.2qSKIPpP2,2.2.2.2q

The notion of specification position allows us to determine what parts of the speci-
fication are executed in a particular execution. For this purpose, we have extended the
semantics of Figure 2 in such a way that given a specification S and an execution of
S with the extended semantics, the semantics produces as a side-effect the collection of
specification positions that have been executed in this particular execution.

The extended semantics is presented in Figure 4 where we assume that every ex-
pression in the program has been labeled with its specification position (denoted by a
subscript, e.g., Pα). A state of the semantics is a tuple pP, ωq where P is the control, i.e.,
the expression to be evaluated and ω represents the set of specification positions already
evaluated. When the computation has finished or interrupted, ω contains the portion of
the source code that has been executed.

An explanation for each rule of the semantics follows:

((Parameterized) Process Call) The called process is unfolded and its specifica-
tion position α is added to the current set of specification positions ω. The new
expression in the control is rhspMq.

(Prefixing) Set ω is increased with the specification positions of the prefix and the
prefixing operator.

(SKIP and STOP) The specification position α of SKIP (respectively STOP) is added
to the current set of specification positions.

(Internal Choice 1 and 2) (Conditional Choice 1 and 2) The choice operator is
added to ω.

(External Choice 1, 2, 3 and 4) External choices can develop both branches while
τ events happen (rules 1 and 2), until an event in ΣY tXu occurs (rules 3 and 4).
This means that the semantics can develop both branches of the trace alternatively
before selecting one branch. Of course, we want the extended semantics to collect
all specification positions that have been executed and thus, when rules 1 and
2 are fired several times to evolve the branches of the choice, the corresponding
specification positions are added to the common set ω.

(Synchronized Parallelism 1 and 2) Because nodes from both parallel processes
can be executed interweaved, the parallelism operator is added to ω together with
the specification positions (ω1) executed of the corresponding branch.

(Synchronized Parallelism 3) When a synchronization occurs, the parallelism oper-
ator together with the specification positions executed in both branches are added
to ω.

10



(Process Call) (Parameterized Process Call)

pMα, ωq
τ
ÝÑ prhspMq, ω Y tαuq pMαpynq, ωq

τ
ÝÑ prhs1pMq, ω Y tαuq

where Mpxnq “ rhspMq P S
with xn, yn P ΣY V
and rhs1pMq “ rhspMq

with xi replaced by yi, 1 ď i ď n

(Prefixing)

paαÑβP, ωq
a
ÝÑ pP, ω Y tα, βuq

(SKIP) (STOP)

pSKIPα, ωq
X
ÝÑ pJ, ω Y tαuq pSTOPα, ωq

τ
ÝÑ pK, ω Y tαuq

(Internal Choice 1) (Internal Choice 2)

pP[αQ,ωq
τ
ÝÑ pP, ω Y tαuq pP[αQ,ωq

τ
ÝÑ pQ,ω Y tαuq

(External Choice 1) (External Choice 2)

pP, ωq
τ
ÝÑ pP 1, ω1q

pP lα Q,ωq
τ
ÝÑ pP 1 lα Q,ω1 Y tαuq

pQ,ωq
τ
ÝÑ pQ1, ω1q

pP lα Q,ωq
τ
ÝÑ pP lα Q1, ω1 Y tαuq

(External Choice 3) (External Choice 4)

pP, ωq
a or X
ÝÑ pP 1, ω1q

pP lα Q,ωq
a or X
ÝÑ pP 1, ω1 Y tαuq

pQ,ωq
a or X
ÝÑ pQ1, ω1q

pP lα Q,ωq
a or X
ÝÑ pQ1, ω1 Y tαuq

(Conditional Choice 1) (Conditional Choice 2)

pP ć true čα Q,ωq
τ
ÝÑ pP, ω Y tαuq pP ć false čα Q,ωq

τ
ÝÑ pQ,ω Y tαuq

(Synchronized Parallelism 1) (Synchronized Parallelism 2)

pP, ωq
a or tτ or Xu

ÝÑ pP 1, ω1q

pP }
Xα

Q,ωq
a or τ
ÝÑ pP 1 }

X

Q,ω1 Y tαuq
a R X

pQ,ωq
a or tτ or Xu

ÝÑ pQ1, ω1q

pP }
Xα

Q,ωq
a or τ
ÝÑ pP }

X

Q1, ω1 Y tαuq
a R X

(Synchronized Parallelism 3) (Synchronized Parallelism 4)

pP, ωq
a
ÝÑ pP 1, ω1q pQ,ωq

a
ÝÑ pQ1, ω2q

pP }
Xα

Q,ωq
a
ÝÑ pP 1 }

X

Q1, ω1 Y ω2 Y tαuq
a P X

pJ}
X

J, ωq
X
ÝÑ pJ, ωq

Figure 4: An instrumented operational semantics for CSP with specification positions
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(Sequential Composition 1) (Sequential Composition 2)

pP, ωq
a or τ
ÝÑ pP 1, ω1q

pP ;Q,ωq
a or τ
ÝÑ pP 1;Q,ω1q

pP, ωq
X
ÝÑ pJ, ω1q

pP ;αQ,ωq
τ
ÝÑ pQ,ω1 Y tαuq

(Hiding 1) (Hiding 2)

pP, ωq
a
ÝÑ pP 1, ω1q

pP zαB,ωq
τ
ÝÑ pP 1zαB,ω1 Y tαuq

a P B
pP, ωq

a or τ
ÝÑ pP 1, ω1q

pP zαB,ωq
a or τ
ÝÑ pP 1zαB,ω1 Y tαuq

a R B

(Hiding 3)

pP, ωq
X
ÝÑ pJ, ω1q

pP zαB,ωq
X
ÝÑ pJ, ω1 Y tαuq

(Renaming 1) (Renaming 2)

pP, ωq
a
ÝÑ pP 1, ω1q

pP rrαRss, ωq
b
ÝÑ pP 1rrαRss, ω1 Y tαuq

a R b
pP, ωq

a or τ
ÝÑ pP 1, ω1q

pP rrαRss, ωq
a or τ
ÝÑ pP 1rrαRss, ω1 Y tαuq

a R a

(Renaming 3)

pP, ωq
X
ÝÑ pJ, ω1q

pP rrαRss, ωq
X
ÝÑ pJ, ω1 Y tαuq

Figure 4: An instrumented operational semantics for CSP with specification positions (cont.)

(Synchronized Parallelism 4) It has no influence over the set ω because the processes
already terminated, and thus, the parallelism operator is already included in the
set by the other rules.

(Sequential Composition 1 and 2) Sequential Composition 1 is used to add to ω the
specification positions executed in process P until it is finished. When P finishes
Sequential Composition 2 is used and the specification position of ; is added to ω.

(Hiding 1, 2 and 3) ω is increased with the specification position of the Hiding
operator and the specification positions of the developed process P .

(Renaming 1, 2 and 3) It is completely analogous to the previous case.

Example 4. Consider again the specification of Example 2 but now expressions are
labeled with their associated specification positions (in grey color) so that labels are unique.

MAINpMAIN,0q = (apMAIN,1.1qÑpMAIN,1qSTOPpMAIN,1.2q) }
tau
pMAIN,Λq

(PpMAIN,2.1qlpMAIN,2q(apMAIN,2.2.1qÑpMAIN,2.2qSTOPpMAIN,2.2.2q))

PpP,0q = bpP,1qÑpP,ΛqSKIPpP,2q
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The execution of the instrumented semantics in Figure 4 with the initial state
prhspMAINq,Hq produces the computation of Figure 5. Here, for clarity, each com-
putation step is labeled with the applied rule (EC 4 means External Choice 4); in each
state, the second component denotes the set of specification positions already evalu-
ated. Note that the first rule applied is (Synchronized Parallelism 3) to the initial ex-
pression rhspMAINq. This computation corresponds to the execution of the right branch
of the choice (i.e., a Ñ STOP). The final state is pK }

tau

K, ω4q where ω4 “ tpMAIN,Λq,

pMAIN, 1.1q, pMAIN, 1q, pMAIN, 1.2q, pMAIN, 2q, pMAIN, 2.2.1q, pMAIN, 2.2q, pMAIN, 2.2.2qu.

(Synchronized Parallelism 3)
L R

State 1
a
ÝÑ State 2

where

State 1 “ ppaÑ STOPq }
tau
pMAIN,ΛqpPlpaÑ STOPqq,Hq

L “ (Prefixing)
paÑ STOP,Hq

a
ÝÑ pSTOP, ω0q

where ω0 “ tpMAIN, 1.1q, pMAIN, 1qu

R “ (EC 4)

(Prefixing)
paÑ STOP,Hq

a
ÝÑ pSTOP, tpMAIN, 2.2.1q, pMAIN, 2.2quq

ppPlpMAIN,2qpaÑ STOPqq,Hq
a
ÝÑ pSTOP, ω1q

where ω1 “ tpMAIN, 2.2.1q, pMAIN, 2.2qu Y tpMAIN, 2qu

and State 2 “ ppSTOP }
tau

STOPq, ω2q where ω2 “ ω0 Y ω1 Y tpMAIN,Λqu

(Synchronized Parallelism 1)

(STOP)
pSTOP, ω2q

τ
ÝÑ pK, ω2 Y tpMAIN, 1.2quq

State 2
τ
ÝÑ State 3

where State 3 “ pK }
tau

STOP, ω3q and ω3 “ ω2 Y tpMAIN, 1.2qu Y tpMAIN,Λqu

(Synchronized Parallelism 2)

(STOP)
pSTOP, ω3q

τ
ÝÑ pK, ω3 Y tpMAIN, 2.2.2quq

State 3
τ
ÝÑ State 4

where State 4 “ pK }
tau

K, ω4q and ω4 “ ω3 Y tpMAIN, 2.2.2qu Y tpMAIN,Λqu

Figure 5: An example of computation with the semantics in Figure 4

Definition 2. (Rewriting Step, Derivation) Given a state of the semantics s, a rewriting

step for s5 is the application of a rule of the semantics:
Θ

s
a or τ or X
ÝÑ s1

where Θ is a

(possibly empty) set of rewriting steps. We say that the rewriting step is simple iff Θ is

5Note that because s is a state, this definition is valid for both semantics presented so far.
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empty. For the sake of concreteness, we often represent the rewriting step for s as (s ÝÑ
s1). Given a state of the semantics s0, we say that the sequence s0 ÝÑ . . . ÝÑ sn`1,
n ě 0, is a derivation of s0 iff @ i, 0 ď i ď n, si ÝÑ si`1 is a rewriting step. We say that
the derivation is complete iff there is no possible rewriting step for sn`1. We say that
the derivation has successfully finished iff the control of sn`1 is J.

We use s1 ÝÑ
˚ sn to denote a feasible (sub)derivation s0 ÝÑ . . . ÝÑ sn that leads

from s1 to sn; and we define Posps1 ÝÑ
˚ snq “ tPospciq | 1 ď i ď nu where ci is

the control of state si. In the following, we will assume that computations start from a
distinguished process MAIN.

We also define the following notation for a given CSP specification S: CallspSq is
the set of specification positions for the process calls appearing in S. ProcpSq is the set
of specification positions in left-hand sides of the processes in S (i.e., ProcpSq “ tα P
PospSq | α “ pM, 0qu).

In addition, given a set of specification positions A, we define choicespAq as the
subset of specification positions of operators that are either an internal choice, an ex-
ternal choice or a conditional choice. For instance, in the specification S of Exam-
ple 3 we have CallspSq “ tpMAIN, 1.1q, pMAIN, 1.2q, pMAIN, 2.1q, pMAIN, 2.2qu and ProcpSq “
tpMAIN, 0q, pBUS, 0q, pP1, 0q, pP2, 0qu.

3. Context-sensitive Synchronized Control Flow Graph

As usual in static analysis, we need a data structure capable of finitely representing
the (often infinite) computations of our specifications. Unfortunately, we cannot use the
standard Control Flow Graph (CFG) [26], nor the Interprocedural Control Flow Graph
(ICFG) [9] because they cannot represent multiple threads and, thus, they can only be
used with sequential programs. In fact, for CSP specifications, being able to represent
multiple threads is a necessary but not a sufficient condition. For instance, the threaded
Control Flow Graph (tCFG) [13, 14] can represent multiple threads through the use of the
so called “start thread” and “end thread” nodes; but it does not handle synchronization
between threads. Callahan and Sublok introduced in [5] the Synchronized Control Flow
Graph (SCFG), a data structure proposed in the context of imperative programs where
an event variable is always in one of two states: clear or posted. The initial value of an
event variable is always clear. The value of an event variable can be set to posted with
the POST statement; and a WAIT statement suspends execution of the thread that
executes it until the specified event variableś value is set to posted. The SCFG explicitly
represents synchronization between threads with a special edge for synchronization flows.
In words by Callahan and Sublok [5]:

“A synchronized control flow graph is a control flow graph augmented with a
set Es of synchronization edges. pb1, b2q P Es if the last statement in block b1
is POST pevq and the first statement in block b2 is WAIT pevq where ev is an
event variable.”

In order to adapt the SCFG to CSP, we extend it with the “start thread” and “end
thread” notation from tCFGs. Therefore, in the following we will work with graphs where
nodes N are labeled with positions and “start”, “end” labels (we denote the label of node
n with lpnq). We also use this notation, “end z” and “end vw”, to denote the end of a
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hiding respectively a renaming operator. In particular, @n P N, lpnq P PospSqYStartpSq
where:
StartpSq “ t“start α”, “end α”| α P ProcpSqu

Y t“end α”| α P PospSq ^ litpαq P tz, vwuu

For the definition of SCFG, we need to provide a notion of control flow between the
nodes of a labeled graph.

Definition 3. (Control flow) Given a CSP specification S and a set of labeled nodes N
such that @n P N, lpnq P PospSqYStartpSq, the control flow is a binary relation between
the nodes in N . Given two nodes n, n1 P N , we say that the control of n can pass to n1

iff:

1. litplpnqq P t[,l,ćč, |||, ||u ^ lpnq “ pM,wq ^ lpn1q P tfirstppM,w.1qq,firstppM,w.2qqu
2. litplpn1qq “ Ñ ^ lpn1q “ pM,wq ^ lpnq “ pM,w.1q
3. litplpn1qq “ ; ^ lpn1q “ pM,wq ^ lpnq P lastppM,w.1qq
4. litplpnqq P tÑ, ; u ^ lpnq “ pM,wq ^ lpn1q “ firstppM,w.2qq
5. litplpnqq P tz, vwu ^ lpnq “ pM,wq ^ lpn1q “ firstppM,w.1qq
6. lpn1q “ “end pM,wq” ^ litppM,wqq P tz, vwu ^ lpnq P lastppM,w.1qq

where firstppM,wqq is defined as follows:

firstppM,wqq “

$

&

%

pM,w.1q if litppM,wqq “ Ñ

firstppM,w.1qq if litppM,wqq “ ;
pM,wq otherwise

and where lastppM,wqq is the set of possible termination points of pM,wq:

lastppM,wqq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

tpM,wqu if litppM,wqq “ SKIP
H if litppM,wqq “ STOP _ plitppM,wqq P t|||, ||u^

plastppM,w.1qq “ H_ lastppM,w.2qq “ Hqq
lastppM,w.1qq if litppM,wqq P t[,l,ćču _ plitppM,wqq P t|||, ||u^
Y lastppM,w.2qq lastppM,w.1qq ‰ H^ lastppM,w.2qq ‰ Hq
lastppM,w.2qq if litppM,wqq P tÑ, ; u
t“end pM,wq”u if litppM,wqq P tz, vwu

Rather than using a declarative definition of SCFG, we provide a constructive def-
inition based on the control flow that allows us to compute the SCFG from a CSP
specification.

Definition 4. (Synchronized Control Flow Graph) Given a CSP specification S, we
define its Synchronized Control Flow Graph as a graph G “ pN,Ec, Esq where nodes
N “ PospSq Y StartpSq. Edges are divided into two groups, control-flow arcs (Ec) and
synchronization edges (Es). Es is a set of edges (denoted bye) representing the possible
synchronization of two (event) nodes.6 Ec is a set of arcs (denoted with ÞÑ) such that,
given two nodes n, n1 P N , n ÞÑ n1 P Ec iff the control of n can pass to n1 or one of the
following is true:

6Computing the events that will synchronize in a specification is a field of research by itself. There
are many approaches and algorithms to do this task. In our implementation, we use the technique from
[23].
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• litplpnqq “M ^ lpn1q “ “start pM, 0q” with lpnq P CallspSq

• lpnq “ “start pM, 0q” ^ lpn1q “ firstppM,Λqq

• lpnq P lastppM,Λqq ^ lpn1q “ “end pM, 0q”

where lastppM,wqq with pM,wq P CallspSq is defined as lastppM,wqq “ t“end pP, 0q”u.

Observe that the size of the SCFG is Opnq being n the number of positions in the
specification. This can be easily proved by showing that there is only one node in the
SCFG for each position of the specification, and specification positions are finite and
unique. To be fully precise, there is exactly one node for each specification position and
two extra nodes for each process (the start process and end process nodes) and one extra
node for the hiding and renaming operators (the end hiding and the end renaming).
Hence, the size of a SCFG associated to a specification with p processes and n positions
with r hiding and renaming operators is 2p ` n ` r. The SCFG can be used for slicing
CSP specifications as it is described in the following example.

Example 5. Consider the specification of Example 3 and its associated SCFG shown
in Figure 6(a); for the sake of clarity we show the expression represented by each spec-
ification position. If we select the node labeled (P1,alight) and traverse the SCFG
backwards in order to identify the nodes on which (P1,alight) depends, we get the grey
nodes of the graph.

The purpose of this example is twofold: on the one hand, it shows that the SCFG can
be used for static slicing of CSP specifications. On the other hand, it shows that it
is still too imprecise to be used in practice. The cause of this imprecision is that the
SCFG is context-insensitive, because it connects all the calls to the same process with
a unique set of nodes. This causes the SCFG to mix different executions of a process
with possibly different synchronizations, and, thus it loses precision. For instance, in
Example 3 process BUS is called twice in different contexts. It is first executed in parallel
with P1 producing the synchronization of their board and alight events. Then, it is
executed in parallel with P2 producing the synchronization of their board and alight

events. This makes the process P2 (except nodes Ñ, SKIP and end P2) be part of the
slice. This is suboptimal because process P2 is always executed after P1.

To the best of our knowledge, there do not exist other data structures that face
the problem of representing concurrent and explicitly synchronized computations in a
context-sensitive manner. In the rest of this section, we propose a new version of the
SCFG, the context-sensitive synchronized control flow graph (CSCFG) which is context-
sensitive because it takes into account the different contexts on which a process can be
executed.

In contrast to the SCFG, the same specification position can appear multiple times
inside a CSCFG. Hence, in the following we will use a refined notion of the Start set
so that in each “start α” and “end α” node used to represent a process, α is now any
specification position representing a process call instead of a process definition (i.e., not
necessarily α P ProcpSq):

StartpSq “ t“start pMAIN, 0q”, “end pMAIN, 0q”u
Y t“start α”, “end α”| α P CallspSqu
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start
MAIN,0

||
MAIN,1

BUS

MAIN,1.1

P1
MAIN,1.2

||

MAIN,2

BUS
MAIN,2.1

P2
MAIN,2.2

end
MAIN,0

start

P1,0

end
P1,0

start
P2,0

wait
P1,1

→

P1,Λ

board
P1,2.1

→

P1,2

alight
P1,2.2.1

→

P1,2.2

SKIP
P1,2.2.2

alight
P2,2.2.2.1

→

P2,2.2.2

SKIP
P2,2.2.2.2

end
P2,0

→

P2,2.2

pay
P2,2.2.1

→

P2,2

board
P2,2.1

→

P2,Λ

wait
P2,1

start
BUS,0

board
BUS,1

→

BUS,Λ

alight
BUS,2.1

→

BUS,2

SKIP
BUS,2.2

end
BUS,0

control flow

synchronization

;

MAIN,Λ

(a) SCFG

start

MAIN,0

||
MAIN,1

BUS
MAIN,1.1

P1
MAIN,1.2

;

MAIN,Λ

||

MAIN,2

BUS

MAIN,2.1

P2

MAIN,2.2

end
MAIN,0

start
MAIN,1.2

end
MAIN,1.2

start

MAIN,2.2

wait
P1,1

→

P1,Λ

board
P1,2.1

→

P1,2

alight
P1,2.2.1

→

P1,2.2

SKIP

P1,2.2.2

alight

P2,2.2.2.1

→

P2,2.2.2

SKIP
P2,2.2.2.2

end
MAIN,2.2

→

P2,2.2

pay
P2,2.2.1

→

P2,2

board

P2,2.1

→

P2,Λ

wait
P2,1

start
MAIN,1.1

board
BUS,1

→

BUS,Λ

alight
BUS,2.1

→

BUS,2

SKIP

BUS,2.2

end
MAIN,1.1

start
MAIN,2.1

board
BUS,1

→

BUS,Λ

alight
BUS,2.1

→

BUS,2

SKIP

BUS,2.2

end
MAIN,2.1

(b) CSCFG

Figure 6: SCFG and CSCFG of the program in Example 3

Y t“end α”| α P PospSq ^ litpαq P tz, vwuu

Using the specification position of the process call allows us to distinguish between dif-
ferent process calls to the same process. Note that we also added to the set the initial
and ending nodes of the graph (“start pMAIN, 0q” and “end pMAIN, 0q”).

Before we properly define the CSCFG, we provide a notion of path and context.

Definition 5. (Path) Given a labeled graph G “ pN,Ecq, a path between two nodes
n1, nk P N , represented by n1 ÞÑ

˚ nk, is a sequence lpn1q, . . . , lpnk´1q such that for all
1 ď i ă k we have ni ÞÑ ni`1 P Ec. The path is loop-free if for all i ‰ j we have ni ‰ nj .

Definition 6. (Context) Given a labeled graph G “ pN,Ecq and a node n P N , the
context of n, Conpnq “ tm P N | lpmq “ “start α”, α P CallspSq and there exists a
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loop-free path π “ m ÞÑ˚ n with “end α” R πu.

Intuitively speaking, the context of a node represents the set of processes in which a
particular node is being executed. If we focus on a node n with lpnq P CallspSq we can
use the context to identify loops because we have a loop whenever “start lpnq” P Conpnq.

The main difference between the SCFG and the CSCFG is that the SCFG represents
a process with a single collection of nodes (each specification position in the process is
represented with a single node, see Figure 6(a)); in contrast, the CSCFG represents a
process with multiple collections of nodes, each collection representing a different call to
this process (i.e., a different context in which it is executed. For instance, see Figure 6(b)
where process BUS is represented twice). Therefore, the notion of control flow used in
the SCFG is insufficient for the CSCFG, and we need to extend it to also consider the
context of process calls.

Definition 7. (Context-sensitive control flow) Given a CSP specification S and a labeled
graph G “ pN,Ecq such that @n P N, lpnq P PospSq Y StartpSq, the context-sensitive
control flow is a binary relation between the nodes in N . Given two nodes n, n1 P N , we
say that the context-sensitive control of n can pass to n1, i.e., n ÞÑ n1 P Ec, iff:

• the control of n can pass to n1, or

• litplpn1qq “ ; ^ lpn1q “ pM,wq ^ lpnq P lastpn2q with n2 P N ^ lpn2q “ pM,w.1q

• lpn1q “ “end pM,wq”^ litppM,wqq P tz, vwu ^ lpnq P lastpn2q with n2 P N ^ lpn2q “
pM,w.1q

where lastpnq with lpnq “ pM,wq is the set of possible termination points of n:

lastpnq “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

tpM,wqu if litppM,wqq “ SKIP
H if litppM,wqq “ STOP _ plitppM,wqq P t|||, ||u^

plastpn1q “ H_ lastpn2q “ Hqq_
plitppM,wqq P CallspSq ^ “start pM,wq” P Conpnqq

lastpn1q if litppM,wqq P t[,l,ćču _ plitppM,wqq P t|||, ||u^
Y lastpn2q lastpn1q ‰ H^ lastpn2q ‰ Hq
lastpn2q if litppM,wqq P tÑ, ; u
t“end pM,wq”u if litppM,wqq P tz, vwu_

plitppM,wqq P CallspSq ^ “start pM,wq” R Conpnqq

where lpn1q “ pM,w.1q and lpn2q “ pM,w.2q.

Definition 8. (Context-sensitive Synchronized Control Flow Graph) Given a CSP spec-
ification S, we define its Context-sensitive Synchronized Control Flow Graph as a graph
G “ pN,Ec, El, Esq where nodes N are labeled so that @n P N, lpnq P PospSq Y
StartpSq; and StartpSq “ t“start pMAIN, 0q”, “end pMAIN, 0q”uYt“start α”, “end α”| α P
CallspSqu Y t“end α”| litpαq P tz, vwuu. Edges are divided into three groups, control-flow
arcs (Ec), loop arcs (El) and synchronization edges (Es).

• Es is a set of edges (denoted by e) representing the possible synchronization of
two (event) nodes.6
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• Ec is a set of arcs (denoted by ÞÑ) such that, given two nodes n, n1 P N , n ÞÑ n1 P Ec
iff the context-sensitive control of n can pass to n1 or lpnq P CallspSq ^ lpn1q “
“start lpnq”. And given three nodes n1, n2, n5 P N :

– pn1 ÞÑ n2q P Ec iff lpn1q “ “start α”^ litpαq “M ^ lpn2q “ firstppM,Λqq,

– if lpn1q P CallspSq, lpn2q “ “start lpn1q” and n2 P Conpn1q then @n4 P

N, pn4 ÞÑ n5q with lpn4q P lastpn3q with n2 ÞÑ n3^ lpn5q “ “end α”, and

– pn1 ÞÑ n2q P Ec iff lpn1q P lastppMAIN,Λqq ^ lpn2q “ “end pMAIN, 0q”.

• El is a set of edges (denoted by ù) used to represent loops, i.e., pn1 ù n2q P El
iff lpn1q P CallspSq, lpn2q “ “start lpn1q” and n2 P Conpn1q.

The CSCFG satisfies the following properties: (i) Two nodes can have the same label.
(ii) Every node whose label belongs to t“start α”| α P CallspSqu has one and only one
incoming arc in Ec. (iii) Every process call node has one and only one outgoing arc that
belongs to either Ec or El.

The key difference between the SCFG and the CSCFG is that the latter unfolds
every process call node except those that belong to a loop. This is very convenient
for slicing because every process call that is executed in a different context is unfolded
and represented with a different subgraph, thus, slicing does not mix computations.
Moreover, it allows us to deal with recursion and, at the same time, it prevents infinite
unfolding of process calls thanks to the use of loop arcs. Note that loop arcs are only
used when the context is repeated (this is ensured by item 3 of the definition). Note also
that loops are unfolded only once because the second time they are going to be unfolded
the context of the process call node is repeated, and thus a loop arc is used to prevent
the unfolding. Properties 2 and 3 ensure finiteness because process calls only have one
outgoing arc, and thus, they cannot have a control arc if there is already a loop arc.

The following lemma ensures that the CSCFG is complete: all possible derivations of
a CSP specification S are represented in the CSCFG associated to S.

Lemma 1. Let S be a CSP specification, D “ s0 ÝÑ . . . ÝÑ sn`1, n ě 0, a derivation of
S performed with the instrumented semantics, where s0 “ prhspMAINqα,Hq and sn`1 “

pPϕ, ωq, and G “ pN,Ec, El, Esq the CSCFG associated with S. Then, @γ P ω : D π “
n1 ÞÑ

˚ nk P Ec, n1, nk P N , k ě 1, with lpn1q “ α and lpnkq “ γ.

This lemma ensures that all derivations are represented in the CSCFG with a path;
but, of course, because it is a static representation of any possible execution, the CSCFG
also introduces a source of imprecision. This imprecision happens when loop arcs are
introduced in a CSCFG, because a loop arc summarizes the rest of a computation with
a single collection of nodes, and this collection could mix synchronizations of different
iterations. However, note that all process calls of the specification are unfolded and
represented with an exclusive collection of nodes, and loop arcs are only introduced
if the same call is repeated again. This produces a high level of precision for slicing
algorithms.

Because Definition 8 is a declarative definition, it is not very useful for implementors;
and hence, we also provide a constructive method that is the basis of our implementation.
In particular, the CSCFG can be constructed starting from MAIN, and connecting each
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process call to a subgraph that contains the right-hand side of the called process. Each
right-hand side is a new subgraph except if a loop is detected. This process is described
in Algorithm 1.

Algorithm 1 Computing the CSCFG

Input: A specification S with initial process MAIN

Output: The CSCFG G of S
Begin
Pending={MAIN}
while Pending ‰ H do

(1) pN 1, E1c, El, nfirst, Lastq “ buildGraphprhspP q,Hq where P P Pending
(2) N “ N 1 Y tnstart, nendu where nstart, nend are fresh,

lpnstartq “ “start pP, 0q” and lpnendq “ “end pP, 0q”
(3) Ec “ E1c Y tnstart ÞÑ nfirstu Y tnlast ÞÑ nend | nlast P Lastu
(4) Pending “ tP 1 P ProcpSq | En P N : litplpnqq “ P 1u

Es is obtained following the technique from [23]
return G “ pN,Ec, El, Esq
End

Function buildGraphpP,Ctxq “ pN,Ec, El, nfirst, Lastq where:

• ((Parameterized) Process call). If P “ Xα and α P CallspSq then

– if Dnctx P Ctx such that lpnctxq “ “start α” then

N “ tnαu,
Ec “ H,
El “ tpnα ù nctxqu,
nfirst “ nα and Last “ H

– else
N “ N1 Y tnα, nstart, nendu,
Ec “ Ec1 Y Ec2,
El “ El1,
nfirst “ nα and Last “ tnendu

where

nα, nstart, nend are fresh ^ lpnαq “ α ^ lpnstartq “ “start α” ^
lpnendq “ “end α” ^ X “ Q P S ^
pN1, Ec1, El1, nfirst1, Last1q “ buildGraphpQ,CtxY tnstartuq ^
Ec2 “ tpnα ÞÑ nstartq, pnstart ÞÑ nfirst1qu Y tpnlast ÞÑ nendq | nlast P Last1u.

• (Prefixing). If P “ Xα Ñβ Q and X P ta, a?v, a!vu then

N “ N1 Y tnα, nβu,
Ec “ Ec1 Y tpnα ÞÑ nβq, pnβ ÞÑ nfirst1qu,
El “ El1,
nfirst “ nα and Last “ Last1
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where
nα, nβ are fresh ^ lpnαq “ α ^ lpnβq “ β ^

pN1, Ec1, El1, nfirst1, Last1q “ buildGraphpQ,Ctxq.

• (Choice and parallelism). If P “ Q Xα R and X Pt[,l,ćč, |||, ||u then

N “ N1 YN2 Y tnαu,
Ec “ Ec1 Y Ec2 Y tpnα ÞÑ nfirst1q, pnα ÞÑ nfirst2qu,
El “ El1 Y El2,
nfirst “ nα and

Last “

$

’

’

&

’

’

%

Last1 Y Last2 if X P t[,l,ćču_
pLast1 ‰ H^ Last2 ‰ Hq

H if X P t|||, ||u^
pLast1 “ H_ Last2 “ Hq

where
nα is fresh ^ lpnαq “ α ^

pN1, Ec1, El1, nfirst1, Last1q “ buildGraphpQ,Ctxq ^
pN2, Ec2, El2, nfirst2, Last2q “ buildGraphpR,Ctxq.

• (Sequential composition). If P “ Q ;α R then

N “ N1 YN2 Y tnαu,
Ec “ Ec1 Y Ec2 Y Ec3 Y tpnα ÞÑ nfirst2qu,
El “ El1 Y El2,
nfirst “ nfirst1 and Last “ Last2

where
nα is fresh ^ lpnαq “ α ^

pN1, Ec1, El1, nfirst1, Last1q “ buildGraphpQ,Ctxq ^
pN2, Ec2, El2, nfirst2, Last2q “ buildGraphpR,Ctxq ^
Ec3 “ tpnlast ÞÑ nαq | nlast P Last1u.

• (Hiding and renaming). If P “ Q Xα and X P tz, vwu then

N “ N1 Y tnα, nendu,
Ec “ Ec1 Y Ec2 Y tpnα ÞÑ nfirst1qu,
El “ El1,
nfirst “ nα and Last “ tnendu

where

nα, nend are fresh ^ lpnαq “ α ^ lpnendq “ “end α” ^

pN1, Ec1, El1, nfirst1, Last1q “ buildGraphpQ,Ctxq ^
Ec2 “ tpnlast ÞÑ nendq | nlast P Last1u.

• (SKIP and STOP). If P “ Xα and X P tSKIP, STOP u then

N “ tnαu,
Ec “ H,
El “ H,
nfirst “ nα and
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Last “

"

tnαu if X “ SKIP
H if X “ STOP

where
nα is fresh ^ lpnαq “ α.

The following Lemma ensures that the graph produced by Algorithm 1 is a CSCFG.

Lemma 2. Let S be a CSP specification. Then, the execution of Algorithm 1 with S
produces a graph G that is the CSCFG associated with S according to Definition 8.

For slicing purposes, the CSCFG is interesting because we can use the edges to
determine if a node must be executed or not before another node, thanks to the following
properties:

• if n ÞÑ n1 P Ec then n must be executed before n1 in all executions.

• if n ù n1 P El then n1 must be executed before n in all executions.

• if ne n1 P Es then n and n1 are executed at the same time in all executions.

While the third property is obvious and it follows from the semantics of synchronized
parallelism (concretely, from rule (Synchronized Parallelism 3)), the other two properties
require proof. The second property follows trivially from the first property and Defini-
tion 8, because loop edges only connect a process call node to a node already repeated
in the computation. The first property corresponds to Lemma 3.

Lemma 3. Let S be a CSP specification and let G “ pN,Ec, El, Esq be the CSCFG
associated with S according to Definition 8. If n ÞÑ n1 P Ec then n must be executed
before n1 in all executions.

Thanks to the fact that loops are unfolded only once, the CSCFG ensures that all the
specification positions inside the loops are in the graph and can be collected by slicing
algorithms. For slicing purposes, this representation also ensures that every possibly
executed part of the specification belongs to the CSCFG because only loops (i.e., repeated
nodes) are missing.

Example 6. Consider the specification of Example 3 and its associated CSCFG shown
in Figure 6(b). If we select the node labeled (P1,alight) and traverse the CSCFG
backwards in order to identify the nodes on which this node depends, we only get the
nodes of the graph colored in gray. This particular slice is optimal and much smaller
than the slice obtained when we select the same node (P1,alight) in the SCFG (see
Figure 6(a)).

The CSCFG provides a different representation for each context in which a process
call is made. This can be seen in Figure 6(b) where process BUS appears twice to account
for the two contexts in which it is called. In particular, in the CSCFG we have a fresh
node to represent each different process call, and two nodes point to the same process if
and only if they are the same call (they are labeled with the same specification position)
and they belong to the same loop. This property ensures that the CSCFG is finite.

Lemma 4. (Finiteness) Given a specification S, its associated CSCFG is finite.
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Example 7. The specification in Figure 7 makes clear the difference between the SCFG
and the CSCFG. While the SCFG only uses one representation for the process P (there
is only one start P), the CSCFG uses four different representations because P could be
executed in four different contexts. Note that due to the infinite loops, some parts of the
graph are not reachable from start MAIN; i.e., there is no possible control flow to end

MAIN.

MAIN = P ; P

P = Q

Q = P

SCFG
start

MAIN,0

P

MAIN,1

;

MAIN,Λ

end

MAIN,0

start

P,0
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P,Λ

start
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Q,Λ
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Q,Λ
control flow

synchronization

loop

Figure 7: SCFG and CSCFG representing an infinite computation

4. Static Slicing of CSP Specifications

We want to perform two kinds of analysis. Given a point in the specification, we want,
on the one hand, to determine what parts of the specification MUST be executed before
(MEB) it (in every possible execution); and, on the other hand, we want to determine
what parts of the specification COULD be executed before (CEB) it (in any possible
execution). Both analyses are closely related but they must be computed differently.
While MEB is mainly based on backward slicing, CEB is mainly based on forward slicing
to explore what could be executed in parallel processes.

We can now formally define our notion of slicing criterion.

Definition 9. (Slicing Criterion) Given a specification S, a slicing criterion is a speci-
fication position C P PospSq.
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Clearly, the slicing criterion points to a set of nodes in the CSCFG, because the same
specification position can happen in different contexts and, thus, it is represented in the
CSCFG with different nodes. As an example, consider the slicing criterion (BUS,alight)

for the specification in Example 3, and observe in its CSCFG in Figure 6(b) that two
different nodes are identified by the slicing criterion.

This means that a slicing criterion C is used to produce a slice with respect to all pos-
sible executions of C. We use the function nodespCq to refer to all the nodes in the CSCFG
identified by the slicing criterion C. Formally, given a CSCFG G “ pN,Ec, El, Esq,

nodespCq “ tn P N | lpnq “ C ^ MAIN ÞÑ˚ n ^ E n1 P N | lpn1q “ C and n1 ÞÑ˚ nu

Note that the slicing criterion could point to nodes that are not reachable from MAIN such
as dead code (see, e.g., Figure 7). Therefore, we force nodespCq to exclude these nodes so
that only feasible computations (starting from MAIN) are considered. Moreover, the slicing
criterion could also point to different nodes that represent the same specification position
that is executed many times in a (sub)computation (see, e.g., specification position pP, Λq
in the CSCFG of Figure 7). Thus, we only select the first occurrence of this specification
position in the computation.

Given a slicing criterion pM,wq, we use the CSCFG to approximate MEB and CEB.
Computing correct slices is known as an undecidable problem even in the sequential set-
ting (see, e.g., [28]). Therefore, our MEB and CEB analyses are an over-approximation.
In this section we introduce lemmas to ensure the completeness of the analyses.

Regarding the MEB analysis, one could think that a simple backwards traversal of the
graph from nodespCq would produce a correct slice. Nevertheless, this would produce a
rather imprecise slice because this would include both branches of the choices in the path
from MAIN to C even if they do not need to be executed before C (consider for instance
the process ((aÑSKIP)l(bÑSKIP));P and the slicing criterion P). The union of paths
from MAIN to nodespCq is not a solution, either, because it would be too imprecise by
including in the slice parts of code that are executed before the slicing criterion only in
some executions. For instance, in the process (bÑaÑSKIP)l(cÑaÑSKIP), c belongs
to one of the paths to a, but it must be executed before a or not depending on the
choice. The intersection of paths is not a solution, either, as it can be seen in the process
aÑ((bÑSKIP)||(cÑSKIP));P where b must be executed before P, but it does not
belong to all the paths from MAIN to P.

Before we introduce an algorithm to compute MEB, we need to formally define the
notion of MEB slice.

Definition 10. (MEB Slice) Given a specification S with an associated CSCFG G “
pN,Ec, El, Esq, and a slicing criterion C for S; the MEB slice of S with respect to C is a
subset P 1 of PospSq such that P 1 “

Ş

tω | pMAIN,Hq Ñ˚ pP, ωq Ñ pP 1, ω1q ^ C R ω^ C P
ω1u.

Algorithm 2 can be used to compute the MEB analysis. It basically computes for
each node in nodespCq a set containing the part of the specification that must be executed
before it. Then, it returns MEB as the intersection of all these sets. Each set is computed
with function buildMeb, which is an iterative process that takes a node and performs the
following actions:
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1. It starts with an initial set of nodes computed in (1) by collecting those nodes that
were executed just before the initial node (i.e., they are connected to it or to a
node synchronized with it with a control arc).

2. The initial set Meb is the backwards traversal of the CSCFG from the initial set
following control arcs (2).

3. Those nodes that could not be executed before the initial node are added to a
blacklist (3) and (4). The nodes in the blacklist are discarded because they are
either a successor of the nodes in the slicing criterion (and thus they are executed
always after it), or they are executed in a branch of a choice that cannot lead to the
slicing criterion. Note that the blacklist in sentence (4) is computed by iteratively
collecting all the nodes that are a (control) successor of the nodes in the previous
blacklist (initially the slicing criterion); and it also adds to the blacklist those nodes
that are only synchronized with nodes in the blacklist.

4. A set of pending nodes that should be considered is computed in (5). This set
contains nodes that are synchronized with the nodes in Meb (thus they are executed
at the same time). Therefore, synchronizations are followed in order to reach new
nodes that must be executed before the slicing criterion (7) and (8). These steps are
repeated until no new nodes are reached. This is controlled with the set pending
(6) and (9).

The algorithm always terminates as stated in the following lemma.

Theorem 8 (Termination of MEB). The MEB analysis performed by Algorithm 2 ter-
minates.

Theorem 9 (Completeness of MEB). Let S be a specification, C a slicing criterion for
S, and let MEB be the MEB slice of S with respect to C. Then, MEB Ď MEBpS, Cq.

The CEB analysis computes the set of nodes in the CSCFG that could be executed
before a given node n. This means that all those nodes that must be executed before n
are included, but also those nodes that are executed before n in some executions, and
they are not in other executions (e.g., due to non-synchronized parallelism). Formally,

Definition 11. (CEB Slice) Given a specification S with an associated CSCFG G “
pN,Ec, El, Esq, and a slicing criterion C for S; the CEB slice of S with respect to C is a
subset P 1 of PospSq such that P 1 “

Ť

tω | pMAIN,Hq Ñ˚ pP, ωq Ñ pP 1, ω1q ^ C R ω^ C P
ω1u.

Therefore, MEBpS, Cq Ď CEBpS, Cq.
The graph CEBpS, Cq can be computed with Algorithm 3 that, roughly, traverses

the CSCFG forwards following all the paths that could be executed in parallel to nodes
in MEBpS, Cq. In particular, the algorithm computes for each node in nodespCq a set
containing the part of the specification that could be executed before it. Then, it returns
CEB as the union of all these sets. Each set is computed with function buildCeb, which
proceeds as follows:

1. In sentence (1), it initializes the set Ceb with function buildMeb (trivially, all those
specification positions that must be executed before a node n, could be executed
before it).
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Algorithm 2 Computing the MEB set

Input: A CSCFG pN,Ec, El, Esq of a specification S and a slicing criterion C
Output: A slice of S

Function buildMebpnq :=
(1) init :“ tn1 | pn1 ÞÑ oq P Ecu where o P tnu Y to1 | po1 e nq P Esu
(2) Meb :“ to P (MAIN ÞÑ˚ mq | m P initu
(3) blacklist :“ tnu Y tp P NzMeb | po ÞÑ pq P Ec with litplpoqq P t[,l, |||u, o P Meb

and E q P Meb such that q is reachable from p
following control or loop arcs}

repeat
(4) blacklist :“ blacklistY tp P N | o ÞÑ˚ p with o P blacklistu

Y tp P N | poe pq P Es with o P blacklist
and Eppe p1q P Es with p1 R blacklistu

until a fix point is reached
(5) pending :“ tq P NzpblacklistYMebq | pq e rq P Es with r P Meb

or ppq ù rq P El and @ s P pr ÞÑ˚ qq . pDpse tq P Es with t P Meb
or Epse tq P Esqqu

(6) while D m P pending do
(7) Meb :“ Meb Y tmu Y to P NzMeb | pp ÞÑ` o ÞÑ˚ mq with p P Mebu
(8) sync :“ tq P NzpblacklistYMeb Y pendingq | pq e rq P Es with r P Meb

or ppq ù rq P El and @ s P pr ÞÑ˚ qq . pDpse tq P Es with t P Meb
or Epse tq P Esqqu

(9) pending :“ ppendingzMebq Y sync
(10) return Meb

Return: MEBpS, Cq “
Ş

nPnodespCq
tlpn1q | n1 P buildMebpnqu

2. In sentence (2), it initializes the set loopnodes. This set represents the nodes
that belong to a loop in the computation executed before the slicing criterion was
reached. For instance, in the process A=(aÑA)l(bÑSKIP) the left branch of the
choice is a loop that could be executed several times before the slicing criterion, say
b, was executed. Initially, this set contains the first node in a branch of a choice
operator that does not belong to Ceb but can reach Ceb through a loop arc.

3. The set loopnodes is computed in the first loop of the algorithm, sentences (4) to
(10) and they are finally added to the slice (i.e., Ceb). In particular, sentence (11)
checks that the whole loop could be executed before the slicing criterion. If some
sentence of the loop could not be executed before (e.g., because it is synchronized
with an event that must occur after the slicing criterion), then the loop is discarded
and not included in the slice.

4. The second loop of the algorithm, sentences (12) to (18), is used to collect all
those nodes that could be executed in parallel to the nodes in the slice (in Ceb).
In particular, it traverses branches executed in parallel to nodes in Ceb until a
node that could not be executed before the slicing criterion is found. For instance,
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consider the process A=(aÑbÑSKIP)||tbu(cÑbÑSKIP); and let us assume that
the slicing criterion is c. Similarly to the first loop of the algorithm, the second
loop traverses the left branch of the parallelism operator forwards until an event
that could not be executed before the slicing criterion is found (in this example,
b). Therefore, aÑ would be included in the slice.

Algorithm 3 Computing the CEB set

Input: A CSCFG pN,Ec, El, Esq of a specification S and a slicing criterion C
Output: A slice of S

Function buildCebpnq :=
(1) Ceb :“ buildMebpnq
(2) loopnodes :“ tp | n1 ÞÑ p ÞÑ˚ n2 ù n3

with n1 P choicespCebq, p, n2 R Ceb and n3 P Cebu
(3) candidates :“ H

repeat
(4) if Dpm ÞÑ m1q P Ec with m P loopnodes and m1 R loopnodes
(5) then if Dpm1 e m2q P Es with m2 P Ceb or Epm1 e m2q P Es)
(6) then loopnodes :“ loopnodesY tm1u
(7) else candidates :“ candidatesY tm1u
(8) if Dpme m1q P Es and m,m1 P candidates
(9) then loopnodes :“ loopnodesY tm,m1u
(10) candidates :“ candidatesztm,m1u

until a fix point is reached
(11) Ceb :“ Ceb Y tp P loopnodes | @ o P loopnodes, p ÞÑ˚ o ù q with q P Cebu
(12) pending :“ tm P NzpCebYtnuq | pm1 ÞÑ mq P Ec and m1 P CebzchoicespCebqu

repeat
(13) if D m P pending | pme m1q R Es or ppme m1q P Es and m1 P Cebq
(14) then Ceb :“ Ceb Y tmu
(15) pending :“ ppendingztmuq Y tm2 | pm ÞÑ m2q P Ec and m2 R Cebu
(16) else if D m P pending and pme m1q P Es with m1 P pending
(17) then Ceb :“ Ceb Y tm,m1u
(18) pending :“ ppendingztm,m1uq Y tp | po ÞÑ pq P Ec and p R Ceb,

with o P tm,m1uu
until a fix point is reached

(19) return Ceb

Return: CEBpS, Cq “
Ť

nPnodespCq
tlpn1q | n1 P buildCebpnqu

The algorithms presented can extract a slice from any specification formed with the
syntax of Figure 1. However, note that only two operators have a special treatment in the
algorithms: choices (because they introduce alternative computations) and synchronized
parallelism constructs (because they introduce synchronization). Other operators such
as prefixing, interleaving or sequential composition are only taken into account in the
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CSCFG construction phase; and they can be treated similarly in the algorithm (i.e., they
are traversed forwards or backwards by the algorithm when exploring computations).

Theorem 10 (Termination of CEB). The CEB analysis performed by Algorithm 3 ter-
minates.

Theorem 11 (Completeness of CEB). Let S be a specification, C a slicing criterion for
S, and let CEB be the CEB slice of S with respect to C. Then, CEB Ď CEBpS, Cq.

5. Implementation

We have implemented the MEB and CEB analyses and the algorithms to build the
CSCFG for ProB. ProB [16] is an animator for the B-Method which also supports other
languages such as CSP [4, 17]. ProB has been implemented in Prolog and it is publicly
available at http://www.stups.uni-duesseldorf.de/ProB.

Our tool is called SOC (which stands for Slicing Of CSP) and it is currently inte-
grated, distributed and maintained for Mac, Linux and Windows since the 1.3 release
of ProB. In SOC, the slicing process is completely automatic. Once the user has loaded
a CSP specification, she can select (with the mouse) the event, operator or process call
she is interested in. Obviously, this simple action is enough to define a slicing criterion
because the tool can automatically determine the process and the source position of in-
terest. Then, the tool internally generates an internal data structure (the CSCFG) that
represents all possible computations, and uses the MEB and CEB algorithms to construct
the slices. The result is shown to the user by highlighting the part of the specification
that must (respectively could) be executed before the specified event. Figure 8 shows
a screenshot of the tool showing a slice of the specification in Example 1. SOC also
includes a transformation to convert slices into executable programs. This allows us to
use SOC for program specialization. The specialized versions produced can be directly
executed in ProB.

5.1. Architecture of SOC

SOC has been implemented in Prolog and it has been integrated in ProB. Therefore,
SOC can take advantage of ProB’s graphical features to show slices to the user. In order
to be able to color parts of the code, it has been necessary to implement the source code
positions detection in such a way that ProB can color every subexpression that is sliced
by SOC.

Figure 9 summarizes the internal architecture of SOC. Note that both the graph
compaction module and the slicing module take a CSCFG as input, and hence, they are
independent of CSP. Apart from the interface module for the communication with ProB,
SOC has three main modules that we describe in the following:

Graph Generation

The first task of the slicer is to build a CSCFG. The module that generates the CSCFG
from the source program is the only module that is CSP dependent. This means that
SOC could be used in other languages by only changing the graph generation module.

Nodes and control and loop arcs are built following Definition 8. For synchronization
edges we use an algorithm based on the approach by Naumovich et al. [23]. For efficiency
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Figure 8: Slice of a CSP specification produced by SOC

reasons, the implementation of the CSCFG makes some simplifications that reduce the
size of the graph. For instance, “start” and “end” nodes are not present in the graph.
Another simplification to reduce the size of the graph is graph compaction (described
below).

We have implemented two versions of this module. The first version has the objective
of producing a precise analysis. For this purpose, the notion of context described in
Definition 6 is used together with the first property of Definition 8. Recall that this
property uses the context to introduce loop arcs in the graph whenever a specification
position is repeated in a loop. However, this notion of context can produce big CSCFGs
with some examples. This implies more memory usage and more time to compute the
graphs and the slices. In such cases, the user could be interested in producing the CSCFG
as fast as possible; for instance, when the analysis is used as a preprocessing stage of
another analysis. Therefore, we have produced a lightweight version to produce a fast
analysis when necessary. This second version uses a relaxed notion of context that allows
the CSCFG to cut more branches of the graph with loop arcs. The fast analysis replaces
property one in Definition 8 by
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Figure 9: Slicer’s Architecture

• There is a special set of loop arcs (El) denoted with ù. pn1 ù n2q P El iff
lpn1q P CallspSq ^ lpn2q “ “start s”^ litplpn1qq “ litpsq ^ n2 P Conpn1q.

which skips the restriction that the specification position of n1 must be repeated. There-
fore, while the precise context only introduces a loop arc in the CSCFG when the same
specification position is repeated in a branch, the fast context introduces a loop arc when
the same process call is repeated, even if the specification position of the call is different.

Example 12. Consider again the CSCFG in Figure 7. This CSCFG corresponds to the
precise context, and thus loop arcs are only used when the same specification position
is repeated. In contrast, the CSCFG constructed using the fast context uses loop arcs
whenever the same process call is repeated (i.e., the literal). It is depicted in Figure 10.

Both analyses have been compared with several benchmarks. The results are pre-
sented in Section 5.2.

Graph Compaction

For the sake of clarity, the definition of CSCFG proposed does not take into account
efficiency. In particular, it includes several nodes that are unnecessary from an imple-
mentation point of view. Therefore, we have implemented a module that reduces the size
of the CSCFG by removing superfluous nodes and by joining together those nodes that
form paths that the slicing algorithms must traverse in all cases. This compaction not
only reduces the size of the stored CSCFG, but it also speeds up the slicing process due
to the reduced number of nodes to be processed.
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control flow

synchronization

loop

Node         Sequence of nodes

1 start (MAIN,0), P (MAIN,1), start (MAIN,1)

2 Q (P,Λ), start (P,Λ)

3 P (Q,Λ), start (Q,Λ)

4 Q (P,Λ)

5 end (Q,Λ), end (P,Λ), end (MAIN,1), ; (MAIN,Λ)

6 P (MAIN,2), start (MAIN,2)

7 Q (P,Λ), start (P,Λ)

8 P (Q,Λ), start (Q,Λ)

9 Q (P,Λ)

10 end (Q,Λ), end (P,Λ), end (MAIN,2), end (MAIN,0)

Figure 10: CSCFG of the specification in Figure 7 using the fast context.

For instance, the graph of Figure 11 is the compacted version of the CSCFG in
Figure 6(b). Here, e.g., node 2 accounts for the sequence of nodes BUS and start BUS.
The compacted version is a very convenient representation because the reduced data
structure speeds up the graph traversal process. In practice, the graph compaction
phase reduces the size of the graph up to 40% on average.
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7 8

end

MAIN
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board
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alight alight

11
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           Node         Sequence of nodes

1 start MAIN, ||

2 BUS, start BUS

3 P1, start P1, wait, →

4 →, SKIP, end BUS

5 →, SKIP, end P1

6 ; , ||

7 BUS, start BUS

8 P2, start P2, wait, →

9 →, pay, →

10 →, SKIP, end BUS

11 →, SKIP, end P2

Figure 11: Compacted version of the CSCFG in Figure 6(b)

Slicing Module

This is the main module of the tool. It is further composed of two submodules that
implement the algorithms to perform the MEB and CEB analyses on the compacted
CSCFGs. This module extracts two subgraphs from the compacted CSCFG using both
MEB and CEB. Then, it extracts from the subgraphs the part of the source code which
forms the slice. This information can be extracted directly from the graph because its
nodes are labeled with the specification positions to be highlighted. If the user has
selected to produce an executable slice, then the slice is further transformed to become
executable (it mainly fills gaps in the produced slice in order to respect the syntax of the
language). The final result is then returned to ProB in such a way that ProB can either
highlight the final slice or save a new CSP executable specification in a file.
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Table 1: Benchmark time results for the FAST and PRECISE CONTEXT

(a) Benchmark time results for the FAST CONTEXT

Benchmark CSCFG MEB CEB Total

ATM.csp 805 ms. 36 ms. 67 ms. 908 ms.
RobotControl.csp 277 ms. 39 ms. 21 ms. 337 ms.
Buses.csp 29 ms. 2 ms. 1 ms. 32 ms.
Prize.csp 55 ms. 35 ms. 10 ms. 100 ms.
Phils.csp 72 ms. 12 ms. 4 ms. 88 ms.
TrafficLights.csp 103 ms. 20 ms. 12 ms. 135 ms.
Processors.csp 10 ms. 4 ms. 2 ms. 16 ms.
ComplexSync.csp 212 ms. 264 ms. 38 ms. 514 ms.
Computers.csp 23 ms. 6 ms. 1 ms. 30 ms.
Highways.csp 11452 ms. 100 ms. 30 ms. 11582 ms.

(b) Benchmark time results for the PRECISE CONTEXT

Benchmark CSCFG MEB CEB Total

ATM.csp 10632 ms. 190 ms. 272 ms. 11094 ms.
RobotControl.csp 2603 ms. 413 ms. 169 ms. 3185 ms.
Buses.csp 25 ms. 1 ms. 0 ms. 26 ms.
Prize.csp 352 ms. 317 ms. 79 ms. 748 ms.
Phils.csp 96 ms. 12 ms. 8 ms. 116 ms.
TrafficLights.csp 2109 ms. 1678 ms. 416 ms. 4203 ms.
Processors.csp 15 ms. 2 ms. 5 ms. 22 ms.
ComplexSync.csp 23912 ms. 552 ms. 174 ms. 24638 ms.
Computers.csp 51 ms. 4 ms. 6 ms. 61 ms.
Highways.csp 58254 ms. 1846 ms. 2086 ms. 62186 ms.

5.2. Benchmarking the slicer

In order to measure the performance and the slicing capabilities of our tool, we
conducted some experiments over the following benchmarks:

• ATM.csp. This specification represents an Automated Teller Machine. The slicing
criterion is (Menu,getmoney), i.e., we are interested in determining what parts of
the specification must be executed before the menu option getmoney is chosen in
the ATM.

• RobotControl.csp. This example describes a game in which four robots move in
a maze. The slicing criterion is (Referee,winner2), i.e., we want to know what
parts of the system could be executed before the second robot wins.

• Buses.csp. This example describes a bus service with two buses running in parallel.
The slicing criterion is (BUS37, pay90), i.e., we are interested in determining what
could and could not happen before the user payed at bus 37.
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Table 2: Benchmark size results for the FAST and PRECISE CONTEXT

(a) Benchmark size results for the FAST CONTEXT

Benchmark Ori CSCFG Com CSCFG (%) MEB Slice CEB Slice

ATM.csp 156 nodes 99 nodes 63.46 % 32 nodes 45 nodes
RobotControl.csp 337 nodes 121 nodes 35.91 % 22 nodes 109 nodes
Buses.csp 20 nodes 20 nodes 90.91 % 11 nodes 11 nodes
Prize.csp 70 nodes 52 nodes 74.29 % 25 nodes 42 nodes
Phils.csp 181 nodes 57 nodes 31.49 % 9 nodes 39 nodes
TrafficLights.csp 113 nodes 79 nodes 69.91 % 7 nodes 60 nodes
Processors.csp 30 nodes 15 nodes 50.00 % 8 nodes 9 nodes
ComplexSync.csp 103 nodes 69 nodes 66.99 % 37 nodes 69 nodes
Computers.csp 53 nodes 34 nodes 64.15 % 18 nodes 29 nodes
Highways.csp 103 nodes 62 nodes 60.19 % 41 nodes 48 nodes

(b) Benchmark size results for the PRECISE CONTEXT

Benchmark Ori CSCFG Com CSCFG (%) MEB Slice CEB Slice

ATM.csp 267 nodes 165 nodes 61.8 % 52 nodes 59 nodes
RobotControl.csp 1139 nodes 393 nodes 34.5 % 58 nodes 369 nodes
Buses.csp 22 nodes 20 nodes 90.91 % 11 nodes 11 nodes
Prize.csp 248 nodes 178 nodes 71.77 % 15 nodes 47 nodes
Phils.csp 251 nodes 56 nodes 22.31 % 9 nodes 39 nodes
TrafficLights.csp 434 nodes 267 nodes 61.52 % 7 nodes 217 nodes
Processors.csp 37 nodes 19 nodes 51.35 % 8 nodes 14 nodes
ComplexSync.csp 196 nodes 131 nodes 66.84 % 18 nodes 96 nodes
Computers.csp 109 nodes 72 nodes 66.06 % 16 nodes 67 nodes
Highways.csp 503 nodes 275 nodes 54.67 % 47 nodes 273 nodes

• Prize.csp. This is the specification of Example 1. Here, the slicing criterion is
(YEAR2, fail), i.e., we are interested in determining what parts of the specification
must be executed before the student fails in the second year.

• Phils.csp. This is a simple version of the dining philosophers problem. In this
example, the slicing criterion is (PHIL221, DropFork2), i.e., we want to know what
happened before the second philosopher dropped the second fork.

• TrafficLights.csp. This specification defines two cars driving in parallel on
different streets with traffic lights for cars controlling. The slicing criterion is
(STREET3,park), i.e., we are interested in producing an executable version of the
specification in which we could simulate the executions where the second car parks
on the third street.

• Processors.csp. This example describes a system that, once connected, receives
data from two machines. The slicing criterion is (MACH1,datreq) to know what
parts of the example must be executed before the first machine requests data.
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• ComplexSync.csp. This specification defines five routers working in parallel. Router
i can only send messages to router i`1. Each router can send a broadcast message
to all routers. The slicing criterion is (Process3,keep), i.e., we want to know
what parts of the system could be executed before router 3 keeps a message.

• Computers.csp. This benchmark describes a system in which a user can surf
internet and download files. The computer can check wether files are infected
by virus. The slicing criterion is (USER,consult file), i.e., we are interested
in determining what parts of the specification must be executed before the user
consults a file.

• Highways.csp. This specification describes a net of spanish highways. The slicing
criterion is (HW6,Toledo), i.e., we want to determine what cities must be traversed
in order to reach Toledo from the starting point.

All the source code and other information about the benchmarks can be found at

http://www.dsic.upv.es/~jsilva/soc/examples

For each benchmark, Table 1(a) and Table 1(b) summarize the time spent to generate
the compacted CSCFG (this includes the generation plus the compaction phases), to
produce the MEB and CEB slices (since CEB analysis uses MEB analysis, CEB’s time
corresponds only to the time spent after performing the MEB analysis), and the total
time. Table 1(a) shows the results when using the fast context and Table 1(b) shows the
results associated to the precise context. Clearly, the fast context achieves a significative
time reduction. In these tables we can observe that Highways.csp needs more time even
though the size of its associated CSCFG is similar to the other examples. Almost all the
time needed to construct the CSCFG is used in computing the synchronizations. The
high number of synchronizations performed in Highways.csp is the cause of its expensive
cost.

Table 2(a) and Table 2(b) summarize the size of all objects participating in the slicing
process for both the fast and the precise contexts respectively: Column Ori CSCFG shows
the size of the CSCFG of the original program. Observe that the precise context can
increase the size of the CSCFG up to four times with respect to the fast context. Column
Com CSCFG shows the size of the compacted CSCFG. Column (%) shows the percentage
of the compacted CSCFG’ size with respect to the original CSCFG. Note that in some
examples the reduction is almost 70% of the original size. Finally, columns MEB Slice

and CEB Slice show respectively the size of the MEB and CEB CSCFG’ slices. Clearly,
CEB slices are always equal or greater than their MEB counterparts.

The CSCFG compaction technique seems to be useful. Experiments show that the
size of the original specification is substantially reduced using this technique. The size of
both MEB and CEB slices obviously depends on the slicing criterion selected. Table 2(a)
and Table 2(b) compare both slices with respect to the same criterion but different
contexts and, therefore, they give an idea of the difference between them.

SOC is open and publicly available. All the information related to the experiments,
the source code of the benchmarks, the slicing criteria used, the source code of the tool
and other material related to the project can be found at

http://www.dsic.upv.es/~jsilva/soc
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6. Related Work

Program slicing has been already applied to concurrent programs of different pro-
gramming paradigms, see e.g. [30, 29]. As a result, different graph representations have
arisen to represent synchronization. The first proposal of a program slicing method for
concurrent programs by Cheng [6] was later improved by Krinke [13, 14] and Nanda
[21]. All these approaches are based on the so called threaded control flow graph and the
threaded program dependence graph. Unfortunately, their approaches are not appropriate
for slicing CSP, because their work is based on a different kind of synchronization. They
use the following concept of interference to represent program synchronization.

Definition 12. (Interference) A node S1 is interference dependent on a node S2 if S2
defines a variable v, S1 uses the variable v and S1 and S2 execute in parallel.

In CSP, in contrast, a synchronization happens between two processes if the synchro-
nized event is executed at the same time by both processes. In addition, both processes
cannot proceed in their executions until they have synchronized. This is the key point
that underpin our MEB and CEB analyses. This idea has been already exploited in the
concurrent control flow graph [8] which allows us to model the phenomenon known as
fully-blocking semantics where a process sending a message to other process is blocked
until the other receives the message and vice versa. This is equivalent to our synchro-
nization model. In these graphs, as in previous approaches (and in conventional program
slicing in general), the slicing criterion is a variable in a point of interest, and the slice is
formed by the sentences that influence this variable due to control and data dependences.
For instance, consider the following program fragment:

(1) readpxq;
(2) printpxq;
(3) if x ą 0
(4) then y “ x´ 1;
(5) else y “ 42;
(6) printpyq;
(7) z “ y;

A slice with respect to p7, zq would contain sentences (1), (3), (4) and (5); because z
data depends on y, y data depends on x and (4) and (5) control depend on (3). Sentences
(2) and (6) would be discarded because they are print statements and thus, they do not
have an influence on z.

In contrast, in our technique, if we select (7) as the slicing criterion, we get sentences
(1), (2), (3) and (6) as the MEB slice because these sentences must be executed before
the slicing criterion in all executions. The CEB slice would contain the whole program.

Therefore, the purpose of our slicing technique is essentially different from previous
work: while other approaches try to answer the question “what parts of the program
can influence the value of this variable at this point?”, our technique tries to answer
the question “what parts of the program must be executed before this point? and what
parts of the program can be executed before this point?”. Therefore, our slicing criterion
is different, but also the data structure we use for slicing is different. In contrast to
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previous work, we do not use a PDG like graph, and use instead a CFG like graph,
because we focus on control flow rather than control and data dependence.

Despite the problem being undecidable (see Section 1), determining the MEB and
CEB slices can be very useful and has many different applications such as debugging,
program comprehension, program specialization and program simplification. Surpris-
ingly, to the best of our knowledge, our approach is the first to address the problem in a
concurrent and explicitly synchronized context. In fact, the data structure most similar
to the CSCFG is the SCFG by Callahan and Sublok [5] (see Section 3 for a detailed de-
scription and formalization of this data structure, and a comparison with our CSCFG).
Unfortunately, the SCFG does not take the calling context into account and thus it is
not appropriate for the MEB and CEB analyses.

Our technique is not the first approach that applies program slicing to CSP specifi-
cations. Program slicing has also been applied to CSP by Bruckner and Wehrheim who
introduced a method to slice CSP-OZ specifications [3]. Nevertheless, their approach
ignores CSP synchronization and focus instead on the OZ’s variables. As in previous ap-
proaches, their slicing criterion is a LTL formulae constructed with OZ’s variables; and
they use the standard PDG to compute the slice with a backwards reachability analysis.

7. Conclusions

This work defines two new static analyses that can be applied to languages with
explicit synchronization such as CSP. Both techniques are based on program slicing. In
particular, we introduce a method to slice CSP specifications, in such a way that, given a
CSP specification and a slicing criterion, we produce a slice such that (i) it is a subset of
the specification (i.e., it is produced by deleting some parts of the original specification);
(ii) it contains all the parts of the specification that must be executed (in any execution)
before the slicing criterion (MEB analysis); and (iii) we can also produce an augmented
slice that also contains those parts of the specification that could be executed before the
slicing criterion (CEB analysis).

We have presented two algorithms to compute the MEB and CEB analyses based on
a new data structure, the CSCFG, that has shown to be more precise than the previously
used SCFG. The advantage of the CSCFG is that it cares about contexts, and thus it is
able to distinguish between different contexts in which a process is called. This new data
structure has been formalized in the paper and compared with the predecessor SCFG.

We have built a tool that implements all the data structures and algorithms defined in
the paper; and we have integrated it into the system ProB. This tool is called SOC, and
it is now distributed as a part of ProB. Finally, a number of experiments conducted with
SOC have been presented and discussed. These experiments demonstrated the usefulness
of the technique for different applications such as debugging, program comprehension,
program specialization and program simplification.
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A. Proofs of Technical Results

In order to prove Lemmas 1-4 and Theorems 8-11, we first introduce and prove some
auxiliary lemmas (Lemmas 5-8) that are needed in their proofs.

Lemma 5. Let S be a CSP specification and s
Θ
ÝÑ s1, a rewriting step performed with the

instrumented semantics, with s “ pCtrlα, ωq and s1 “ pCtrl1ϕ, ω
1q. Then, firstpαq P ω1.

Proof. We proceed by analyzing all possible rules applied in the rewriting step. Consid-
ering the semantics in Figure 4 the following cases are possible:

– In the cases of (Process Call), (Parameterized Process Call), (Prefixing), (SKIP), (STOP),
(Internal Choice 1 and 2), (Conditional Choice 1 and 2), (External Choice 1, 2, 3 and 4),
(Synchronized Parallelism 1, 2 and 3), (Hiding 1, 2 and 3) and (Renaming 1, 2 and 3) the
lemma is true straightforwardly from the instrumented semantics definition, Definition
2 (rewriting step) and Definition 3 (control flow).

– In the case of (Synchronized Parallelism 4), this implies that in some previous rewriting
steps rules (Synchronized Parallelism 1) and (Synchronized Parallelism 2) were applied.
Then, the lemma trivially holds.

– (Sequential Composition 1). If we assume that Ctrl “ P ;Q only contains one single ;
operator, then we have a rewriting step of the form:

pP, ωq
a or τ
ÝÑ pP 1, ω1q

pP ;Q,ωq
a or τ
ÝÑ pP 1;Q,ω1q

Thus, the lemma holds by applying any of the previous rules to pP, ωq
a or τ
ÝÑ pP 1, ω1q.

Contrarily, if Ctrl contains more than one ; operator we know that the number of ; op-
erators is finite because S is finite. Therefore, we can apply rule (Sequential Composition
1) a finite number of times and then any of the previous rules must be applied thus the
lemma will eventually hold.

– (Sequential Composition 2). This rule can only be applied after (Sequential Composition
1). Therefore, firstpαq P ω1 because it was included in a previous rewriting step. Hence,
the lemma holds.

Lemma 6. Let S be a CSP specification, G “ pN,Ec, El, Esq the CSCFG associated with
S, and si ÝÑ si`1, 0 ď i ă n, a simple rewriting step of D “ s0 ÝÑ . . . ÝÑ sn`1, n ě 0,
a derivation of S performed with the instrumented semantics, where si “ pCtrlα, ωq and
si`1 “ pCtrl

1
ϕ, ω

1q. Then, D π “ nj ÞÑ
˚ nk P Ec, nj , nk P N , with lpnjq “ firstpαq and

lpnkq “ firstpϕq.

Proof. In one simple rewriting step, only one of the following rules can be applied (note
that (SKIP), (STOP) and (Synchronized Parallelism 4) cannot be applied because they
would always correspond to the last rewriting step sn ÝÑ sn`1):

– (Process Call) If Ctrlα “ Mα, this rule adds to ω the specification position α of M ,
and the control changes to rhspMqϕ. By Definition 8, the context sensitive control of nj
can pass to nj`1 with lpnjq “ firstpαq “ α P CallspSq and lpnj`1q “ “start lpnjq”, i.e.,
α ÞÑ “start α”; and the context sensitive control of nj`1 can pass to nj`2 “ nk with
lpnj`2q “ firstpϕq, with ϕ “ plitpαq,Λq, i.e., firstpαq ÞÑ “start α” ÞÑ firstpϕq P Ec.
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– (Parameterized Process Call) It is completely analogous to (Process Call).

– (Prefixing) If Ctrlα “ aβ Ñα Pϕ, this rule adds to ω the specification positions of the
prefix and the prefixing operator, α “ pM,wq and β “ firstpαq “ pM,w.1q respectively,
and the control changes to Pϕ, ϕ “ pM,w.2q. By Definition 7 (using item 2 of Definition
3) and Definition 8, the context sensitive control of nj can pass to nj`1 with lpnjq “ β
and lpnj`1q “ α, i.e., β ÞÑ α P Ec. And by Definition 7 (using item 4 of Definition
3) and Definition 8, the context sensitive control of nj`1 can pass to nj`2 “ nk with
lpnj`1q “ α and lpnj`2q “ firstpϕq, i.e., firstpαq ÞÑ α ÞÑ firstpϕq P Ec.

– (Internal Choice 1 and 2) If Ctrlα “ P[αQ, with this rule the specification position of
the choice operator α “ pM,wq is added to ω, and one of the two processes Pϕ1

or Qϕ2
is

added to the control, with ϕ1 “ pM,w.1q and ϕ2 “ pM,w.2q. By Definition 7 (using item
1 of Definition 3) and Definition 8, the context sensitive control of nj can pass to nj`1

and to nj`2 with lpnjq “ firstpαq “ α and lpnj`1q “ firstpϕ1q and lpnj`2q “ firstpϕ2q,
i.e., firstpαq ÞÑ firstpϕ1q P Ec and firstpαq ÞÑ firstpϕ2q P Ec.

– (Conditional Choice 1 and 2) These rules are completely analogous to (Internal Choice 1
and 2).

For the following lemma we need to provide a notion of height of a rewriting step.

The height of a rewriting step s
Θ
ÝÑ t is defined as:

hps
Θ
ÝÑ tq “

#

0 if Θ “ H

1`maxpthps1
Θ1
ÝÑ t1q | s1

Θ1
ÝÑ t1 P Θuq otherwise

Lemma 7. Let S be a CSP specification, G “ pN,Ec, El, Esq the CSCFG associated

with S, and si
Θi
ÝÑ si`1, i ě 0, a rewriting step of D “ s0 ÝÑ . . . ÝÑ sn`1, n ě 0,

a derivation of S performed with the instrumented semantics, where Θi is non empty,
si “ pCtrlα, ωq and si`1 “ pCtrl1ϕ, ω

1q. Then, @γ P ω1zω : D π “ nj ÞÑ
˚ nk P Ec,

nj , nk P N , k ě 1, with lpnjq “ firstpαq and lpnkq “ γ.

Proof. Firstly, we know that if Θi is not empty, rules (Process Call), (Parameterized
Process Call), (Prefixing), (SKIP), (STOP), (Internal Choice 1 and 2), (Conditional Choice
1 and 2) and (Synchronized Parallelism 4) could not be applied. Then, one of the other
rules of the instrumented semantics must be applied.

We prove this lemma by induction on the height of the rewriting step. The base case

happens when the height is one, i.e., the rewriting step is of the form
sj

a or τ or X
ÝÑ sj`1

si
a or τ or X
ÝÑ si`1

.

In one rewriting step of height one, one of the following rules must be applied:

– (External Choice 1, 2, 3 and 4) If Ctrlα “ PlαQ, one of these rules can be applied. If
event τ happens, rules (Process Call), (STOP), (Internal Choice 1 or 2) or (Conditional
Choice 1 or 2) can be applied. If event a happens, rule (Prefixing) is applied. If
event X happens, rules (SKIP) or (Synchronized Parallelism 4) are applied.

• If (Process Call) is applied, then the rewriting step is:

pPϕ1
, ωq

τ
ÝÑ prhspP qβ , ω Y tϕ1uq

pPϕ1
lαQϕ2

, ωq
τ
ÝÑ prhspP qlαQ,ω Y tα,ϕ1uq
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By Lemma 6, firstpϕ1q ÞÑ “start ϕ1” ÞÑ firstpβq P Ec. By Lemma 5 and
by Definition 7 (using item 1 of Definition 3) and Definition 8, the context
sensitive control of nj can pass to nj`1 and to nj`2 with lpnjq “ firstpαq “ α
and lpnj`1q “ firstpϕ1q “ ϕ1 and lpnj`2q “ firstpϕ2q, i.e., firstpαq ÞÑ˚

firstpϕ1q P Ec and firstpαq ÞÑ˚ firstpϕ2q P Ec.

• If (STOP) is applied, then the rewriting step is:

pSTOPϕ1
, ωq

τ
ÝÑ pK, ω Y tϕ1uq

pSTOPϕ1lαQϕ2 , ωq
τ
ÝÑ pKlαQ,ω Y tα,ϕ1uq

By Lemma 5 and by Definition 7 (using item 1 of Definition 3) and Definition
8, the context sensitive control of nj can pass to nj`1 and to nj`2 with
lpnjq “ firstpαq “ α and lpnj`1q “ firstpϕ1q “ ϕ1 and lpnj`2q “ firstpϕ2q,
i.e., firstpαq ÞÑ˚ firstpϕ1q P Ec and firstpαq ÞÑ˚ firstpϕ2q P Ec.

• If (Internal Choice 1 or 2) is applied, then the rewriting step is:

pRβ1
[ϕ1

Sβ2
, ωq

τ
ÝÑ pRβ1

, ω Y tϕ1uq

ppR[ϕ1SqlαQϕ2 , ωq
τ
ÝÑ pRlαQϕ2 , ω Y tα,ϕ1uq

By Lemma 6, firstpϕ1q ÞÑ firstpβ1q P Ec and firstpϕ1q ÞÑ firstpβ2q P Ec. By
Lemma 5 and by Definition 7 (using item 1 of Definition 3) and Definition
8, the context sensitive control of nj can pass to nj`1 and to nj`2 with
lpnjq “ firstpαq “ α and lpnj`1q “ firstpϕ1q “ ϕ1 and lpnj`2q “ firstpϕ2q,
i.e., firstpαq ÞÑ˚ firstpϕ1q P Ec and firstpαq ÞÑ˚ firstpϕ2q P Ec.

• If (Conditional Choice 1 or 2) is applied, then these rules are completely anal-
ogous to (Internal Choice 1 and 2).

• If (Prefixing) is applied, then the rewriting step is:

paα1
Ñϕ1

Rβ1
, ωq

a
ÝÑ pRβ1

, ω Y tα1, ϕ1uq

ppaα1
Ñϕ1

Rβ1
qlαQϕ2

, ωq
a
ÝÑ pRβ1

, ω Y tα, α1, ϕ1uq
.

By Lemma 6, firstpϕ1q ÞÑ ϕ1 ÞÑ firstpβ1q P Ec where firstpϕ1q “ α1. By
Lemma 5 and by Definition 7 (using item 1 of Definition 3) and Definition
8, the context sensitive control of nj can pass to nj`1 and to nj`2 with
lpnjq “ firstpαq “ α and lpnj`1q “ firstpϕ1q and lpnj`2q “ firstpϕ2q, i.e.,
firstpαq ÞÑ˚ firstpϕ1q P Ec and firstpαq ÞÑ˚ firstpϕ2q P Ec.

• If (SKIP) is applied, then the rewriting step is:

pSKIPϕ1
, ωq

X
ÝÑ pJ, ω Y tϕ1uq

pSKIPϕ1lαQϕ2 , ωq
X
ÝÑ pJ, ω Y tα,ϕ1uq

By Lemma 5 and by Definition 7 (using item 1 of Definition 3) and Definition
8, the context sensitive control of nj can pass to nj`1 and to nj`2 with
lpnjq “ firstpαq “ α and lpnj`1q “ firstpϕ1q “ ϕ1 and lpnj`2q “ firstpϕ2q,
i.e., firstpαq ÞÑ˚ firstpϕ1q P Ec and firstpαq ÞÑ˚ firstpϕ2q P Ec.

• If (Synchronized Parallelism 4) is applied, then the rewriting step is:
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pJ||J, ωq
X
ÝÑ pJ, ωq

ppJ||JqlαQ,ωq
X
ÝÑ pJ, ω Y tαuq

If the left(right) process of the choice is pJ||Jq, it means that in some previous
rewriting steps rules (Synchronized Parallelism 1) and (Synchronized Parallelism
2) were applied. Then, the lemma trivially holds.

– (Synchronized Parallelism 1 and 2) If Ctrlα “ P }
Xα

Q, this rule can be applied. If event

a R X happens, rule (Prefixing) is applied. If event τ happens, rules (Process Call),
(SKIP), (STOP), (Internal Choice 1 or 2), (Conditional Choice 1 or 2) or (Synchronized
Parallelism 4) can be applied.

• If (Prefixing) is applied, then the rewriting step is:

paα1 Ñϕ1 P
1
β1
, ωq

a
ÝÑ pP 1, ω Y tα1, ϕ1uq

paα1
Ñϕ1

P 1β1
}
Xα

Qϕ2
, ωq

a
ÝÑ pP 1 }

X

Q,ω Y tα, α1, ϕ1uq
a R X

By Lemma 6, firstpϕ1q ÞÑ ϕ1 ÞÑ firstpβ1q P Ec where firstpϕ1q “ α1. By
Lemma 5 and by Definition 7 (using item 1 of Definition 3) and Definition
8, the context sensitive control of nj can pass to nj`1 and to nj`2 with
lpnjq “ firstpαq “ α and lpnj`1q “ firstpϕ1q and lpnj`2q “ firstpϕ2q, i.e.,
firstpαq ÞÑ˚ firstpϕ1q P Ec and firstpαq ÞÑ˚ firstpϕ2q P Ec.

• If (Process Call) is applied, then the rewriting step is:

pPϕ1
, ωq

τ
ÝÑ prhspP qβ , ω Y tϕ1uq

pPϕ1
}
Xα

Qϕ2
, ωq

τ
ÝÑ prhspP q }

X

Q,ω Y tα,ϕ1uq

By Lemma 6, firstpϕ1q ÞÑ “start ϕ1” ÞÑ firstpβq P Ec. By Lemma 5 and
by Definition 7 (using item 1 of Definition 3) and Definition 8, the context
sensitive control of nj can pass to nj`1 and to nj`2 with lpnjq “ firstpαq “ α
and lpnj`1q “ firstpϕ1q “ ϕ1 and lpnj`2q “ firstpϕ2q, i.e., firstpαq ÞÑ˚

firstpϕ1q P Ec and firstpαq ÞÑ˚ firstpϕ2q P Ec.

• If (SKIP) is applied, then the rewriting step is:

pSKIPϕ1
, ωq

X
ÝÑ pJ, ω Y tϕ1uq

pSKIPϕ1
}
Xα

Qϕ2
, ωq

τ
ÝÑ pJ}

X

Q,ω Y tα,ϕ1uq

By Lemma 5 and by Definition 7 (using item 1 of Definition 3) and Definition
8, the context sensitive control of nj can pass to nj`1 and to nj`2 with
lpnjq “ firstpαq “ α and lpnj`1q “ firstpϕ1q “ ϕ1 and lpnj`2q “ firstpϕ2q,
i.e., firstpαq ÞÑ˚ firstpϕ1q P Ec and firstpαq ÞÑ˚ firstpϕ2q P Ec.

• If (STOP) is applied, then the rewriting step is:

pSTOPϕ1
, ωq

τ
ÝÑ pK, ω Y tϕ1uq

pSTOPϕ1
}
Xα

Qϕ2
, ωq

τ
ÝÑ pK}

X

Q,ω Y tα,ϕ1uq
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By Lemma 5 and by Definition 7 (using item 1 of Definition 3) and Definition
8, the context sensitive control of nj can pass to nj`1 and to nj`2 with
lpnjq “ firstpαq “ α and lpnj`1q “ firstpϕ1q “ ϕ1 and lpnj`2q “ firstpϕ2q,
i.e., firstpαq ÞÑ˚ firstpϕ1q P Ec and firstpαq ÞÑ˚ firstpϕ2q P Ec.

• If (Internal Choice 1 or 2) is applied, then the rewriting step is:

pRβ1[ϕ1Sβ2 , ωq
τ
ÝÑ pRβ1 , ω Y tϕ1uq

ppR[ϕ1Sq }
Xα

Qϕ2 , ωq
τ
ÝÑ pR }

Xα

Qϕ2 , ω Y tα,ϕ1uq

By Lemma 6, firstpϕ1q ÞÑ firstpβ1q P Ec and firstpϕ1q ÞÑ firstpβ2q P Ec. By
Lemma 5 and by Definition 7 (using item 1 of Definition 3) and Definition
8, the context sensitive control of nj can pass to nj`1 and to nj`2 with
lpnjq “ firstpαq “ α and lpnj`1q “ firstpϕ1q “ ϕ1 and lpnj`2q “ firstpϕ2q,
i.e., firstpαq ÞÑ˚ firstpϕ1q P Ec and firstpαq ÞÑ˚ firstpϕ2q P Ec.

• If (Conditional Choice 1 or 2) is applied, then these rules are completely anal-
ogous to (Internal Choice 1 and 2).

• If (Synchronized Parallelism 4) is applied, then the rewriting step is:

pJ||J, ωq
X
ÝÑ pJ, ωq

ppJ||Jq }
Xα

Q,ωq
τ
ÝÑ pJ}

X

Q,ω Y tαuq

If the left(right) process of the parallelism is pJ||Jq, it means that in some
previous rewriting steps rules (SP1) and (SP2) were applied. Then, the lemma
trivially holds.

– (Synchronized Parallelism 3) If Ctrlα “ P }
Xα

Q, this rule can be applied. When event

a P X happens, only rule (Prefixing) can be applied. Then the rewriting step is:

paα1
Ñϕ1

P 1β1
, ωq

a
ÝÑ pP 1β1

, ω Y tα1, ϕ1uq paα2
Ñϕ2

Q1β2
, ωq

a
ÝÑ pQ1β2

, ω Y tα2, ϕ2uq

ppaα1
Ñϕ1

P 1β1
q }
Xα

paα2
Ñϕ2

Q1β2
q, ωq

a
ÝÑ pP 1 }

X

Q1, ω Y tα, α1, ϕ1, α2, ϕ2uq

By Lemma 6, firstpϕ1q ÞÑ ϕ1 ÞÑ firstpβ1q P Ec where firstpϕ1q “ α1 and firstpϕ2q ÞÑ

ϕ2 ÞÑ firstpβ2q P Ec where firstpϕ2q “ α2. By Lemma 5 and by Definition 7 (using
item 1 of Definition 3) and Definition 8, the context sensitive control of nj can
pass to nj`1 and to nj`2 with lpnjq “ firstpαq “ α and lpnj`1q “ firstpϕ1q and
lpnj`2q “ firstpϕ2q, i.e., firstpαq ÞÑ˚ firstpϕ1q P Ec and firstpαq ÞÑ˚ firstpϕ2q P Ec.

– (Sequential Composition 1) If Ctrlα “ P ;αQ, this rule can be applied. When event a
happens, only rule (Prefixing) can be applied. If event τ happens, rules (Process
Call), (STOP), (Internal Choice 1 or 2) or (Conditional Choice 1 or 2) can be applied.

• If (Prefixing) is applied, then the rewriting step is:

paα1
Ñϕ1

P 1β1
, ωq

a
ÝÑ pP 1β1

, ω Y tα1, ϕ1uq

ppaα1
Ñϕ1

P 1β1
q;αQϕ2

, ωq
a
ÝÑ pP 1;Q,ω Y tα1, ϕ1uq
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By Lemma 6, firstpϕ1q ÞÑ ϕ1 ÞÑ firstpβ1q P Ec where firstpϕ1q “ α1. By
Definition 7 (using item 3 of Definition 3) and Definition 8, the context sen-
sitive control of nj can pass to nj`1 with lpnjq “ lastpϕ1q “ lastpβ1q and
lpnj`1q “ α, i.e., lastpβ1q ÞÑ α P Ec.

• If (Process Call) is applied, then the rewriting step is:

pPϕ1 , ωq
τ
ÝÑ prhspP qβ1 , ω Y tϕ1uq

pPϕ1 ;αQϕ2 , ωq
τ
ÝÑ prhspP q;Q,ω Y tϕ1uq

By Lemma 6, firstpϕ1q ÞÑ “start ϕ1” ÞÑ firstpβ1q P Ec. By Definition 7
(using item 3 of Definition 3) and Definition 8, the context sensitive control
of nj can pass to nj`1 with lpnjq “ lastpϕ1q “ lastpβ1q and lpnj`1q “ α, i.e.,
lastpβ1q ÞÑ α P Ec.

• If (STOP) is applied, then the rewriting step is:

pSTOPϕ1 , ωq
τ
ÝÑ pK, ω Y tϕ1uq

pSTOPϕ1 ;αQϕ2 , ωq
τ
ÝÑ pK;Q,ω Y tϕ1uq

By Definition 7, Definition 8 and Lemma 5, the context sensitive control of
nj can pass to nj`1 with lpnjq “ firstpαq and lpnj`1q “ ϕ1, i.e., firstpαq ÞÑ
ϕ1 P Ec.

• If (Internal Choice 1 or 2) is applied, then the rewriting step is:

pRβ1
[ϕ1

Sβ2
, ωq

τ
ÝÑ pRβ1

, ω Y tϕ1uq

ppRβ1
[ϕ1

Sβ2
q;αQϕ2

, ωq
τ
ÝÑ pR;Q,ω Y tϕ1uq

By Lemma 6, firstpϕ1q ÞÑ firstpβ1q P Ec and firstpϕ1q ÞÑ firstpβ2q P Ec.
By Definition 7 (using item 3 of Definition 3) and Definition 8, the context
sensitive control of nj can pass to nj`1 and to nj`2 with lpnjq “ lastpϕ1q “

lastpβ1q, lpnj`1q “ α and lpnj`2q “ lastpϕ2q “ lastpβ2q, i.e., lastpβ1q ÞÑ α P
Ec and lastpβ1q ÞÑ α P Ec.

• If (Conditional Choice 1 or 2) is applied, then these rules are completely anal-
ogous to (Internal Choice 1 and 2).

– (Sequential Composition 2) If Ctrlα “ P ;αQ and this rule can be applied, P will be
SKIP or J||J, i.e., rules (SKIP) or (Synchronized Parallelism 4) can be applied.

• If (SKIP) is applied, then the rewriting step is:

pSKIPϕ1 , ωq
X
ÝÑ pJ, ω Y tϕ1uq

pSKIPϕ1
;αQϕ2

, ωq
τ
ÝÑ pQ,ω Y tα,ϕ1uq

By Definition 7 (using item 4 of Definition 3) and Definition 8, the context
sensitive control of nj can pass to nj`1 with lpnjq “ α and lpnj`1q “ firstpϕ2q,
i.e., α ÞÑ firstpϕ2q P Ec.

• If (Synchronized Parallelism 4) is applied, then the rewriting step is:

pJ||J, ωq
X
ÝÑ pJ, ωq

ppJ||Jq;αQϕ2
, ωq

τ
ÝÑ pQ,ω Y tαuq
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By Definition 7 (using item 4 of Definition 3) and Definition 8, the context
sensitive control of of nj can pass to nj`1 with lpnjq “ α and lpnj`1q “

firstpϕ2q, i.e., α ÞÑ firstpϕ2q P Ec.

– (Hiding 1) If Ctrlα “ P zαB, this rule can be applied. When event a P B happens,
only rule (Prefixing) can be applied. The rewriting step is:

paα1
Ñϕ1

P 1β1
, ωq

a
ÝÑ pP 1β1

, ω Y tα1, ϕ1uq

ppaα1 Ñϕ1 P
1
β1
qzαB,ωq

τ
ÝÑ pP 1zαB,ω Y tα, α1, ϕ1uq

By Lemma 6, firstpϕ1q ÞÑ ϕ1 ÞÑ firstpβ1q P Ec where firstpϕ1q “ α1. By Definition
7 (using item 5 of Definition 3) and Definition 8, the context sensitive control of
nj can pass to nj`1 with lpnjq “ firstpαq “ α and lpnj`1q “ firstpϕ1q, i.e.,
α ÞÑ˚ firstpϕ1q P Ec.

– (Hiding 2) If Ctrlα “ P zαB, this rule can be applied. When event a R B happens, only
rule (Prefixing) can be applied. If event τ happens, rules (Process Call), (STOP),
(Internal Choice 1 or 2) or (Conditional Choice 1 or 2) can be applied.

• If (Prefixing) is applied, then the rewriting step is:

paα1
Ñϕ1

P 1β1
, ωq

a
ÝÑ pP 1β1

, ω Y tα1, ϕ1uq

ppaα1
Ñϕ1

P 1β1
qzαB,ωq

a
ÝÑ pP 1zαB,ω Y tα, α1, ϕ1uq

a R B

By Lemma 6, firstpϕ1q ÞÑ ϕ1 ÞÑ firstpβ1q P Ec where firstpϕ1q “ α1. By
Definition 7 (using item 5 of Definition 3) and Definition 8, the context
sensitive control of nj can pass to nj`1 with lpnjq “ firstpαq “ α and
lpnj`1q “ firstpϕ1q, i.e., α ÞÑ˚ firstpϕ1q P Ec.

• If (STOP) is applied, then the rewriting step is:

pSTOPϕ1
, ωq

τ
ÝÑ pK, ω Y tϕ1uq

pSTOPϕ1
zαB,ωq

τ
ÝÑ pKzαB,ω Y tα,ϕ1uq

By Definition 7 (using item 5 of Definition 3) and Definition 8, the context sen-
sitive control of nj can pass to nj`1 with lpnjq “ α and lpnj`1q “ firstpϕ1q “

ϕ1, i.e., α ÞÑ˚ firstpϕ1q P Ec.

• If (Internal Choice 1 or 2) is applied, then the rewriting step is:

pRβ1
[ϕ1

Sβ2
, ωq

τ
ÝÑ pRβ1

, ω Y tϕ1uq

ppRβ1
[ϕ1

Sβ2
qzαB,ωq

τ
ÝÑ pRβ1

zαB,ω Y tα,ϕ1uq

By Lemma 6, firstpϕ1q ÞÑ firstpβ1q P Ec and firstpϕ1q ÞÑ firstpβ2q P Ec.
By Definition 7 (using item 5 of Definition 3) and Definition 8, the con-
text sensitive control of nj can pass to nj`1 with lpnjq “ firstpαq “ α and
lpnj`1q “ firstpϕ1q “ ϕ1, i.e., α ÞÑ˚ firstpϕ1q P Ec.

• If (Conditional Choice 1 or 2) is applied, then these rules are completely anal-
ogous to (Internal Choice 1 and 2).
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– (Hiding 3) If Ctrlα “ P zαB and this rule can be applied, P will be SKIP or J||J,
i.e., rules (SKIP) or (Synchronized Parallelism 4) can be applied.

• If (SKIP) is applied, then the rewriting step is:

pSKIPϕ1 , ωq
X
ÝÑ pJ, ω Y tϕ1uq

pSKIPϕ1
zαB,ωq

X
ÝÑ pJ, ω Y tα,ϕ1uq

By Definition 7 (using item 5 of Definition 3) and Definition 8, the con-
text sensitive control of nj can pass to nj`1 with lpnjq “ firstpαq “ α and
lpnj`1q “ firstpϕ1q “ ϕ1, i.e., α ÞÑ˚ firstpϕ1q P Ec.

• If (Synchronized Parallelism 4) is applied, then the rewriting step is:

pJ}ϕ1
J, ωq

X
ÝÑ pJ, ωq

ppJ}ϕ1
JqzαB,ωq

X
ÝÑ pJ, ω Y tαuq

If the process pJ||Jq is in the control, it means that in some previous rewrit-
ing step rules (Synchronized Parallelism 1), (Synchronized Parallelism 2) and/or
(Synchronized Parallelism 3) were applied and ϕ1 P ω. By Definition 7 (using
item 5 of Definition 3) and Definition 8, the context sensitive control of nj
can pass to nj`1 with lpnjq “ firstpαq “ α and lpnj`1q “ firstpϕ1q “ ϕ1,
i.e., α ÞÑ˚ firstpϕ1q P Ec.

– (Renaming 1, 2 and 3) These rules are completely analogous to (Hiding 1, 2 and 3).

We assume as the induction hypothesis that the lemma holds in rewriting steps of
height n, and we prove that it also holds in a rewriting step of height n ` 1, i.e., the
rewriting step is of the form:

Θ

sj
a or τ or X
ÝÑ sj`1

si
a or τ or X
ÝÑ si`1

where Θ is of height n´1 (n ě 2), si “ pCtrlα, ωq, sj “ pCtrlβ , ωq, sj`1 “ pCtrl
1
δ, ω

1q

and si`1 “ pCtrl
2
ϕ, ω

2q.
In order to prove this lemma, we take advantage of the induction hypothesis that

ensures that @γ P ω1zω : D π “ nj ÞÑ
˚ nk P Ec, nj , nk P N , k ě 1, with lpnjq “ firstpβq

and lpnkq “ γ. Therefore, we need to prove that:

1. D π1 “ ni ÞÑ
˚ nj P Ec, ni P N , with lpniq “ firstpαq, and

2. @γ P ω2zω1 : D π2 “ ni ÞÑ
˚ nk P Ec.

In order to prove, item 1, one of the following rules can be applied:

– (External Choice 1, 2, 3 and 4) Trivially, using item 1 of Definition 3, firstpαq ÞÑ˚

firstpβq P Ec.

– (Synchronized Parallelism 1, 2 and 3) These rules are completely analogous to (Ex-
ternal Choice 1, 2, 3 and 4).

– (Hiding 1 and 2) Trivially, using item 5 of Definition 3, firstpαq ÞÑ˚ firstpβq P Ec.
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– (Renaming 1 and 2) These rules are completely analogous to (Hiding 1 and 2).

– (Sequential Composition 1 and 2) In these cases firstpαq “ firstpβq and the lemma
trivially holds.

In order to prove, item 2, we consider the following two cases:

– One of these rules is applied: (External Choice 1, 2, 3 and 4), (Synchronized Par-
allelism 1, 2 and 3), (Hiding 1 and 2) and (Renaming 1 and 2). In these cases,
ω2zω1 “ tαu and α “ firstpαq. Therefore, the lemma holds.

– (Sequential Composition 1) This case is trivial because ω2zω1 “ H.

Lemma 8. Let S be a CSP specification, G “ pN,Ec, El, Esq the CSCFG associated

with S, and si
Θi
ÝÑ si`1, i ą 0, a rewriting step of D “ s0 ÝÑ . . . ÝÑ sn`1, n ě 0, a

derivation of S performed with the instrumented semantics, where si “ pCtrlα, ωiq and
si`1 “ pCtrl1ϕ, ωi`1q. Then, D π “ nj ÞÑ

˚ nk P Ec, nj , nk P N , with lpnjq P ωi and
lpnkq “ firstpαq.

Proof. Let us consider the rewriting step si´1 “ pCtrlζ , ωi´1q
Θi´1
ÝÑ si “ pCtrlα, ωiq.

If Θi´1 “ H, rules (Process Call), (Parameterized Process Call), (Prefixing), (SKIP),
(STOP), (Internal Choice 1 and 2), (Conditional Choice 1 and 2) and (Synchronized Paral-
lelism 4) can be applied. In these cases, by Lemma 5 and Lemma 6, the lemma trivially
holds.

If Θi´1 ‰ H and one of the rules (External Choice 1, 2, 3 and 4), (Synchronized
Parallelism 1, 2, 3 and 4), (Sequential Composition 1), (Hiding 1, 2 and 3) or (Renaming 1,
2 and 3) is applied, we know by Lemma 5 and by Lemma 7 that firstpζq P ωi and that
D π “ nj ÞÑ

˚ nk P Ec, nj , nk P N , k ě 1, with lpnjq P ωi and lpnkq “ firstpαq.
If rule (Sequential Composition 2) is applied, we know by Lemma 5 that firstpζq P ωi

and by Definition 7 (using item 4 of Definition 3) and Definition 8, the context sensitive
control of nj can pass to nk with lpnjq “ ζ P ωi, litplpnjqq “ ; and lpnkq “ firstpαq,
i.e., ζ ÞÑ firstpαq P Ec.

The following lemma ensures that the CSCFG is complete: all possible derivations of
a CSP specification S are represented in the CSCFG associated to S.

Lemma 1. Let S be a CSP specification, D “ s0 ÝÑ . . . ÝÑ sn`1, n ě 0, a derivation of
S performed with the instrumented semantics, where s0 “ prhspMAINqα,Hq and sn`1 “

pPϕ, ωq, and G “ pN,Ec, El, Esq the CSCFG associated with S. Then, @γ P ω : D π “
n1 ÞÑ

˚ nk P Ec, n1, nk P N , k ě 1, with lpn1q “ firstpαq and lpnkq “ γ.

Proof. We prove this lemma by induction on the length of the derivation D. The base
case happens when the length of D is one. The initial state is s0 “ prhspMAINqα,Hq.
The final state is s1 “ pPϕ, ωq. In one rewriting step, one of the following rules must be
applied:

47



– (Process Call) If rhspMAINq “ Qα, this rule adds to ω the specification position α of P ,
and the control changes to rhspQqϕ, i.e., s1 “ prhspQqϕ, tαuq. By Definition 8, the
context sensitive control of n0 can pass to n1 with lpn0q “ “start pMAIN, 0q” and
lpn1q “ firstppMAIN,Λqq “ α, i.e., “start pMAIN, 0q” ÞÑ α P Ec. By Definition 3,
firstppMAIN,Λqq “ α “ firstpαq; by Definition 8, the context sensitive control of
n1 can pass to n2 with lpn2q “ “start pQ, 0q” and by Lemma 6, D π “ n1 ÞÑ n2 ÞÑ

n3 P Ec with lpn1q “ firstpαq and lpnkq “ firstpϕq, i.e., α ÞÑ “start pQ, 0q” ÞÑ
firstpϕq P Ec.

– (Parameterized Process Call) It is completely analogous to (Process Call).

– (Prefixing) If rhspMAINq “ aβ Ñα Pϕ, this rule adds to ω the specification positions
of the prefix and the prefixing operator, α and β respectively, and the control
changes to Pϕ, i.e., s1 “ pPϕ, tα, βuq. By Definition 8 and Definition 3, the context
sensitive control of n0 can pass to n1 with lpn0q “ “start pMAIN, 0q” and lpn1q “

firstppMAIN,Λqq “ pMAIN, 1q “ β, i.e., “start pMAIN, 0q” ÞÑ β P Ec. By Definition
7 (using item 2 of Definition 3) and Definition 8, the context sensitive control
of n1 can pass to n2 with lpn1q “ β and lpn2q “ α, i.e., β ÞÑ α P Ec. By
Lemma 6, D π “ n1 ÞÑ n2 ÞÑ n3 P Ec with lpn1q “ firstpαq “ β and lpn3q “

firstppMAIN, 2qq “ firstpϕq, i.e., β ÞÑ α ÞÑ firstpϕq P Ec.

– (SKIP) If rhspMAINq “ SKIPα, applying this rule the specification position α of SKIP is
added to ω, the control changes to J, i.e., s1 “ pJ, tαuq, and the derivation finishes.
By Definition 8, the context sensitive control of n0 can pass to n1 with lpn0q “

“start pMAIN, 0q” and lpn1q “ firstppMAIN,Λqq “ α, i.e., “start pMAIN, 0q” ÞÑ α P
Ec. And by Definition 7 and Definition 8, the context sensitive control of n1 can
pass to n2 with lpn2q “ “end pMAIN, 0q”, i.e., α ÞÑ “end pMAIN, 0q” P Ec.

– (STOP) If rhspMAINq “ STOPα, applying this rule the specification position α of STOP is
added to ω, the control changes to K, i.e., s1 “ pK, tαuq, and the derivation finishes.
By Definition 8, the context sensitive control of n0 can pass to n1 with lpn0q “

“start pMAIN, 0q” and lpn1q “ firstppMAIN,Λqq “ α, i.e., “start pMAIN, 0q” ÞÑ α P
Ec.

– (Internal Choice 1 and 2) If rhspMAINq “ Pϕ1
[αQϕ2, with this rule the specification

position of the choice operator α is added to ω, and one of the two processes P or
Q is added to the control, i.e., s1 “ pPϕ1 , tαuq or s1 “ pQϕ2 , tαuq. By Definition
8, the context sensitive control of n0 can pass to n1 with lpn0q “ “start pMAIN, 0q”
and lpn1q “ firstppMAIN,Λqq “ α, i.e., “start pMAIN, 0q” ÞÑ α P Ec. By Lemma 6,
D π “ n1 ÞÑ n2 P Ec with lpn2q “ ϕ “ firstppMAIN, 1qq “ firstpϕ1q and D π “
n1 ÞÑ n3 P Ec with lpn3q “ firstppMAIN, 2qq “ firstpϕ2q, i.e., α ÞÑ firstpϕ1q P Ec
and α ÞÑ firstpϕ2q P Ec.

– (Conditional Choice 1 and 2) These rules are completely analogous to (Internal Choice
1 and 2).

– (External Choice 1, 2, 3 and 4) If rhspMAINq “ P lαQ, with one of these rules the
specification position of the choice operator α and the set of executed specifi-
cation positions of process P or Q is added to ω. By Definition 8, the con-
text sensitive control of n0 can pass to n1 with lpn0q “ “start pMAIN, 0q” and

48



lpn1q “ firstppMAIN,Λqq “ α, i.e., “start pMAIN, 0q” ÞÑ α P Ec. By Lemma 7,
@γ P ω : D π “ n1 ÞÑ

˚ nk P Ec with lpnkq “ γ.

– (Synchronized Parallelism 1 and 2) If rhspMAINq “ P }
Xα

Q, with one of these rules the

specification position of the parallelism operator together with the specification
positions executed of the corresponding process are added to ω. By Definition 8,
the context sensitive control of n0 can pass to n1 with lpn0q “ “start pMAIN, 0q”
and lpn1q “ firstppMAIN,Λqq “ α, i.e., “start pMAIN, 0q” ÞÑ α P Ec. By Lemma 7,
@γ P ω : D π “ n1 ÞÑ

˚ nk P Ec with lpnkq “ γ.

– (Synchronized Parallelism 3) If rhspMAINq “ P }
Xα

Q, with this rule the specification po-

sition of the parallelism operator together with the specification positions executed
of the two processes are added to ω. By Definition 8, the context sensitive control of
n0 can pass to n1 with lpn0q “ “start pMAIN, 0q” and lpn1q “ firstppMAIN,Λqq “ α,
i.e., “start pMAIN, 0q” ÞÑ α P Ec. By Lemma 7, @γ P ω : D π “ n1 ÞÑ

˚ nk P Ec with
lpnkq “ γ.

– (Synchronized Parallelism 4) This rule does not add specification positions to ω.

– (Sequential Composition 1) If rhspMAINq “ P ;αQ, this rule can be applied. The
control changes to P 1 ;αQ and the executed specification positions of P will be
added to ω. By Definition 8, the context sensitive control of n0 can pass to n1

with lpn0q “ “start pMAIN, 0q” and lpn1q “ firstppMAIN,Λqq “ firstppMAIN, 1qq,
i.e., “start pMAIN, 0q” ÞÑ firstppMAIN, 1qq P Ec. By Lemma 7, @γ P ω : D π “
n1 ÞÑ

˚ nk P Ec with lpnkq “ γ.

– (Sequential Composition 2) For this rule to be applied, rhspMAINq “ SKIPβ ;αQϕ. The
control changes to Q and ω “ tα, βu, i.e., s1 “ pQϕ, tα, βuq. By Definition 8, the
context sensitive control of n0 can pass to n1 with lpn0q “ “start pMAIN, 0q” and
lpn1q “ firstppMAIN,Λqq “ firstppMAIN, 1qq “ β, i.e., “start pMAIN, 0q” ÞÑ β P Ec.
By Lemma 7, n1 ÞÑ n2 P Ec with lpn2q “ α. And by Definition 7 (using item 4 of
Definition 3) and Definition 8, the context sensitive control of n2 can pass to n3

with lpn2q “ α and lpn3q “ ϕ “ firstppMAIN, 2qq, i.e., α ÞÑ ϕ P Ec.

– (Hiding 1 and 2) If rhspMAINq “ P zαB and one of these rules is applied, ω is increased
with the specification position α of the hiding operator and with the specification
positions of the developed process P . By Definition 8, the context sensitive control
of n0 can pass to n1 with lpn0q “ “start pMAIN, 0q” and lpn1q “ firstppMAIN,Λqq “
α, i.e., “start pMAIN, 0q” ÞÑ α P Ec. By Lemma 7, @γ P ω : D π “ n1 ÞÑ

˚ nk P Ec
with lpnkq “ γ.

– (Hiding 3) For this rule to be applied, rhspMAINq “ SKIPβzαB. The control changes
to J, ω “ tα, βu, i.e., s1 “ pJ, tα, βuq, and the derivation finishes. By Definition
8, the context sensitive control of n0 can pass to n1 with lpn0q “ “start pMAIN, 0q”
and lpn1q “ firstppMAIN,Λqq “ α, i.e., “start pMAIN, 0q” ÞÑ α P Ec. By Lemma 7,
n1 ÞÑ n2 P Ec with lpn2q “ firstpβq “ β. And by Definition 7 (using item 6 of
Definition 3) and Definition 8, the context sensitive control of n2 can pass to n3

with lpn3q “ “end pMAIN,Λq”, and the context sensitive control of n3 can pass to
n4 with lpn4q “ “end pMAIN, 0q”, i.e., β ÞÑ “end pMAIN, 0q” ÞÑ “end pMAIN, 0q” P Ec,
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– (Renaming 1 and 2) These rules are completely analogous to (Hiding 1 and 2).

– (Renaming 3) It is completely analogous to the rule (Hiding 3).

We assume as the induction hypothesis that the lemma holds in the i first rewriting
steps of D, and we prove that it also holds in the step i ` 1. Let us consider si “

pCtrlβ , ωq
Θi
ÝÑ si`1 “ pCtrl

1
δ, ω

1q. By the induction hypothesis we know that there exists
a path from firstppMAIN,Λqq to all positions in ω. By Lemma 8, we know that there
exists a path from a specification position in ω to firstpβq. And by Lemma 7, we know
that there exists a path from firstpβq to all positions in ωzω1. Therefore, the lemma
holds.

Lemma 3. Let S be a CSP specification and let G “ pN,Ec, El, Esq be the CSCFG
associated with S according to Definition 8. If n ÞÑ n1 P Ec then n must be executed
before n1 in all executions.

Proof. We prove this lemma by induction on the length of a path πStart “ n1 ÞÑ
˚ nm

in the CSCFG G. Firstly, because all nodes in StartpSq are not executable, we remove
them from the path. Hence, we assume that for all 1 ď j ă m we have lpnjq R StartpSq.
We refer to this reduced path as π.

The base case happens when the length of π is one. The first node of the graph
is always “start pMAIN, 0q”, hence, π “ n ÞÑ n1. Therefore, by Definition 8, lpnq “
firstpMAIN,Λq.

In this situation, litplpnqq can be:

• If litplpnqq “ a, with a P Σ, then by Definition 3 (item 2), we have that litplpn1qq “Ñ.
In the semantics, the only rule applicable is Prefixing. Therefore, n must be exe-
cuted before n1.

• If litplpnqq “ STOP , by Definition 3 and Definition 8 there is no control from
STOP . Therefore, n1 R N and thus this case is not possible.

• If litplpnqq P t[,l,ćč, |||, ||u then it is possible to apply Choice or Parallelism.

– If we have a choice, by Definition 3 (item 1), lpn1q P tfirstppMAIN, 1qq,
firstppMAIN, 2qqu. In the semantics, the only rule applicable is a choice. There-
fore, n must be executed before n1.

– Analogously, if we have a parallelism, by Definition 3 (item 1), we have that
lpn1q P tfirstppMAIN, 1qq, firstppMAIN, 2qqu. In the semantics, the only rule
applicable is a synchronized parallelism. Therefore, n must be executed before
n1.

• If litplpnqq P tz, vwu, then by Definition 3 (item 5), we have that litplpn1qq “
firstppMAIN, 1qq. In the semantics, the only rule applicable is Hiding or Renam-
ing. Therefore, n must be executed before n1.

• If litplpnqq “ SKIP then two cases are possible:

– by Definition 3 (item 3), litplpn1qq “ ; because lastplpnqq “ lpnq. In the seman-
tics, the only rule applicable is Sequential Composition 2 and this necessarily
implies that SKIP is executed before. Thus, n must be executed before n1.
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– by Definition 8, we have in πStart that litplpn1qq “ “end pMAIN, 0q” and in π,
n1 does not exist. In fact, in the semantics, the only rule applicable is SKIP
that finishes the execution.

• If litplpnqq “ P with P P P then, lpnq “ firstpMAIN,Λq “ pMAIN,Λq, and by Defi-
nition 8, we have πStart “ “start pMAIN, 0q” ÞÑ pMAIN,Λq ÞÑ “start pMAIN,Λq” ÞÑ
firstppP,Λqq. Therefore, π “ pMAIN,Λq ÞÑ firstppP,Λqq. In the semantics, the only
rule applicable is Process Call that changes the root position in the control to pP,Λq.
Then, by Lemma 5 we know that the next rewriting step will have firstppP,Λqq P ω.

We assume as the induction hypothesis that the lemma holds for a path π with length
k. We prove that it also holds for a path with length k ` 1. Therefore, it is enough to
prove that nk must be executed before nk`1 in all executions with nk ÞÑ nk`1 P Ec.

We analyze each possible case with respect to litplpnkqq. All cases are analogous to
the base case except three:

• If litplpnkqq “Ñ, with lpnkq “ pM,wq, then by Definition 3 (item 4), we have
that lpnk`1q “ firstppM,w.2qq. In the semantics, the last rule applied was Prefix-
ing, because it is the only rule that introduces Ñ. This rule puts in the control
pM,w.2q. Therefore, by Lemma 5 we know that the next rewriting step will have
firstppM,w.2qq P ω. Therefore, nk must be executed before nk`1.

• If litplpnkqq “ ; then it is completely analogous to the previous case but now the
last rule applied is Sequential Composition 2.

• If litplpnkqq “ SKIP then two cases are possible:

– by Definition 3 (item 3), litplpnk`1qq “ ; because lastplpnkqq “ lpnkq. In
the semantics, the only rule applicable is Sequential Composition 2 and this
necessarily implies that SKIP is executed before. Thus, nk must be executed
before nk`1.

– by Definition 8, we have in πStart that litplpm` 1qq “ “end pMAIN, 0q” and in
π, m` 1 does not exist. In fact, in the semantics, the only rule applicable is
SKIP that finishes the execution.

Therefore, the lemma is true.

Lemma 2. Let S be a CSP specification. Then, the execution of Algorithm 1 with S
produces a graph G that is the CSCFG associated with S according to Definition 8.

Proof. Let G “ pN,Ec, El, Esq the CSCFG associated with S according to Definition 8.
And let G1 “ pN 1, E1c, E1l, E1sq the output of Algorithm 1 with input S. We now prove
that G “ G1.

In order to prove that both graphs are equivalent, we proceed by case analysis of
function buildGraph. This is enough to prove the equivalence because this function is
used to build the graph associated to the right hand side of all functions. Therefore, we
have to prove not only that the graphs are equivalent for each case, but also that the
returned values nfirst and Last are the expected ones so that recursion of this function
also works and thus the produced graphs are correctly joined to form the final CSCFG.
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In all cases Es will be equivalent to E1s if the rest of the components of the graph are
equivalent, because both are built using the same technique. We assume by induction
hypothesis that, in all cases, the values returned by recursive calls are the expected ones.
Let us study each case separately:

• Prefixing: In this case P “ Xα Ñβ Q and X P ta, a?v, a!vu. We let β “ pM,wq
thus α “ pM,w.1q and the label of Q is pM,w.2q. Function first returns for this
expression pM,w.1q. In the function it is represented by the fact that nfirst “ nα
(note that lpnαq “ α “ pM,w.1q). Function last will return the set lastpn2q where
lpn2q “ pM,w.2q. In the algorithm, the variable Last is bound to Last1, that is
a set whose labels correspond to lastpn2q. The nodes introduced by the algorithm
are nα and nβ . Their labels belong to PospSq, thus they are in N . The nodes in
the set N1 are also nodes from N . Hence, we can state that N “ N 1. This case
introduces two control arcs plus the arcs introduced by the graph of Q. These two
control arcs correspond to the second and fourth item of definition 3. The first is
represented by nα ÞÑ nβ , and the second by nβ ÞÑ nfirst1. Then, we have that
Ec “ E1c. Finally, E1l is equal to El1. Note that prefixing does not introduce loop
arcs, so in this case we also have that El “ E1l.

• Choice and Parallelism: In this case P “ Q Xα R and X P t[,l,ćč, |||, ||u. Let
α “ pM,wq. Hence the labels of Q and R are pM,w.1q and pM,w.2q respectively.
Function first returns pM,wq for this expression. In the function it is represented
by the fact that nfirst “ nα. Function last will return the set lastpn1q Y lastpn2q,
where lpn1q “ pM,w.1q and lpn2q “ pM,w.2q, if none of these sets is empty or
the operator is not a parallel operator neither an interleaving. Otherwise last will
return H. In the algorithm, the variable Last is bounded to Last1 Y Last2 (note
that their labels will be all in last(n1) and last(n2)) or H depending on the same
condition. The nodes introduced by the algorithm are nα and the nodes of sets
N1 and N2. All these labels belong to PospSq, so we can state that N “ N 1.
This case introduces two control arcs plus the arcs introduced by the graph of Q
and R. These two control arcs correspond to the first item of definition 3. They
are represented by nα ÞÑ first1 and nα ÞÑ first2. Then, we have that Ec “ E1c.
Finally, E1l is equal to El1 Y El2, hence El “ E1l.

• Sequential Composition: In this case P “ Q ;α R. Let α “ pM,wq. Then the
labels of Q and R are pM,w.1q and pM,w.2q respectively. Function first returns
for this expression firstppM,w.1qq. In the function it is represented by the fact that
nfirst “ nfirst1. Function last will return the set lastpn2q, where lpn2q “ pM,w.2q.
In the algorithm, it is represented by the fact that the variable Last is bounded
to Last2 which their node labels are all in lastpn2q. The nodes introduced by the
algorithm are nα and the sets of nodes N1 and N2. All these labels belong to
PospSq, so, we can state that N “ N 1. This case introduces many control arcs
plus the arcs introduced by the graph of Q and R. Concretely, it introduces the
arc nα ÞÑ nfirst2 and the set Ec3 where all the nodes belonging to Last1 are joined
to node nα. The former corresponds to the fourth item of definition 3. The latter
corresponds to the third item. Then, we have that Ec “ E1c. Finally, E1l is equal
to El1 Y El2, so El “ E1l.
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• Hiding and Renaming: In this case P “ Q Xα and X Ptz, vwu. Let α “ pM,wq then
the label of Q is pM,w.1q. Function first returns for this expression pM,wq. In
the function, it is represented by the fact that nfirst “ nα (note that lpnαq “ α “
pM,wq). Function last will return the set lastpn1q, where lpn1q “ pM,w.1q. In the
algorithm, the variable Last is bounded to Last1 and all their node labels are in
lastpn1q. The nodes introduced by the algorithm are nα, nend and the nodes of sets
N1. All these labels belong to PospSq, except nend that belongs to StartpSq. Thus,
we can state that N “ N 1. This case introduces the control arc nα ÞÑ nf irst1, the
arcs of Ec2 plus the arcs introduced by the graph of Q. The single arc corresponds
to the fifth item of definition 3, and the edges in Ec2 correspond to the sixth item of
the same definition. Then, we have that Ec “ E1c. Finally, E1l is equal to El1YEl2,
so El “ E1l.

• SKIP and STOP: In this case P “ Q Xα and X P tSKIP, STOP u. Let α “ pM,wq.
Function first returns for this expression pM,wq. In the function it is represented
by the fact that nfirst “ nα (note that lpnαq “ α “ pM,wq). Function last will
return the set tpM,wqu if litplpnqq “ SKIP or H if litplpnqq “ STOP . In the
algorithm, the variable Last is bounded to tnαu or H with the same conditions.
The only node introduced by the algorithm is nα that belongs to PospSq. Thus,
we can state that N “ N 1. This case does not introduce any control arc. Then, we
have that Ec “ E1c, because with only one node it is not possible to have control
flow. Finally, E1l is equal to H, so, as it happens in the previous case, El “ E1l.

• (Parameterized) Process Call: In this case P “ Xα. Let α “ pM,wq. Function first
returns pM,wq for this expression. In the function it is represented by the fact
that nfirst “ nα (note that lpnαq “ α “ pM,wq). Function last will return H or
t“endpM,wq”u depending on whether a node with label “startpM,wq” is in Conpnq
or not respectively. This is the same condition that we find in the conditional clause
of the algorithm, thus we have a total correspondence. The graph components also
depend in this condition, so we are going to distinguish between two cases. First,
when the start node is in the context, and second when it is not.

– The only node introduced by the algorithm is nα that belongs to PospSq.
Thus, we can state that N “ N 1. This case does not introduce any control
arc. Then, we have that Ec “ E1c. Finally, E1l is equal to a set with a unique
loop arc from nα to nctx (which is the node that makes the condition hold).
This arc is the same as the one introduced in the same conditions of definition
8, so El “ E1l.

– The nodes introduced by the algorithm are nα, that belongs to PospSq, and
nstart and nend that belongs to StartpSq. These nodes plus set N1 form N 1,
so we can state that N “ N 1. The set E1c if formed by the union of set Ec1
from the graph of the right-hand side of process X, and set Ec2. The latter
represents the special control flow stated in the second item of definition 8.
Then, we have that Ec “ E1c. Finally, E1l is equal to El1, so El “ E1l.

Lemma 4. (Finiteness) Given a specification S, its associated CSCFG is finite.
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Proof. We show first that there does not exist infinite unfolding in a CSCFG. Firstly, the
same start process node only appears twice in the same control loop-free path if it belongs
to a process which is called from different process calls (i.e., with different specification
positions) as it is ensured by Definition 8. Therefore, the number of repeated nodes in the
same control loop-free path is limited by the number of different process calls appearing
in the program. Moreover, the number of terms in the specification is finite and thus
there is a finite number of different process calls. In addition, every process call has only
one outgoing arc as it is ensured by the third property of Definition 8. Therefore, the
number of paths is finite and the size of every path of the CSCFG is limited.

Theorem 8. (Termination of MEB) The MEB analysis performed by Algorithm 2
terminates.

Proof. First, we know that N is finite, and thus blseeds is also finite because blseeds Ă N .
Therefore, the first loop (4) always terminates because it is repeated while new nodes are
added to blacklist; and the number of possible insertions is finite because N is finite. We
can ensure that the second loop also terminates due to the invariant pendingXMeb “ ∅
which is always true at the end of the loop (9). Then, because Meb increases in every
iteration (7) and the size of N is finite, pending will eventually become empty and the
loop will terminate.

Theorem 10. (Termination of CEB) The CEB analysis performed by Algorithm 3
terminates.

Proof. Firstly, the algorithm starts with a call to the function buildMeb. By Lemma 8,
this call always terminates. Then, the only loops that could cause non-termination
are the loop containing sentences (4) to (10) and the loop containing sentences (13) to
(18). The first loop is repeated until no new nodes are added to the sets loopnodes or
candidates. We know that loopnodes never decreases in the loop; moreover, sentence
(4) ensures that m1 R loopnodes, therefore, the number of nodes added to loopnodes is
finite because the number of nodes in N is finite. Similarly, candidates only have a finite
number of insertions, and once a node is added to candidates it can be removed, but
never inserted again because loopnodes never decreases. The second loop is analogous
to the first one. Therefore, we can ensure that it always terminates by showing that Ceb
is increased in every iteration with nodes of pending that leave pending when they are
inserted into Ceb, see (14) and (17). And, moreover, pending can only be increased a
limited number of times because it is always increased with nodes which are the successor
of a node in pending following control arcs. Therefore, because the CSCFG is a tree if
we only consider control arcs and N is finite, the size of every branch is finite, and thus,
the loop always terminates.

Theorem 9. (Completeness of MEB) Let S be a specification, C a slicing criterion for
S, and let MEB be the MEB slice of S with respect to C. Then, MEB ĎMEBpS, Cq.
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Proof. (sketch) First, we prove that MEBpS, Cq considers all possible executions of the
slicing criterion as MEB does. This depends on function nodes, that considers only the
first occurrences (starting from MAIN and proceeding forwards) of the slicing criterion.
Then, it is equivalent to consider the first time that the slicing criterion belongs to
ω, which is the stopping condition in the MEB construction process. Second, as the
slicing criterion could happen in different executions, we have to construct a relation
between them in order to build the final result. In the case of MEB the intersection
of ω for each execution is considered. However, MEBpS, Cq considers the intersection
of the specification positions of each node belonging to buildMebpnq where n is a slicing
criterion’s node. So we have to prove that the result of buildMebpnq will return all
(and maybe more) the nodes (and consequently specification positions) that have been
executed before it. Function buildMeb in step (2) selects all the nodes from MAIN to the
given node n and to those nodes which are synchronized with it. The rest of the nodes
that will be appended in the rest of steps depends mainly on sets pending and sync.
These sets will be formed by those nodes that are synchronized with nodes in set Meb
or loops which contain at least one node synchronized with a node in Meb. Then all
possible executed nodes are belonging to Meb at the end. The only problem that could
arise happens when some nodes are not considered and they are included in the blacklist,
the set of discarded nodes. However, all the nodes in this set are correctly discarded,
because it adds first the given node n and the branches of choices or interleaving which
do not reach a node in Meb; then, it discards iteratively the nodes under these ones and
all that are synchronized with them only if all the other nodes synchronized are also
discarded. Therefore, we can conclude that the result will be a superset of MEB.

Theorem 11. (Completeness of CEB) Let S be a specification, C a slicing criterion for
S, and let CEB be the CEB slice of S with respect to C. Then, CEB Ď CEBpS, Cq.

Proof. (sketch) The first part of the proof is completely analogous to the previous one.
The rest of the proof concerns function buildCeb. In its first step, a call to function
buildMeb is made. Consequently all those parts that must be executed before node n
will form the initial set for Ceb. Then, we have to prove that the rest of steps collects
those nodes that could also be executed before the given node n. This group only
depends on loops that finish in a node that is in Ceb. Then, in step (2) the set loopnodes
is initialized with the children of the choices in Ceb that are not in Ceb. After this, an
iterative process proceeds forward adding nodes if they could be executed, i.e. if it has
not synchronization arcs; or in case it has, their synchronized nodes are in Ceb or in
candidates (a set of nodes waiting for acceptance). In this way, it is assured that only
those nodes that could be executed before n are added to Ceb in step (11). Finally,
the same checking idea is applied to the nodes that are under nodes in Ceb (but n),
adding iteratively more nodes if the conditions are fulfilled. With this last step, the rest
of specification positions that could be executed (those belonging to other threads of
execution) is safely added to the set Ceb. Then, we can conclude that CEBpS, Cq is a
superset of CEB.
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