
DEPARTAMENTO DE SISTEMAS INFORMÁTICOS Y COMPUTACIÓN
UNIVERSIDAD POLITÉCNICA DE VALENCIA

P.O. Box: 22012 E-46071 Valencia (SPAIN)

Informe Técnico / Technical Report

Ref. No.: DSIC-II/10/09
Pages: 2

Title: An Empirical Evaluation
of Algorithmic Debugging Strategies

Author(s): Josep Silva
Date: October 14, 2009
Keywords: Algorithmic Debugging,

Strategies

Vo Bo

Leader of research Group Author(s)



An Empirical Evaluation of Algorithmic
Debugging Strategies

1 A Comparison of Algorithmic Debugging Strategies

This article presents a collection of experiments that were conducted in order
to measure and compare the performance of a set of algorithmic debugging
strategies. This empirical study aims at determining precisely how the strategies
work in practice. For instance, theoretical studies [4] concluded that Hirunkitti’s
version of D&Q is better than Shapiro’s version. But the question is How much
better? Similarly, the theoretical study revealed that Heaviest First is better
than Top-Down; but, again, How much better? Is the difference significant in
practice?

We conducted several experiments to answer these questions. Basically, the
experiments were done by debugging several programs with all the strategies in
order to know which strategies work better in practice (as an average). The main
problem was that no debugger implemented all the strategies—in fact, the most
advanced debugger was Mercury’s debugger (http://www.cs.mu.oz.au/research/
mercury) [3] which only implements four strategies—; and also that there was no
maintained implementation of some strategies such as Divide by YES & Query.

Therefore, we had to implement all the strategies in order to ensure that
all of them can be applied to the same target language, and hence the re-
sults are comparable. We implemented the strategies in the JDD debugger
(http://www.dsic.upv.es/∼jsilva/JDD) [1] which is a Java debugger; and we
selected 25 Java benchmarks to perform the experiments.

The results are shown in Figure 1, where rows represent benchmarks, and
columns represent algorithmic debugging strategies. The strategies are the fol-
lowing: Top-Down (TD), Divide & Query by Shapiro (D&Q Sha), Divide &
Query by Hirunkitti (D&Q Hir), Divide by YES & Query (DbyY&Q), Heaviest
First (HF), Less YES First (LYF), Hat Delta YES (HD - Yes), Hat Delta NO
(HD - No), Hat Delta Average (HD - Avg), Single Stepping (SS).

The results of the comparison provide interesting information related to the
strategies which confirm the theoretical study; but they also offer additional
information that complements the theoretical study. First, the experiments con-
firm that single stepping is not usable in practice. It needs many more questions
than any other strategy for larger programs. Top-Down, which is the most used
strategy is also not a good option. For instance, in the experiments it needs 50%
more questions than Divide & Query. The experiments confirm that hirunkitti’s
Divide & Query is better than Shapiro’s Divide & Query; but the difference
is very small. The idea of using rules to prune the tree turns out to be use-
ful. Indeed, Divide by Rules and Query—which had not been implemented by
any debugger—shows to be the best strategy in practice. The other strategies
got similar results. In the case of Hat Delta heuristics, we see that it is better
to prune the tree by counting YES answers. This result confirms the same re-



sult obtained by Davie and Chitil [2] when they compared the three Hat Delta
heuristics.

Fig. 1. Performance of algorithmic debugging strategies

All the information related to this experiment, together with the source code
of the benchmarks is publicly available at:

http://www.dsic.upv.es/~jsilva/algdeb

References

1. R. Caballero. Algorithmic Debugging of Java Programs. In Proc. of the 2006
Workshop on Functional Logic Programming (WFLP’06), pages 63–76. Electronic
Notes in Theoretical Computer Science, 2006.

2. T. Davie and O. Chitil. Hat-delta: One Right Does Make a Wrong. In Seventh
Symposium on Trends in Functional Programming, TFP 06, April 2006.

3. I. MacLarty. Practical Declarative Debugging of Mercury Programs. PhD thesis,
Department of Computer Science and Software Engineering, The University of Mel-
bourne, 2005.

4. J. Silva and O. Chitil. Combining Algorithmic Debugging and Program Slic-
ing. Technical Report DSIC-II/04/06, UPV, 2006. Available from URL:
http://www.dsic.upv.es/~jsilva/research.htm#techs.


