
An Optimal Strategy for Algorithmic Debugging
David Insa and Josep Silva

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

E-46022 Valencia, Spain.
{dinsa,jsilva}@dsic.upv.es

Abstract—Algorithmic debugging is a technique that uses an
internal data structure to represent computations and ask about
their correctness. The strategy used to explore this data structure
is essential for the performance of the technique. The most
efficient strategy in practice is Divide and Query that, until
now, has been considered optimal in the worst case. In this
paper we first show that the original algorithm is inaccurate
and moreover, in some situations it is unable to find all possible
solutions, thus it is incomplete. Then, we present a new version
of the algorithm that solves these problems. Moreover, we
introduce a counterexample showing that Divide and Query is not
optimal, and we propose the first optimal strategy for algorithmic
debugging with respect to the number of questions asked by the
debugger.

Index Terms—Algorithmic Debugging, Divide and Query

I. INTRODUCTION

Algorithmic debugging [15], [18] is based on the answers
of the programmer to a series of questions generated auto-
matically by the algorithmic debugger. In each question the
debugger provides the programmer with the input and output
of a (sub)computation (e.g., a function activation) and the
programmer states their correctness. This information is used
by the debugger to discard correct parts of the code and guide
the search for the bug until a buggy portion of code is isolated.

Example 1.1: Consider the following simple (and buggy)
Haskell program:

main = mix [1, 3] [2, 4]

insert e [] = [e]
insert e (x:xs)

| e <= x = e : x : xs
| otherwise = x : insert e xs

mix [] ys = ys
mix (x:xs) ys = insert x (mix xs xs)

An algorithmic debugging session for this program is the
following (YES and NO answers are provided by the program-
mer):

Starting Debugging Session...
(1) mix [3] [3] = [3]? NO
(2) mix [] [] = []? YES
(3) insert 3 [] = [3]? YES

Bug found in rule:
mix (x:xs) ys = insert x (mix xs xs)

The debugger points out the part of the code that contains the
bug. In this case mix xs xs should be mix xs ys. Note that,

to debug the program, the programmer only has to answer
questions. It is not even necessary to see the code.

Algorithmic debuggers often produce a data structure called
the execution tree (ET) [13] that represents a program execu-
tion. For instance, the ET of the program in Example 1.1 is
depicted in Figure I.

Fig. 1. ET of the program in Example 1.1

The nodes of the ET contain questions, and the strategy used
to decide what nodes of the ET should be asked is crucial for
the performance of the technique [16].

The algorithmic debugging strategy that presents the best
performance in practice is Divide and Query (D&Q) [15],
[7]. In fact, from a theoretical point of view, this strategy has
been thought optimal in the worst case for almost 30 years,
and it has been implemented in almost all current algorithmic
debuggers (see, e.g., [5], [6], [8], [14]). In this paper we show
that current algorithms for D&Q are suboptimal. We show the
problems of D&Q and solve them in a new improved algorithm
that is proven optimal. Moreover, the original strategy was
only defined for ETs where all the nodes have an individual
weight of 1. In contrast, we allow our algorithms to work
with different individual weights that can be integer, but
also decimal. An individual weight of zero means that this
node cannot contain the bug. A positive individual weight
approximates the probability of being buggy. The higher the
individual weight, the higher the probability. This generaliza-
tion strongly influences the technique and allows us to assign
different probabilities of being buggy to different parts of the
program. For instance, a recursive function with higher-order
calls should be assigned a higher individual weight than a
function implementing a simple base case [16]. The weight
of the nodes can also be reassigned dynamically during the
debugging session in order to take into account the oracle’s
answers [6].

We show that the original algorithms are inefficient with
ETs where nodes can have different individual weights in the
domain of the positive real numbers (including zero) and we
redefine the technique for these generalized ETs.

The rest of the paper has been organized as follows. In
Section II we recall the algorithmic debugging technique and
formalize the strategy D&Q. Then, we show with counterex-
amples that D&Q is suboptimal and incomplete. In Section III
we introduce an improved version of D&Q. In Section IV we
define a new strategy for algorithmic debugging that is optimal
in all cases. The correctness of the algorithms presented is
proven in Section V. Finally, Section VI concludes.

II. ALGORITHMIC DEBUGGING

In this section we recall the algorithmic debugging tech-
nique and formalize the strategy D&Q [15]. We start with the
definition of marked execution tree, that is an ET where some
nodes could have been removed because they were marked
as correct (i.e., answered YES), some nodes could have been
marked as wrong (i.e., answered NO) and the correctness of
the other nodes is undefined.

Definition 2.1 (Marked Execution Tree): A marked execu-
tion tree (MET) is a tree T = (N,E,M) where N are the
nodes, E ⊆ N × N are the edges, and M : N → V is a
marking total function that assigns to all the nodes in N a
value in the domain V = {Wrong ,Undefined}.

Initially, all nodes in the MET are marked as Undefined .
But with every answer of the user, a new MET is produced.
Concretely, given a MET T = (N,E,M) and a node n ∈ N ,
the answer of the user to the question in n produces a new
MET such that: (i) if the answer is YES, then this node and
its subtree is removed from the MET. (ii) If the answer is
NO, then, all the nodes in the MET are removed except this
node and its descendants.1 Therefore, note that the only node
that can be marked as Wrong is the root. Moreover, the rest
of nodes can only be marked as Undefined because when
the answer is YES, the associated subtree is deleted from the
MET.

Therefore, the size of the MET is gradually reduced with the
answers. If we delete all nodes in the MET then the debugger
concludes that no bug has been found. If, contrarily, we finish
with a MET composed of a single node marked as wrong,
this node is called the buggy node and it is pointed to as
being responsible for the bug of the program.

All this process is defined in Algorithm 1 where function
selectNode selects a node in the MET to be asked to the user
with function askNode. Therefore, selectNode is the central
point of this paper. In the rest of this section, we assume that
selectNode implements D&Q. In the following we use E∗ to
refer to the reflexive and transitive closure of E and E+ for
the transitive closure.

1It is also possible to accept I don’t know as an answer of the user. In this
case, the debugger simply selects another node [8]. For simplicity, we assume
here that the user only answers YES or NO.

Algorithm 1 General algorithm for algorithmic debugging
Input: A MET T = (N,E,M)
Output: A buggy node or ⊥ if no buggy node is detected
Preconditions: ∀n ∈ N , M(n) = Undefined
Initialization: buggyNode = ⊥

begin
(1) do
(2) node = selectNode(T)
(3) answer = askNode(node)
(4) if (answer = NO)
(5) then M (node) = Wrong
(6) buggyNode = node
(7) N = {n ∈ N | (node → n) ∈ E∗}
(8) else N = N\{n ∈ N | (node → n) ∈ E∗}
(9) while (∃n ∈ N,M(n) = Undefined)
(10) return buggyNode
end

A. Divide and Query

D&Q assumes that the individual weight of a node is
always 1. Therefore, given a MET T = (N,E,M), the
weight of the subtree rooted at node n ∈ N , wn, is defined
recursively as its number of descendants including itself (i.e.,
1 +

∑
{wn′ | (n→ n′) ∈ E}).

D&Q tries to simulate a dichotomic search by selecting the
node that better divides the MET into two subMETs with a
weight as similar as possible. Therefore, given a MET with n
nodes, D&Q searches for the node whose weight is closer to
n
2 [7].

B. Limitations of D&Q

In this section we show that D&Q is suboptimal when the
MET does not contain a wrong node (i.e., all nodes are marked
as undefined).2 The intuition beyond this limitation is that the
objective of D&Q is to divide the tree by two, but the real
objective should be to reduce the number of questions to be
asked to the programmer. For instance, consider the MET in
Figure 2 (left) where each node is labeled with its weight and
the black node is marked as wrong, thus D&Q would select the
gray node. The objective of D&Q is to divide the 8 nodes into
two groups of 4. Nevertheless, the real motivation of dividing
the tree should be to divide the tree into two parts that would
produce the same number of remaining questions (in this case
3).

The problem comes from the fact that D&Q does not
take into account the marking of wrong nodes. For instance,
observe the two METs in Figure 2 (center) where the black
node is marked as wrong. In both cases D&Q would behave
exactly in the same way, because it completely ignores the
marking of the root. Nevertheless, it is evident that we do not
need to ask again for a node that is already marked as wrong
to determine whether it is buggy. However, D&Q counts the

2Modern debuggers [8] allow the programmer to debug the MET while it
is being generated. Thus the root node of the subtree being debugged is not
necessarily marked as Wrong.

nodes marked as wrong as part of their own weight, and this
is a source of inefficiency.

Fig. 2. Behavior of Divide and Query

In the METs of Figure 2 (center) we have two METs. In
the one at the right nodes with weight 1 and 2 are optimal, but
in the one at the left, only the node with weight 2 is optimal.
In both METs D&Q would select either the node with weight
1 or the node with weight 2 (both are equally close to 3

2).
However, we show in Figure 2 (right) that selecting node 1
is suboptimal, and the strategy should always select node 2.
Considering that the gray node is the first node selected by the
strategy, then the number at the side of a node represents the
number of questions needed to find the bug if the buggy node
is this node. The number at the top of the figure represents the
number of questions needed to determine that there is not a
bug. Clearly, as an average, it is better to select first the node
with weight 2 because we would perform less questions (84
vs. 9

4 considering all four possible cases).
Therefore, D&Q returns a set of nodes that contains the

best node, but it is not able to determine which of them is the
best node, thus being suboptimal when it is not selected. In
addition, the METs in Figure 3 show that D&Q is incomplete.
Observe that the METs have 4 nodes, thus D&Q would always
select the node with weight 2. However, the node with weight
3 is equally optimal (both need 12

5 questions as an average to
find the bug) but it will be never selected by D&Q because
its weight is farther from the half of the tree 4

2 .
Another limitation of D&Q is that it was designed to work

with METs where all the nodes have the same individual
weight, and moreover, this weight is assumed to be 1. If we
work with METs where nodes can have different individual
weights and these weights can be any value greater or equal
to zero, then D&Q is suboptimal as it is demonstrated by
the MET in Figure 4. In this MET, D&Q would select node
n1 because its weight is closer to 21

2 than any other node.

Fig. 3. Incompleteness of Divide and Query

Fig. 4. MET with decimal individual weights

However, node n2 is the node that better divides the tree in
two parts with similar probabilities of containing the bug.

In summary, (1) D&Q is suboptimal when the MET is
free of wrong nodes, (2) D&Q is correct when the MET
contains wrong nodes and all the nodes of the MET have
the same weight, but (3) D&Q is suboptimal when the MET
contains wrong nodes and the nodes of the MET have different
individual weights.

III. OPTIMAL D&Q

In this section we introduce a new version of D&Q that
divides the MET into two parts with the same probability of
containing the bug (instead of two parts with the same weight).
We introduce a new algorithm that is correct and complete
even if the MET contains nodes with different individual
weights that can be any decimal number greater than 0. For
this, we define the search area of a MET as the set of
undefined nodes.

Definition 3.1 (Search area): Let T = (N,E,M) be a
MET. The search area of T , Sea(T), is defined as {n ∈ N |
M(n) = Undefined}.

While D&Q uses the whole T , we only use Sea(T), because
answering all nodes in Sea(T) guarantees that we can discover
all buggy nodes [9]. Moreover, in the following we refer to the
individual weight of a node n with win; and we refer to the
weight of a (sub)tree rooted at n with wn that is recursively
defined as:

wn =

{ ∑
{wn′ | (n→ n′) ∈ E} if M(n) 6= Undefined

win +
∑
{wn′ | (n→ n′) ∈ E} otherwise

Note that, contrarily to standard D&Q, the definition of
wn excludes those nodes that are not in the search area (i.e.,
the root node when it is wrong). Note also that win allows
us to assign any individual weight to the nodes. This is a
generalization of D&Q where it is assumed that all nodes have
the same individual weight and it is always 1.

For the sake of clarity, given a node n ∈ Sea(T), we
distinguish between three subareas of Sea(T) induced by n:
(1) n itself, whose individual weight is win; (2) descendants
of n (Down(n)), whose weight is
dn =

∑
{win′ | n′ ∈ Sea(T) ∧ (n→ n′) ∈ E+}

and (3) the rest of nodes (Up(n)), whose weight is
un =

∑
{win′ | n′ ∈ Sea(T) ∧ (n→ n′) 6∈ E∗}

Example 3.2: Consider the MET in Figure 5. Assuming that
the root n is marked as wrong and all nodes have an individual
weight of 1, then Sea(T) contains all nodes except n, un′ = 3

Fig. 5. Functions Up and Down

(total weight of the gray nodes), and dn′ = 3 (total weight of
the white nodes).

Clearly, for any MET whose root is n and a node n′,
M(n′) = Undefined , we have that:

wn = un′ + dn′ + win′ (Equation 1)
wn′ = dn′ + win′ (Equation 2)

Intuitively, given a node n, what we want to divide by half
is the area formed by un + dn. That is, n will not be part
of Sea(T) after it has been answered, thus the objective is
to make un equal to dn. This is another important difference
with traditional D&Q: win should not be considered when
dividing the MET. We use the notation n1 � n2 to express
that n1 divides Sea(T) better than n2 (i.e., |dn1 − un1 | <
|dn2 − un2 |). And we use n1 ≡ n2 to express that n1 and n2
equally divide Sea(T). If we find a node n such that un = dn
then n produces an optimal division, and should be selected
by the strategy.

In the rest of this section we present an algorithm for
optimal D&Q (i.e., that optimally divides the MET by half).
In particular, given a MET, Algorithm 2 efficiently determines
the best node to divide Sea(T) by half (in the following the
optimal node). In order to find this node, the algorithm does
not need to compare all nodes in the MET. It follows a path
of nodes from the root to the optimal node which is closer to
the root producing a minimum set of comparisons.

Algorithm 2 Optimal D&Q —SelectNode in Algorithm 1—
Input: A MET T = (N,E,M) whose root is n ∈ N and ∀n′ ∈
N,win′ ≥ 0
Output: A node nOptimal ∈ N
Preconditions: ∃n′ ∈ N , M(n′) = Undefined

begin
(1) Candidate = n
(2) do
(3) Best = Candidate
(4) Children = {m | (Best → m) ∈ E}
(5) if (Children = ∅) then return Best
(6) Candidate = n′ | ∀n′′ with n′, n′′ ∈ Children, wn′ ≥ wn′′

(7) while (wCandidate − wiCandidate
2

> wn
2
)

(8) Candidate = n′ | ∀n′′ with n′, n′′ ∈ Children,
wn′ − win′

2
≥ wn′′ − win′′

2
(9) if (M(Best) = Wrong) then return Candidate
(10) if (wn ≥ wBest + wCandidate − wiBest

2
− wiCandidate

2
)

then return Best
(11) else return Candidate
end

Example 3.3: Consider the MET in Figure 6 where ∀n ∈
N,win = 1 and M(n) = Undefined .

Fig. 6. Defining a path in a MET to find the optimal node

Observe that Algorithm 2 traverses the MET top-down from
the root selecting at each level the heaviest node until we find
a node whose weight minus its individual weight divided by
two is smaller or equal than the half of the MET (wn

2), thus,
defining a path in the MET that is colored in gray. Finally, the
algorithm selects n1.

One important idea of the algorithm is the identification of
a path from the root to the buggy node. In particular, when
we use Algorithm 2 and compare two nodes n1, n2 in a MET
whose root is n, we find five possible cases (see Figure 7) to
define this path:

Case 1: dn1
> un1

∧ dn2
≤ un2

∧ n1, n2 are brothers
Case 2: dn1 ≤ un1 ∧ dn2 ≤ un2 ∧ n1, n2 are brothers
Case 3: dn1 > un1 ∧ dn2 > un2 ∧ (n1 → n2) ∈ E
Case 4: dn1

> un1
∧ dn2

≤ un2
∧ (n1 → n2) ∈ E

Case 5: dn1
≤ un1

∧ dn2
≤ un2

∧ (n1 → n2) ∈ E

Case 1 Case 2 Case 3 Case 4 Case 5

Fig. 7. Determining the best node in a MET (five possible cases)

In cases 1 and 5 n1 is better (i.e., n1 � n2 or n1 ≡ n2); in
case 3 n2 is better; and in cases 2 and 4 the best node must be
determined comparing them. Observe that these results allow
the algorithm to determine the path to the optimal node that is
closer to the root. For instance, in Example 3.3 case 1 is used
to select a child, e.g., node n1 instead of node n4. Case 3 is
used to go down and select node n1 instead of node n. Case 2
is used to select node n2 instead of node n3 (this is done with
line (8) of the algorithm). Case 5 is used to stop going down
at node n2 because it is better than all its descendants. And
it is also used to determine that nodes n3 and n4 are better
than all their descendants. Finally, case 4 is used to select the
optimal node, n1 instead of n2 (this is done with line (10) of
the algorithm). Note that D&Q could have selected node n2
that is equally close to 9

2 than node n1; but it is suboptimal
because un1

= 3 and dn1
= 5 whereas un2

= 6 and dn2
= 2.

The correctness of Algorithm 2 is stated by the following
theorem.

Theorem 3.4 (Correctness): Let T = (N,E,M) be a MET
where ∀n ∈ N,win ≥ 0, then the execution of Algorithm 2
with T as input always terminates producing as output a node
n ∈ Sea(T) such that @n′ ∈ Sea(T) | n′ � n.

Algorithm 2 always returns a single optimal node. However,
a small modification can make the algorithm to return all
optimal nodes, thus being complete: changing line (8) to
collect all candidates instead of one, and updating accordingly
the output lines to return a set. Moreover, line (10) should be
split to distinguish between the cases ‘>’ (returning {Best})
and ‘=’ (returning candidates ∪ {Best}).

IV. DIVIDE BY QUERIES

An strategy should be consider optimal with respect to the
number of questions generated if and only if the average
number of questions asked with any MET is minimum. Note
that we can compute this average by assuming that the bug can
be in any node of the MET, and thus computing the number
of questions asked for each node using Algorithm 1. In this
section we call optimal node to the first node asked by an
optimal strategy (instead of the node that better divides the
MET by the half).

Definition 4.1 (Optimal strategy): Let ε be an algorithmic
debugging strategy. Given a MET T = (N,E,M), let sεn the
sequence of questions made by Algorithm 1 with strategy ε
and considering that the only buggy node in T is n ∈ N . Let
tε =

∑
ni∈N

|sεni
|. We say that ε is optimal if and only if for any

MET @ε′ . tε > tε′ .
In this section we show that any version of D&Q is and

will be suboptimal. The reason is that D&Q tries to prune
the biggest possible subtree, but it ignores the structure of
the MET. In practice, pruning complex subtrees that are more
difficult to explore is very important, but this is ignored by
D&Q. This means that our version of D&Q (Algorithm 2)
is optimal in the sense that it optimally divides the MET
by the half. But it is not an optimal strategy because in
total (considering all questions needed to find the bug) it can
perform more questions than necessary.

Because we compute the cost of a strategy based on the
number of questions asked, we need a formal definition for
sequence of questions.

Definition 4.2 (Sequence of questions): Given a MET T =
(N,E,M) and two nodes n1, n2 ∈ N , a sequence of questions
of n1 with respect to n2, sq(n1, n2), is formed by all nodes
asked by Algorithm 1 when the first node selected by function
selectNode(T) is n2 and the only buggy node in T is n1.

This means that the sequence of questions is completely
dependent on the used strategy. For instance, using standard
D&Q with the MET in Figure 2 (left) and assuming that all
nodes are marked as undefined:
sq(n, n3) = [n3, n1, n2, n7, n] sq(n3, n) = [n, n3, n4, n5, n6]

sq(n, n) = [n, n3, n1, n2, n7] sq(n3, n3) = [n3, n4, n5, n6]

We now show a counterexample where D&Q cannot find an
optimal node.

Fig. 8. MET where D&Q cannot find an optimal node

Example 4.3: Consider the MET in Figure 8 (left) where
the number at the right of the node represents |sq(n, n′)| being
n the node itself and n′ the gray node. D&Q would select node
n1 because its weight is closer to 114

2 = 57. However, n2 is
the only optimal node, and it produces less questions than n1
even though its weight is far from 57.

In the MET at the left we start asking node n1. If the bug is
located in the subtree of node n1, because it is a deep subtree,
we would ask an average of log2 57 = 5, 83 questions to each
node (+1 because we have initially asked node n1). If the
bug were not in this subtree, then after asking node n1 we
would explore the subtree of node n2. If the bug is located in
this subtree we must ask all nodes until we find the bug, and
all these nodes have to consider the question already asked to
node n1; in total we ask (

∑51
i=3 i) + 51 = 1374 questions. If

the bug were not located in the right brach, there only remain
the 7 top nodes in the left branch (including the root). There
we ask an average of log2 7 = 2, 8 questions to each node
(+2 because we already asked nodes n1 and n2). In total we
ask 57 ∗ 6, 83 + 1374 + 7 ∗ 4, 8 = 1796, 91 questions, and an
average of 1796,91

114 = 15, 76 questions.
If, contrarily, we start asking node n2 (see the MET at the

right) and the bug is located in this subtree, we ask (
∑50
i=2 i)+

50 = 1324 questions. If the bug is located in the other branch,
after asking node n2 we still have 64 nodes in depth; therefore,
with log2 64 = 6 questions (+1 because we have initially
asked node n2) we will find the bug. In total, we ask 1324 +
64 ∗ 7 = 1772 questions, and an average of 1772

114 = 15, 54
questions.

Example 4.3 showed that D&Q is not an optimal strategy.
The question now is whether an optimal strategy exists: is the
problem decidable?

Theorem 4.4 (Decidability): Given a MET, finding all op-
timal nodes is a decidable problem.

Proof: We show that at least one finite method exists to
find all optimal nodes. Firstly, we know that the size of the
MET is finite because the question in the root can only be
completed if the execution terminated, and hence the number
of subcomputations—and nodes—is finite [8]. Because the
tree is finite, we know (according to Algorithm 1) that any
sequence of questions asked by the debugger (no matter the
strategy used) is also finite because at most all nodes of
the tree are asked once. Therefore, the number of possible

sequences is also finite. This guarantees that we can compute
all possible sequences and select the best sequences according
to the equation in Definition 4.1. The optimal nodes will be
the first of the selected sequences.

Even though the method described in the proof of Theo-
rem 4.4 is effective, it is too expensive because it needs to
compute all possible sequences of questions. In the rest of
this section we present a more efficient method to compute
all optimal nodes.

We now present a method to select the best sequences of
questions (sqn) for the nodes in a MET. For the sake of clarity,
in the following when we talk about the sequence of questions
of a node, we assume that this node is wrong and that the
sequence contains a set of nodes that after they have been
asked, they allow us to know whether the node is buggy or
not.

In order to formalize the method described in the proof of
Theorem 4.4 we first define the notion of valid sequence of
questions.

Definition 4.5 (Valid sequences of questions of a node):
Let T = (N,E,M) be a MET whose root is n ∈ N . A
sequence of questions sqn = [n1, . . . , nm] for n is valid if:

1) ∀ni, nj ∈ sqn, 1 ≤ i < j ≤ m, (ni → nj) 6∈ E∗
2) N\{nj | (ni → nj) ∈ E∗ ∧ ni ∈ sqn} = {n}

We denote with SQn the set of valid sequences of questions
of n.

Intuitively, the valid sequences of questions of a root node
n are all those sequences formed with non-repeated nodes
that (1) a node in the sequence cannot be descendant of a
previous node in the sequence, and (2) after having pruned all
the subtrees whose roots are the nodes of the sequence, node
n has not descendants.

The next example shows that if we label each node of a
MET with a valid sequence of questions, then it is possible
to know how many questions do we need to ask to find the
buggy node.

Example 4.6: Consider the next tree:

Here, nodes are labeled with their weight (inside) their
identifier (top left), an optimal sequence of questions for this
node (top right), |sq(n, n1)| where n is the node (bottom
right), and the sum of |sq(n′, n)| for all node n′ of the subtree
of this node (n) (bottom left).

There exist many valid sequences for node n1, (e.g.
[n2, n7, n10], [n2, n10, n7], [n3, n2, n7, n10], etc.). If we con-
sider the sequence of the figure ([n2, n7, n10]) and taking into

account that we start asking in the root node3, then we can
easily determine the number of questions needed to find the
bug in any node n. We refer to this number with qn. For
instance, we need 4 questions to find the bug in node n1
([n1, n2, n7, n10]). Similarly, qn4

= 4 ([n1, n2, n3, n4]) and
qn7

= 5 ([n1, n2, n7, n8, n9]). Observe that when we reach
node n7 and mark it as wrong we continue the sequence of
questions of this node ([n8, n9]).

Once we have computed q for all descendants of node n,
we can also compute the n’s number at bottom left (referred to
as Qn) by adding all qs. In the figure, we see that Qn1

= 46,
Qn2

= 19 and (trivially) the leafs only need one question (the
node itself).

Therefore, to find the optimal nodes, we only have to:
(i) Compute Qn for all nodes in the MET, (ii) add to the
MET a fictitious root node, (iii) compute all valid sequences
of the root node, (iv) compute the cost associated to each
sequence (with Algorithm 3), and (v) select the first node of
the sequences with the minimum cost.

Essentially, Algorithm 3 is used to compute Qn of a given
node. For this, it compositionally computes the number of
questions that should be asked to each node. This is done by
taking into account the individual weight of each node that,
as with Algorithm 2, can be any number greater than or equal
to 0.

Example 4.7: Consider the following tree at the left with
depth 4, where we want to compute the cost Qn1

associated
to the sequence [n3, n6, n2].

Function ComputeQ takes the first element of the sequence
(n3) and computes the number of questions to be done if the
bug is located in its subtree. This is Qn3

= 8. Therefore, no
matter where the bug is, we have to ask one extra question for
each node (the one in the root n1). Thus we have a total of
8+3=11 questions. If the bug is not located in the subtree of
n3, then we should continue asking questions of the sequence
having pruned this subtree. Therefore, we should prune this
tree and recalculate Q for the ancestors of node n3. This is
done with function AdjustIntermediateNodes producing the
tree with a depth of 2 in the middle of the figure above. In
this new tree, Qn2 has been recomputed and its value is 1.

Then, we proceed with the next question in the sequence
(n6). Now we have Qn6

=4 questions. But now we have to
take into account two extra questions (one for n1 and one

3Note that this does not mean that valid sequences must necessarily start
asking the root node. Given any MET we can add a new fictitious parent of
the root and compute the optimal sequence of questions associated to this
new node.

for n3) for each node in the subtree of n6: 2*2=4 questions.
Hence we have a total of (8+3)+(4+4)=19 questions. If the
bug is not located in the subtree of node n6 we prune it
producing the tree at the right of the figure and we ask the
next question in the sequence: n2. If the bug is n2, then
we have to ask one question (n2) plus the extra questions
done before (n1, n3 and n6). Thus we have a total of
(8+3)+(4+4)+(1+3)=23 questions. Finally, if the bug is located
in the root, we have to ask 4 questions: the root node itself
and all questions in the sequence. Thus, the final value of Qn1

is (8+3)+(4+4)+(1+3)+(4)=27.
The previous example illustrates the work done by Algo-

rithm 3 to compute Q. It basically computes and sums the
number of questions asked for each node. For this, it has to
take into account the sequence of questions in order to decide
how many questions are cumulated when a new subtree is
explored.

Algorithm 3 uses function computeSQ(T, n) to compute
all possible valid sequences of questions associated to node n.
Therefore, because this function returns all possible sequences
for the node, then the strategy is optimal. However, note that
this function could be restricted to behave as other strategies of
the literature. For instance, we could adapt it to work as the
strategy Top-Down [1] if we restrict the sequences returned
to those where all elements in the sequence are children of
n. This is equivalent to adding the following restriction to
Definition 4.5:

3) ∀n′ ∈ sqn, (n→ n′) ∈ E

V. PROOFS OF TECHNICAL RESULTS

We first define a MET where individual weights can be
decimal numbers:

Definition 5.1 (Variable MET): A variable MET T =
(N,E,M) is a MET, where ∀n ∈ N,win ≥ 0.

Theorem 3.4 states the correctness of Algorithm 2. For the
proof of this theorem we define first some auxiliary lemmas.
The following lemma ensures that wn1

− win1

2 > wn

2 used in
the condition of the loop implies dn1

> un1
.

Lemma 5.2: Given a variable MET T = (N,E,M) whose
root is n ∈ N and a node n1 ∈ Sea(T), dn1 > un1 if and
only if wn1

− win1

2 > wn

2 .
Proof: We prove that wn1

− win1

2 > wn

2 implies dn1
>

un1 and vice versa.
wn1 −

win1
2

> wn
2

2wn1 − win1 > wn

We replace wn1 using Equation 2:
2(dn1 + win1)− win1 > wn

2dn1 + win1 > wn

dn1 > wn − dn1 − win1

We replace wn − dn1 − win1 using Equation 1:
dn1 > un1

The following lemma ensures that given two nodes n1 and
n2 where dn ≥ un in both nodes and n1 → n2 then n2 �
n1 ∨ n2 ≡ n1 (Case 3).

Algorithm 3 Compute Qn
Input: A MET T = (N,E,M) and a node n ∈ N
Output: Qn

(1) (sqn, Qn) = ComputeOptimalSequence(T, n)
(2) return Qn

function ComputeOptimalSequence(T, n)
begin
(3) SQn = computeSQ(T, n)
(4) sqOptimal = sqn ∈ SQn | @sq′n ∈ SQn .

ComputeQ(T, n, sqn) > ComputeQ(T, n, sq′n)
(5) QOptimal = ComputeQ(T, n, sqOptimal)
(6) return (sqOptimal,QOptimal)
end

function ComputeQ(T, n, sqn)
begin
(7) questions = 0
(8) indexNode = 0
(9) accumNodes = 1
(10) while ({n′|(n→ n′) ∈ E∗} 6= {n})
(11) node = sqn[indexNode]
(12) indexNode = indexNode + 1
(13) questions = questions + (Qnode + accumNodes ∗ wnode)
(14) accumNodes = accumNodes + 1
(15) T = AdjustIntermediateNodes(T, n, node)

end while
(16) questions = questions + (accumNodes ∗ win)
(17) return questions
end

function AdjustIntermediateNodes(T, n, n′)
begin
(18) O = {n′′ ∈ N | (n′ → n′′) ∈ E∗}
(19) N = N\O
(20) n′ = n′′ | (n′′ → n′) ∈ E
(21) while (n′ 6= n)
(22) (, Qn′) = ComputeOptimalSequence(T, n′)
(23) wn′ = wn′ − |O|
(24) n′ = n′′ | (n′′ → n′) ∈ E

end while
(25) return T
end

Lemma 5.3: Given a variable MET T = (N,E,M) and
given two nodes n1, n2 ∈ Sea(T), with (n1 → n2) ∈ E, if
dn2 ≥ un2 then n2 � n1 ∨ n2 ≡ n1.

Proof: We prove that |dn2 − un2 | ≤ |dn1 − un1 | holds.
First, we know that dn1

= dn2
+ win2

+ inc and un1
=

un2
− win1

− inc with inc ≥ 0, where inc represents the
weight of the possible brothers of n2.
|dn2 − un2 | ≤ |dn1 − un1 |
As we know that dn ≥ un in both nodes:
dn2 − un2 ≤ dn1 − un1

We replace dn1 and un1 :
dn2 − un2 ≤ (dn2 + win2 + inc)− (un2 − win1 − inc)
dn2 − un2 ≤ dn2 − un2 + win1 + win2 + 2inc
0 ≤ win1 + win2 + 2inc

Hence, because win1 , win2 , inc ≥ 0 then |dn2 − un2 | ≤
|dn1
− un1

| is satisfied and thus n2 � n1 ∨ n2 ≡ n1.
The following lemma ensures that given two nodes n1 and

n2 where dn ≤ un in both nodes and n1 → n2 then n1 �
n2 ∨ n1 ≡ n2 (Case 5).

Lemma 5.4: Given a variable MET T = (N,E,M) and
given two nodes n1, n2 ∈ Sea(T), with (n1 → n2) ∈ E, if
dn1
≤ un1

then n1 � n2 ∨ n1 ≡ n2.

Proof: We prove that |dn1
− un1

| ≤ |dn2
− un2

| holds.
First, we know that dn2

= dn1
− win2

− inc and un2
=

un1 + win1 + inc with inc ≥ 0, where inc represents the
weight of the possible brothers of n2.
|dn1 − un1 | ≤ |dn2 − un2 |
As we know that un ≥ dn in both nodes:
un1 − dn1 ≤ un2 − dn2

We replace dn2 and un2 :
un1 − dn1 ≤ (un1 + win1 + inc)− (dn1 − win2 − inc)
un1 − dn1 ≤ un1 − dn1 + win1 + win2 + 2inc
0 ≤ win1 + win2 + 2inc

Hence, because win1
, win2

, inc ≥ 0 then |dn1
− un1

| ≤
|dn2
− un2

| is satisfied and thus n1 � n2 ∨ n1 ≡ n2.
The following lemma ensures that given two brother nodes

n1 and n2, if dn1
≥ un1

then dn2
≤ un2

.
Lemma 5.5: Given a variable MET T = (N,E,M) whose

root is n ∈ N , and given three nodes n1 ∈ N and n2, n3 ∈
Sea(T), with (n → n1) ∈ E∗, (n1 → n2), (n1 → n3) ∈ E,
if dn2

≥ un2
then dn3

≤ un3
.

Proof: We prove it by contradiction assuming that dn3
>

un3
when dn2

≥ un2
and they are brothers. First, we know

that as n2 and n3 are brothers then un2 ≥ wn3 and un3 ≥
wn2 . Therefore, if dn3 > un3 then dn2 ≥ un2 ≥ wn3 ≥
dn3

> un3
≥ wn2

≥ dn2
that implies dn2

> dn2
that is a

contradiction itself.
If two nodes n1 and n2 are brothers and dn1 ≥ un1 then

n1 � n2 ∨ n1 ≡ n2 (Case 1). The following lemma proves
this property.

Lemma 5.6: Given a variable MET T = (N,E,M) whose
root is n ∈ N , and given three nodes n1 ∈ N and n2, n3 ∈
Sea(T), with (n → n1) ∈ E∗, (n1 → n2), (n1 → n3) ∈ E,
if dn2

≥ un2
then n2 � n3 ∨ n2 ≡ n3.

Proof: We prove that |dn2
− un2

| ≤ |dn3
− un3

| holds.
First, as n2 and n3 are brothers we know that wn ≥ dn2

+
dn3 +win2 +win3 , then wn = dn2 +dn3 +win2 +win3 + inc
with inc ≥ 0.
|dn2 − un2 | ≤ |dn3 − un3 |
As dn2 ≥ un2 by Lemma 5.5 we know that un3 ≥ dn3 :
dn2 − un2 ≤ un3 − dn3

We replace un2 and un3 using Equation 1:
dn2 − (wn − dn2 − win2) ≤ (wn − dn3 − win3)− dn3

−wn + 2dn2 + win2 ≤ wn − 2dn3 − win3

−2wn ≤ −2dn2 − 2dn3 − win2 − win3

2wn ≥ 2dn2 + 2dn3 + win2 + win3

wn ≥ dn2 + dn3 +
win2

2
+

win3
2

We replace wn:
dn2 + dn3 + win2 + win3 + inc ≥ dn2 + dn3 +

win2
2

+
win3

2

win2 + win3 + inc ≥ win2
2

+
win3

2
win2

2
+

win3
2

+ inc ≥ 0

Hence, because win2 , win3 , inc ≥ 0 then |dn2 − un2 | ≤
|dn3
− un3

| is satisfied and thus n2 � n3 ∨ n2 ≡ n3.
The following lemma ensures that given two brother nodes

n1 and n2, if wn1
≥ wn2

and dn1
≤ un1

then dn2
≤ un2

.
Lemma 5.7: Given a variable MET T = (N,E,M) whose

root is n ∈ N , and given three nodes n1 ∈ N and n2, n3 ∈
Sea(T), with (n → n1) ∈ E∗, (n1 → n2), (n1 → n3) ∈ E,
if wn2

≥ wn3
and dn2

≤ un2
then dn3

≤ un3
.

Proof: We prove it by contradiction assuming that dn3
>

un3
when wn2

≥ wn3
and dn2

≤ un2
and they are brothers.

First, we know that as n2 and n3 are brothers then un2 ≥

wn3
and un3

≥ wn2
. Therefore, if dn3

> un3
then dn3

>
un3 ≥ wn2 ≥ wn3 ≥ dn3 that implies dn3 > dn3 that is a
contradiction itself.

If two nodes n1 and n2 are brothers and un1 ≥ dn1 ∧
un2
≥ dn2

then, if wn1
− win1

2 ≥ wn2
− win2

2 is satisfied then
n1 � n2 ∨ n1 ≡ n2 (Case 2). The following lemma proves
this property.

Lemma 5.8: Given a variable MET T = (N,E,M) whose
root is n ∈ N , and given three nodes n1 ∈ N and n2, n3 ∈
Sea(T), with (n → n1) ∈ E∗, (n1 → n2), (n1 → n3) ∈ E,
and un2

≥ dn2
and un3

≥ dn3
, n2 � n3 ∨ n2 ≡ n3 if and

only if wn2 −
win2

2 ≥ wn3 −
win3

2 .
Proof: First, if |dn2

− un2
| ≤ |dn3

− un3
| then n2 �

n3 ∨ n2 ≡ n3. Thus it is enough to prove that wn2
− win2

2 ≥
wn3
− win3

2 implies |dn2
− un2

| ≤ |dn3
− un3

| and vice versa
when un ≥ dn in both nodes and they are brothers.

wn2 −
win2

2
≥ wn3 −

win3
2

2wn2 − win2 ≥ 2wn3 − win3

We replace wn2 and wn3 using Equation 2:
2(dn2 + win2)− win2 ≥ 2(dn3 + win3)− win3

2dn2 + win2 ≥ 2dn3 + win3

We add −wn:
−wn + 2dn2 + win2 ≥ −wn + 2dn3 + win3

wn − 2dn2 − win2 ≤ wn − 2dn3 − win3

We replace wn using Equation 1:
(dn2 + un2 + win2)− 2dn2 − win2 ≤

(dn3 + un3 + win3)− 2dn3 − win3

−dn2 + un2 ≤ −dn3 + un3

un2 − dn2 ≤ un3 − dn3

As un ≥ dn in both nodes:
|un2 − dn2 | ≤ |un3 − dn3 |
|dn2 − un2 | ≤ |dn3 − un3 |

If two nodes n1 and n2 are brothers and dn1 ≥ un1 and
n2 →+ n3 then, if n1 ≡ n2 then n1 � n3 ∨ n1 ≡ n3. The
following lemma proves this property.

Lemma 5.9: Given a variable MET T = (N,E,M) whose
root is n ∈ N , and given four nodes n1 ∈ N and n2, n3, n4 ∈
Sea(T), with (n → n1) ∈ E∗, (n1 → n2), (n1 → n3) ∈ E,
(n3 → n4) ∈ E+, if dn2

≥ un2
and n2 ≡ n3 then n2 �

n4 ∨ n2 ≡ n4.
Proof: This can be trivially proved having into account

that dn3 ≤ un3 when dn2 ≥ un2 by Lemma 5.5 and then by
Lemma 5.4 we know that n3 � n4∨n3 ≡ n4 and as n2 ≡ n3
then n2 � n4 ∨ n2 ≡ n4.

If two nodes n1 and n2 are brothers and dn1
≤ un1

∧dn2
≤

un2
and n2 →+ n3 then, if n1 ≡ n2 then n1 � n3∨n1 ≡ n3.

The following lemma proves this property.
Lemma 5.10: Given a variable MET T = (N,E,M) whose

root is n ∈ N , and given four nodes n1 ∈ N and n2, n3, n4 ∈
Sea(T), with (n → n1) ∈ E∗, (n1 → n2), (n1 → n3) ∈ E,
(n3 → n4) ∈ E+, if dn2

≤ un2
and dn3

≤ un3
and n2 ≡ n3

then n2 � n4 ∨ n2 ≡ n4.
Proof: This can be trivially proved having into account

that dn3
≤ un3

and then by Lemma 5.4 we know that n3 �
n4 ∨ n3 ≡ n4 and as n2 ≡ n3 then n2 � n4 ∨ n2 ≡ n4.

If two nodes n1 and n2 are brothers and n1 � n2 and
n2 →+ n3 then n1 � n3. The following lemma proves this
property.

Lemma 5.11: Given a variable MET T = (N,E,M) whose
root is n ∈ N , and given four nodes n1 ∈ N and n2, n3, n4 ∈
Sea(T), with (n → n1) ∈ E∗, (n1 → n2), (n1 → n3) ∈ E,
(n3 → n4) ∈ E+, if n2 � n3 then n2 � n4.

Proof: We show that if n2 � n3 then dn3 < un3 . We
prove it by contradiction assuming that dn3 ≥ un3 when n2 �
n3. First, as n2 and n3 are brothers we know that wn ≥ dn2

+
dn3

+win2
+win3

, then wn = dn2
+dn3

+win2
+win3

+ inc
with inc ≥ 0. Therefore, if |dn2

− un2
| < |dn3

− un3
| then

n2 � n3. Thus it is enough to prove that |dn2 − un2 | <
|dn3 − un3 | is not satisfied when dn3 ≥ un3 and n2 and n3
are brothers.

|dn2 − un2 | < |dn3 − un3 |
As dn3 ≥ un3 by Lemma 5.5 we know that un2 ≥ dn2 :
un2 − dn2 < dn3 − un3

We replace un2 and un3 using Equation 1:
(wn − dn2 − win2)− dn2 < dn3 − (wn − dn3 − win3)
wn − 2dn2 − win2 < 2dn3 − wn + win3

2wn < 2dn2 + 2dn3 + win2 + win3

wn < dn2 + dn3 +
win2

2
+

win3
2

We replace wn:
dn2 + dn3 + win2 + win3 + inc < dn2 + dn3 +

win2
2

+
win3

2

win2 + win3 + inc <
win2

2
+

win3
2

win2
2

+
win3

2
+ inc < 0

But, this is a contradiction with win2
, win3

, inc ≥ 0. Hence,
dn3

< un3
.

Now we show that, if n2 � n3 then n2 � n4. We prove
it by contradiction assuming that n4 � n2 ∨ n4 ≡ n2 when
n2 � n3. First, we know that dn3

< un3
. Therefore we know

that dn4
= dn3

− win4
− dec and un4

= un3
+ win3

+ dec
with dec ≥ 0, where dec represents the weight of the possible
brothers of n4.

|dn3 − un3 | > |dn2 − un2 | ≥ |dn4 − un4 |
We replace dn4 and un4 :
dn3 − un3	>	dn2 − un2
dn2 − un2	≥	(dn3 − win4 − dec)− (un3 + win3 + dec)
dn2 − un2	≥	dn3 − win4 − dec− un3 − win3 − dec
dn2 − un2	≥	dn3 − un3 − win3 − win4 − 2dec

Note that dn3
− un3

must be positive, thus dn3
> un3

. But
this is a contradiction with dn3

< un3
.

The following lemma ensures that given two nodes n1 and
n2 where dn1

≥ un1
and dn2

≤ un2
and n1 → n2 then

if wn ≥ wn1
+ wn2

− win1

2 − win2

2 is satisfied then n1 �
n2 ∨ n1 ≡ n2 (Case 4).

Lemma 5.12: Given a variable MET T = (N,E,M) and
given two nodes n1, n2 ∈ Sea(T), with (n1 → n2) ∈ E, and
dn1 ≥ un1 , and dn2 ≤ un2 , n1 � n2 ∨ n1 ≡ n2 if and only
if wn ≥ wn1

+ wn2
− win1

2 − win2

2 .

Proof: First, if |dn1 − un1 | ≤ |dn2 − un2 | then n1 � n2
or n1 ≡ n2. Thus it is enough to prove that wn ≥ wn1

+

wn2
− win1

2 − win2

2 implies |dn1
− un1

| ≤ |dn2
− un2

| and
vice versa when dn1

≥ un1
and dn2

≤ un2
.

wn ≥ wn1 + wn2 −
win1

2
− win2

2
We replace wn1 , wn2 using Equation 2:
wn ≥ (dn1 + win1) + (dn2 + win2)− win1

2
− win2

2

wn ≥ dn1 + dn2 +
win1

2
+

win2
2

2wn ≥ 2dn1 + 2dn2 + win1 + win2

−2wn ≤ −2dn1 − 2dn2 − win1 − win2

−wn + 2dn1 + win1 ≤ wn − 2dn2 − win2

We replace wn using Equation 1:
−(dn1 + un1 + win1) + 2dn1 + win1 ≤

(dn2 + un2 + win2)− 2dn2 − win2

−dn1 − un1 − win1 + 2dn1 + win1 ≤
dn2 + un2 + win2 − 2dn2 − win2

−un1 + dn1 ≤ −dn2 + un2

dn1 − un1 ≤ un2 − dn2

As dn1 ≥ un1 and dn2 ≤ un2 :
|dn1 − un1 | ≤ |un2 − dn2 |
|dn1 − un1 | ≤ |dn2 − un2 |

Finally, we prove the correctness of Algorithm 2.

Theorem 3.4. Let T = (N,E,M) be a variable MET, then
the execution of Algorithm 2 with T as input always terminates
producing as output a node n ∈ Sea(T) such that @n′ ∈
Sea(T) | n′ � n.

Proof: The finiteness of the algorithm is proved thanks
to the following invariant: each iteration processes one single
node, and the same node is never processed again. Therefore,
because N is finite, the loop will terminate.

The correctness can be proved showing that after any
number of iterations the algorithm always finishes with an
optimal node. We prove it by induction on the number of
iterations performed.

(Induction Hypothesis) After i iterations, the algorithm
has a candidate node Best ∈ Sea(T) such that ∀n′ ∈
Sea(T), (Best→ n′) 6∈ E∗, Best� n′ ∨Best ≡ n′.

(Inductive Case) We prove that the iteration i + 1 of the
algorithm will select a new candidate node Candidate such
that Candidate � Best ∨ Candidate ≡ Best, or it will
terminate selecting an optimal node.
Firstly, when the condition in Line (5) is satisfied Best and
Candidate are the same node (say n′). According to the
induction hypothesis, this node is better or equal than any
other of the nodes in the set {n′′ ∈ Sea(T)|(n′ → n′′) 6∈ E∗}.
Therefore, because n′ has no children, then it is an optimal
node; and it is returned in Line (5). Otherwise, if the condition
in Line (5) is not satisfied, Line (7) in the algorithm ensures
that wBest − wiBest

2 > wn

2 being n the root of T because in
the iteration i the loop did not terminate or because Best
is the root (observe that an exception can happen when
all nodes have an individual weight of 0. But in this case
all nodes are optimal, and thus the node returned by the
algorithm is optimal). Then we know that dBest > uBest by
Lemma 5.2. Moreover, according to Lines (4) and (6), we
know that Candidate is the heaviest child of Best. We have
two possibilities:
• dCandidate > uCandidate : In this case the loop does not terminate

and ∀n′ ∈ Sea(T), (Candidate → n′) 6∈ E∗,Candidate �
n′ ∨ Candidate ≡ n′. Firstly, by Lemma 5.3 we know that
Candidate � Best ∨ Candidate ≡ Best , and thus, by the
induction hypothesis we know that ∀n′ ∈ Sea(T), (Best →
n′) 6∈ E∗,Candidate � n′∨Candidate ≡ n′. By Lemma 5.6
we know that Candidate � n′ ∨ Candidate ≡ n′ being n′ a
brother of Candidate . Moreover, by Lemma 5.9 and 5.11 we

can ensure that Candidate � n′ ∨ Candidate ≡ n′ being n′

a descendant of a candidate’s brother.

• dCandidate ≤ uCandidate : In this case the loop terminates (Line
(7)) and we know by Lemma 5.7 that dn′ ≤ un′ being n′ any
brother of Candidate . In Line (8) according to Lemma 5.8 we
select the Candidate such that Candidate � n′∨Candidate ≡
n′ being n′ a brother of Candidate . Moreover, by Lemma 5.10
and 5.11 we can ensure that Candidate � n′ ∨Candidate ≡
n′ being n′ a descendant of a candidate’s brother. Then
equation (wn ≥ wBest +wCandidate− wiBest

2
− wiCandidate

2
)

is applied in Line (10) to select an optimal node. Lemma 5.12
ensure that the node selected is an optimal node because,
according to Lemma 5.4, for all descendant n′ of Candidate,
Candidate� n′ ∨ Candidate ≡ n′.

VI. CONCLUSION

During three decades, Divide & Query has been the
more efficient algorithmic debugging strategy. On the practi-
cal side, all current algorithmic debuggers implement D&Q
[2], [4], [6], [8], [10], [11], [12], [13], [14], and experi-
ments [3], [17] (see also http://users.dsic.upv.es/∼jsilva/DDJ/
#Experiments) demonstrate that it performs on average 2-36%
less questions than other strategies. On the theoretical side,
because D&Q intends a dichotomic search, it has been thought
optimal with respect to the number of questions performed,
and thus research on algorithmic debugging strategies has
focused on other aspects such as reducing the complexity of
questions.

In this work we show that in some situations current
algorithms for D&Q are incomplete and inefficient because
they are not able to find all optimal nodes, and sometimes
they return nodes that are not optimal. We have identified the
sources of inefficiency and provided examples that show both
the incompleteness and incorrectness of the technique.

A relevant contribution of this work is a new algorithm for
D&Q that optimally divides the ET even in the case where
all nodes of the ET can have different individual weights
in R+ ∪ {0}. The algorithm has been proved terminating
and correct. And a slightly modified version of the algorithm
has been provided that returns all optimal solutions, thus
being complete. We have implemented the technique and
experiments show that it is more efficient than all previous
algorithms.

Other important contributions are the proof that D&Q is not
optimal in the worst case as supposed, and the definition of
the first optimal strategy for algorithmic debugging.

The implementation—including the source code—and the
experiments are publicly available at: http://users.dsic.upv.es/
∼jsilva/DDJ.

ACKNOWLEDGEMENTS

This work has been partially supported by the Spanish
Ministerio de Ciencia e Innovación under grant TIN2008-
06622-C03-02 and by the Generalitat Valenciana under grant
PROMETEO/2011/052.

REFERENCES

[1] E. Av-Ron. Top-Down Diagnosis of Prolog Programs. PhD thesis,
Weizmanm Institute, 1984.

[2] B. Braßel and F. Huch. The Kiel Curry system KiCS. In Proc of 17th
International Conference on Applications of Declarative Programming
and Knowledge Management (INAP 2007) and 21st Workshop on
(Constraint) Logic Programming (WLP 2007), pages 215–223. Technical
Report 434, University of Würzburg, 2007.

[3] R. Caballero. A Declarative Debugger of Incorrect Answers for Con-
straint Functional-Logic Programs. In Proc. of the 2005 ACM SIGPLAN
Workshop on Curry and Functional Logic Programming (WCFLP’05),
pages 8–13, New York, USA, 2005. ACM Press.

[4] R. Caballero. Algorithmic Debugging of Java Programs. In Proc. of the
2006 Workshop on Functional Logic Programming (WFLP’06), pages
63–76. Electronic Notes in Theoretical Computer Science, 2006.

[5] R. Caballero, N. Martı́-Oliet, A. Riesco, and A. Verdejo. A Declarative
Debugger for Maude Functional Modules. Electronic Notes in Theoret-
ical Computer Science, 238:63–81, June 2009.

[6] T. Davie and O. Chitil. Hat-delta: One Right Does Make a Wrong.
In Seventh Symposium on Trends in Functional Programming, TFP 06,
April 2006.

[7] V. Hirunkitti and C. J. Hogger. A Generalised Query Minimisation for
Program Debugging. In Proc. of International Workshop of Automated
and Algorithmic Debugging (AADEBUG’93), pages 153–170. Springer
LNCS 749, 1993.

[8] D. Insa and J. Silva. An Algorithmic Debugger for Java. In Proc. of the
26th IEEE International Conference on Software Maintenance, 0:1–6,
2010.

[9] J. W. Lloyd. Declarative Error Diagnosis. New Gen. Comput., 5(2):133–
154, 1987.

[10] W. Lux. Münster Curry User’s Guide (release 0.9.10 of may 10, 2006).
Available at: http://danae.uni-muenster.de/∼lux/curry/user.pdf, 2006.

[11] I. MacLarty. Practical Declarative Debugging of Mercury Programs.
PhD thesis, Department of Computer Science and Software Engineering,
The University of Melbourne, 2005.

[12] L. Naish, P. W. Dart, and J. Zobel. The NU-Prolog Debugging
Environment. In A. Porto, editor, Proceedings of the Sixth International
Conference on Logic Programming, pages 521–536, Lisboa, Portugal,
June 1989.

[13] H. Nilsson. Declarative Debugging for Lazy Functional Languages.
PhD thesis, Linköping, Sweden, May 1998.

[14] B. Pope. A Declarative Debugger for Haskell. PhD thesis, The
University of Melbourne, Australia, 2006.

[15] E. Shapiro. Algorithmic Program Debugging. MIT Press, 1982.
[16] J. Silva. A Comparative Study of Algorithmic Debugging Strategies. In

Proc. of the International Symposium on Logic-based Program Synthesis
and Transformation (LOPSTR’06), pages 143–159. Springer LNCS
4407, 2007.

[17] J. Silva. An Empirical Evaluation of Algorithmic Debugging Strategies.
Technical Report DSIC-II/10/09, UPV, 2009. Available from URL: http:
//www.dsic.upv.es/∼jsilva/research.htm#techs.

[18] J. Silva. A Survey on Algorithmic Debugging Strategies. Advances in
Engineering Software, 42(11):976–991, 2011.

http://users.dsic.upv.es/~jsilva/DDJ/#Experiments
http://users.dsic.upv.es/~jsilva/DDJ/#Experiments
http://users.dsic.upv.es/~jsilva/DDJ
http://users.dsic.upv.es/~jsilva/DDJ
http://danae.uni-muenster.de/~lux/curry/user.pdf
http://www.dsic.upv.es/~jsilva/research.htm#techs
http://www.dsic.upv.es/~jsilva/research.htm#techs

	Introduction
	Algorithmic Debugging
	Divide and Query
	Limitations of D&Q

	Optimal D&Q
	Divide by Queries
	Proofs of Technical Results
	Conclusion

