
 

 

 

UNIVERSAL AND COGNITIVE NOTIONS OF ‘PART’ 
 
 

José Hernández-Orallo
⊥
  

 

Universitat Politècnica de València, 

Dep. de Sistemes Informàtics i Computació, 

 C/ de Vera s/n E-46022, València, Spain 

E-mail: jorallo@dsic.upv.es
 

 

 

 

 

Résumé. Une question fondamentale de la Science des Systèmes est la notion de partie 

d’un système ou subsystème. Toutefois, cette notion s’emploie traditionellement d’une 

manière non-formelle ou substituée par l’idée de subensemble. On introduit une relation 

universelle de partie qui est basée sur la Complexité de Kolmogorov et une version 

cognitive basée sur une variante espace-temporelle. Malgré qu’il y a quelques 

inconvénients techniques, par exemple, la relation de partie n’est pas transitive, ces 

notions formales peuvent être utilisées pour des situations où l’intuition n’arrive pas, ou 

d’autres notions analytiques de partie ne sont pas applicables. Aussi, on derive quelques 

notions intéressantes: de plusiers versions sur l’idée de partition et des niveaux alternatifs 

i hiérarchiques de descriptions d’un système quelconque. Finalement, on commente leurs 

applications et l’on les compare avec d’autres notions de partie. 
 

Mots Clefs: Partie, Subsystème, Complexité Kolmogorov, Distance Cognitive, Machines de 

Turing, Reconnaissance de Patrons, Cognition. 

 

Abstract. A fundamental question of Systems Science is the notion of system part or 

subsystem. However, this notion is traditionally used in an informal way or substituted by 

the idea of subset. We introduce a universal relation of part based on Kolmogorov 

Complexity and a cognitive version based on a time-space variant. Although there are 

some technical inconveniences, e.g. the part relation is not transitive, these formal 

notions can be used in cases where intuition does not suffice or other analytical notions 

of part are not applicable. Thus, we derive some interesting notions: different versions on 

the idea of partition and alternative and hierarchical levels of description of any system. 

Finally we discuss its applications and we compare it with other notions of part. 
 

Keywords: Part, Subsystem, Kolmogorov Complexity, Cognitive Distance, Turing Machines, 

Pattern Recognition, Cognition. 

 

1. INTRODUCTION 

The idea of part, and its relation with the whole, has motivated many controversial and 

paradoxical discussions since Aristotle. It is still a fundamental and current issue of 

investigation and debate in modern Systems Science, especially in dynamical and complex 

systems, where the claim “the whole is much more than the sum of its parts” is more 

relentless. However, the idea of part is usually substituted by informal and subjective notions 

or by other different concepts. 

For instance, a collection is an object that can be described from its parts. In this case, the 

idea of subset is directly applicable. However, most objects are not just collections, and many 

                                                           
⊥
 Also at the Department of Logic and Philosophy of Science of the University of Valencia. 



of their parts are discovered more or less easily a posteriori, by perception or investigation. In 

general, the idea of subset is not valid for complex systems because there is no unique 

collection of things that can describe the whole. 

It is important to highlight that ‘part’ is a cognitive notion quite different from the notion of 

subset. For instance, given a black and white picture pn×m, its left upper quadrant p(1..n/2, 

1..m/2) is usually recognised as a part of it. However, if we extract a ‘silhouette’ of a person 

from the image, there is no Euclidean way to define that as a part. Even if we ‘extract’ the 

pixels into a subset, the pixels must be arranged in a very ‘whimsical’ way in order to 

reconstruct the silhouette. On the contrary, an ordered subset of k pixels randomly extracted 

from the original picture would generally not be recognised as a part of it. The example 

provides more insights; for instance, if the picture pn×m, has at least a black pixel, is a black 

pixel picture p1×1 a subpart of pn×m?  

The idea of part is also different from the idea of substring and subsequence (a substring is 

any sequential subsequence). Some parts are not substrings, for example, given the sequence x 

= “a000a000a00a0a00a0” , the sequence y = “aaaaaa” is intuitively seen as a part of it but it is 

not a substring. On the other hand, the difference between a subsequence and a part also arises 

in many cases. For instance, given the sequence x = “12345678901234567”, is the sequence 

“11” a part of it?  

Does this cognitive character of part mean that we must leave the idea of part to 

subjectivism? Is it relative in the end? Obviously, there is some relativism in the idea of part, 

as two people do not recognise the same parts in a picture, but there are also coincidences too. 

Here the following question arises: Is only cultural knowledge that makes us coincide in the 

recognition of the same parts, either physical (a leg is a part of a body, the Earth is a part of 

the solar system, Spain is part of Europe, a step is a part of a stair, ...) or logical (a chapter is a 

part of a book, a second is a part of a minute, the memories are a part of a person, ...)? 

The non-existence of an analytical method to discern this does not mean that there are no 

absolute and intrinsical properties that are exploited in the cognitive process of recognising a 

part. In fact, this has been done during more than thirty years of pattern recognition (Watanabe 

1972). The same rationale motivated a cognitive but absolute notion of distance, recently 

formalised in (Bennett et al. 1997); the distance between two objects X and Y can be defined 

as the maximum between the descriptive information necessary to convert X to Y and the 

descriptive information necessary to convert Y to X. In this way, two negative images turn out 

to be extremely close from a cognitive point of view (just convert 1’s into 0’s and viceversa) 

while extremely far from an Euclidean point of view. 

This inspires a different approach for the relation of part: to measure the relative 

description of the part w.r.t. the description of the whole. 

2. TOWARDS THE RELATION OF PART 

In order to define a relation of part from a descriptive point of view we must first settle the 

notions of objects, descriptions, and minimal descriptions.  

2.1. Preliminaries 

We choose an alphabet Σ = { 0, 1}. An object is any element from Σ*, being · the composition 

operator, usually omitted. The empty string or empty object is denoted by ε. The term l(x) 

denotes the length or size of x in bits (or elements from Σ). The relation <lex between two 

objects denotes precedence in left-to-right lexicographic order, considering 0 <lex 1. 

Under the Church-Turing thesis, any description of any object of reality can be converted 

in a description in a computational machine, so our idea of ‘object’ is, in this sense, universal. 



It is important to realise that whatever perception or knowledge that we can acquire about an 

object or a system is given in a descriptive way.  

The complexity of an object can be measured in many ways, one of them being its degree 

of randomness (Kolmogorov 1965), which turns out to be equal to the shortest description for 

it. Descriptional Complexity, Algorithmic Complexity C(·) or Kolmogorov Complexity K(·) 

formalise this idea, and it has been gradually recognised as a key issue in statistics, computer 

science, artificial intelligence, epistemology and cognitive science (see e.g. Li & Vitányi 

1997). 

DEFINITION  2.1. KOLMOGOROV COMPLEXITY 

The Kolmogorov Complexity of an object x given y on a descriptional mechanism (or bias) β 

is defined as:  

Kβ(x|y) = min { lβ(p) : φβ(p|y) = x) } 

where p denotes any “prefix-free” β-program, and φβ(p|y) denotes the result of executing p 

using input y. 

The complexity of an object x is denoted by Kβ(x) = Kβ(x|ε). It can be seen elsewhere (e.g. Li 

& Vitányi 1997) that Kolmogorov Complexity is an absolute and objective criterion of 

complexity, and it is independent (up to a constant term) of the descriptional mechanism β. In 

other words, there is an invariance theorem that states that any universal machine can emulate 

another. For this reason many properties are proven just in an asymptotic way. Throughout the 

paper we will use the relation <
+
 as the asymptotical extension of <, namely a <

+
 b iff there 

exists a positive constant k such that a < b + k. 

In the following, we will assume that β is selected to observe that ∀x, y ∈Σ* Kβ(x|y) ≥ 1. If 

there is no possible confusion, the β subscript will be omitted. It is obvious to see that ∀x ∈Σ* 

K(x|x) <
+
 0 because there is always a program of constant size of the form “print the input”. It 

is also easy to see that ∀x ∈Σ* K(x) <
+
 l(x) because there is always a program of size less than 

l(x) plus a constant value of the form “print x”. In the case that K(x) ≥ l(x) we say that x is 

random. We denote x* as the first (in lexicographical order) β-program for x such that K(x)= 

l(x*). In this way we can say that an object is random iff l(x*) ≥ l(x). It is obvious that K(x|x*) 

<
+
 0. However, since K(·|·) is not computable, it is shown elsewhere (e.g. Li & Vitányi 1997) 

that the other way is just K(x*|x) <
+
 log l(x). 

Finally, although K(·|·) is an absolute measure of information it is not computable because 

it does not consider time. In this way, K(·|·) does not reflect a cognitive view of information. 

There have been many proposals to incorporate time to Kolmogorov Complexity. The most 

appropriate way to weigh space and time of a program, the formula LTβ(px) = l(px) + log2 

Cost(px), was introduced by Levin in the seventies (see e.g. Levin 1973). In this way, a variant 

of K(·|·) can be easily defined from it: 

DEFINITION  2.2. LEVIN’S LENGTH-TIME COMPLEXITY 

The Levin Complexity of an object x given y on a descriptional mechanism β: 

Ktβ(x|y) = min { LTβ(p) : φβ(p|y) = x) } 

This is a very practical alternative of Kolmogorov Complexity, because as well as avoiding 

intractable descriptions, it is computable. Later on we will come back to this variant to define 

the cognitive version of part. 

2.2. Intuitive Properties of Part 

Almost every dictionary gives at least two different entries for ‘part’. The first one is usually 

something like “1. Each thing that results from dividing another thing” and the second one is 



like “2. Thing that, jointly with other or others, composes a ‘larger’ whole”. From here, we 

can translate these three properties of a part to a descriptional context: 

a. A part should be ‘smaller’ or less complex then the whole. 

b. A part can be easily described or removed from the whole. 

c. The whole is described more easily if some of its parts are given. 

Property a is straightforward under Kolmogorov complexity. Given two objects ∀X,Y ∈Σ*, X 

is a part of Y if K(X) ≤ K(Y). The other properties are more difficult to define and are 

addressed in section 3. 

2.3. ‘Desirable’ Technical Properties of a Relation of Part 

Inspired in the notion of set inclusion, we want to define an alternative structural notion for 

part, that we will denote with ⊆. Some properties that would be convenient for this relation of 

part ⊆ are: 

1. ∀X∈Σ*,  ε ⊆ X (the empty object is part of any object) 

2. ∀X∈Σ*,  X ⊆ X (reflexive) 

3. ∀X,Y,Z∈Σ*,  (X ⊆ Y ∧ Y ⊆ Z) ⇒ (X ⊆ Z) (transitive) 

4. ∀X∈(Σ*−ε),  X ⊆/  ε (the empty object has no parts but itself) 

5. ∀X,Y ∈Σ*, (X ⊆ Y ∧ Y ⊆ X) ⇒ (X = Y)  (antisymmetric) 

However, not all of these properties are equally important. In particular, properties 1, 2 and 4 

are basic, but property 3 is sometimes not so intuitive. For instance, a person is a part of a 

country but an ear is not a part of a country. Property 5, although almost always true for 

physical objects, is not true in some mathematical objects (e.g. the fractals). 

Finally, there is another property which is given in any lattice and it could also be studied: 

the existence of a maximal element. 

3. UNIVERSAL PART 

In this section we present five different definitions of part based on Kolmogorov Complexity. 

The first two are based on property b), and the third one is based on property c). In the end we 

present a corrected version that integrates properties a), b) and c). In all cases, we study their 

technical properties and their meaning. 

3.1. Removable Versions 

If we recall property b) “a part can be easily described or removed from the whole”, there are 

many ways to measure this easiness of description. Relative Kolmogorov Complexity K(X|Y) 

seems the best way to compare X with Y. If we compare it with an absolute value, i.e. a 

constant, we would have that any small object would be a part of anything. If we make the 

comparison w.r.t. the complexity of the whole, any small object (wrt. the whole) would be a 

part of it, although it could be completely unrelated. 

As a result, K(X|Y) must be compared with the complexity of K(X): 

DEFINITION  3.1. REMOVABLE UNIVERSAL PART 

An object X is a removable universal part of an object Y in β, denoted by X ⊆↓
β Y,  iff: 

Kβ(X|Y) ≤ log Kβ(X) 

The meaning of the definition is that the part is significantly easier to describe if we have the 

whole that if we must describe the part from scratch. The use of the logarithm is a very 

convenient way for measuring this “significantly easier”, although other function could be 

used (e.g. the square root). 



Many results from these definitions are intuitive. For instance, given an image with 

sufficient complexity, any characteristic part can easily be described from it. However, the 

notion of substring does not always match with that of part. As an example, take the object X 

= 0
n
1

n
 where n is a very long and highly compressible number (e.g. 64

64
) and take the 

substring Y of X composed of 56231451 consecutive 0’s and 924515 consecutive 1’s. The 

object X is not useful for describing Y, so X ⊆/      
↓

β Y. 

It is interesting to compare the definition of part with the notion of subset. Here, we will 

show that definition 3.1 has some technical inconveniences:  

Theorem 3.2. The empty object is not always a part of any non-empty object. In other 

words, property 1 does not hold for ⊆↓
β. 

Proof. There are universal description mechanisms where the length l(p) of the shortest 

program that outputs the empty string (more properly it halts) for every input X is greater 

than k. Consequently, ∃X∈Σ*, Kβ(ε|X) ≥ l(p), but also log Kβ(ε) = log Kβ(ε|ε) < log l(p). 

Obviously, ∃X ∈Σ* Kβ(ε|X) ≤/  Kβ(ε). � 

Theorem 3.3. Some objects are not parts of themselves. In other words, property 2 does not 

hold for ⊆↓
β. 

Proof. Just choose X = ε. Thus, Kβ(ε|ε) = Kβ(ε) ≤/  log Kβ(ε). � 

Although counterexamples for property 2 (and 4) only happen for very simple objects, the 

problems for property 1 (and 3) are much more general because for most universal machines, 

Kβ(ε|X) = Kβ(ε). 

By looking at the counterexamples, a first idea to solve them can be to make the 

comparison asymptotical, i.e.: 

DEFINITION  3.4. ASYMPOTICAL UNIVERSAL PART 

An object X is an asymptotic universal part of an object Y in β,
 
denoted by X

 ⊆β
+ 

Y,  iff: 

Kβ(X|Y) <
+
 log Kβ(X) 

As a result, properties 1 and 2 hold: 

Theorem 3.5. The empty object is always a part of any non-empty object. In other words, 

property 1 does hold for ⊆β
+
. 

Proof. Whatever universal description mechanism there is always a program of constant size 

l(p) such that outputs the empty string (more properly it halts). Consequently, ∀X∈Σ*, 

Kβ(ε|X) ≤ l(p). Obviously, there exists a k = l(p) + 1 such that ∀X∈Σ* Kβ(ε|X) < log Kβ(ε) + 

k. � 

Theorem 3.6. Any object is always a part of itself, i.e., property 2 does hold for ⊆β
+
. 

Proof. Whatever universal description mechanism ∀X∈Σ*, there is always a program of 

constant size l(p) of the form “PRINT THE INPUT”, so Kβ(X|X) = l(p). Once again, there 

exists a k = l(p) + 1 such that ∀X∈Σ* Kβ(X|X) = l(p) < log Kβ(X) + k. � 

However, if we fix the constant of the asymptotical relation, 

Theorem 3.7. Property 3 does not hold for ⊆β
+
. 

Proof. Select X,Y,Z random, namely Kβ(X) = l(X), Kβ(Y) = l(Y) and Kβ(Z) = l(Z), and Z= rYs 

and Y= tXu such that r,s,t and u are also random and l(r) < log l(Y), l(t) < log l(X), l(r) + l(t) 

> log l(X), and l(s) + l(u) > log l(X). In this case we have that X ⊆β
+
 Y because Kβ(X|Y) = 

Kβ(X|tXu) <
+
 l(t) < log l(X) = log Kβ(X) and Y ⊆β

+
 Z, because Kβ(Y|Z) = Kβ(Y|rYs) <

+
 l(r) < 

log l(Y) = log Kβ(Y). 

But we have that Z= rtXus and r, s, t, u, X, Y and Z are random so Kβ(X|Z) ≥ min(l(r) + l(t) , 

l(u) + l(s)) > log l(X) and hence X ⊆/ β+
 Z. � 



It is easy to see that property 4 does not hold either. Definition 3.4 may be interesting for 

infinite objects, e.g., mathematical entities, however, we are more concerned with finite 

objects. This will discard any asympotical solution in the following. 

Without more discussion for the moment on the applicability of the first definition (3.1), 

we are going to exploit the other side of the coin, property c: 

3.2. Constructive Versions 

A direct formalisation of property c would make that a part would be anything that helps to 

construct an object, although this would entail that a superobject would be a part of any 

object. For this reason we must be more restrictive in this property: 

DEFINITION  3.8. CONSTRUCTIVE UNIVERSAL PART 

An object X is a constructive universal part of an object Y in β, denoted by X ⊆↑
β Y,  iff: 

Kβ(Y|X) ≤ Kβ(Y) − Kβ(X) + log Kβ(X) + 1 

This refines property c, because the cost of constructing the whole diminishes in the same 

amount of the given part. The intention of the term −Kβ(X) + log Kβ(X) + 1 is to force that 

almost all the information of X is used for constructing Y. Moreover, this is done without 

much adaptation cost, a cost that is represented by log Kβ(X) + 1. 

It can be contrasted with many examples that definition 3.8 behaves in a similar way as 

definition 3.1. This is justified by the following theorem: 

Theorem 3.9. Definitions 3.1 and 3.8 are equivalent up to an additive term O(min{log K(X), 

log K(Y)}). 

Proof. The proof is direct from the following theorem (Li & Vitanyi 1997): 

Kβ(X) − Kβ(X|Y) = Kβ(Y) − Kβ(Y|X) ± O(min{log K(X), log K(Y)} 

Under this additive term it holds from definition 3.8, Kβ(Y|X) ≤ Kβ(Y) − Kβ(X) + log Kβ(X) + 

1 and the previous theorem, that Kβ(Y) + Kβ(X|Y) − Kβ(X) ≤ Kβ(Y) − Kβ(X) + log Kβ(X) and 

definition 3.1. Kβ(X|Y) ≤ log Kβ(X) follows immediately. � 

However, since we are interested in finite objects, it is interesting to study the properties of 

definition 3.8 in more detail. The properties do not hold for any universal machine. 

Transparent Universal Machines  

Fortunately we can wrap any universal machine such that ∀X∈Σ* : k > Kβ(ε|X) > Kβ(ε).  

DEFINITION  3.10. K-TRANSPARENT UNIVERSAL MACHINE 

Given any universal machine φ, we can make a k-transparent universal machine βφ
 from it, 

with k ≥ 5, in the following way: 
  

Program Input Output 

1x ε ε 

1x y ≠ ε does not halt 

01x y ε 

0001x y y 

0
k−1

1x y φ(x|y) 

any other program does not halt.   
 

It is easy to show from it that ∀X ∈Σ*, X ≠ ε , 2 = Kβ(ε|X) > Kβ(ε) = 1 and Kβ(X|X) = 4, which 

allows to prove the following three properties for definition 3.8:  

Theorem 3.11. The empty object is always a part of any non-empty object. In other words, 

property 1 does hold for ⊆↑
β. 

Proof. Kβ(Y|ε) = Kβ(Y) ≤ Kβ(Y) − Kβ(ε) + log Kβ(ε) + 1 since Kβ(ε) = 1. � 



Theorem 3.12. Any object is always a part of itself. In other words, property 2 does hold for 

⊆↑
β if β is at least 8-transparent.  

Proof. If X  ≠ ε then Kβ(X|X) = 4 ≤ Kβ(X) − Kβ(X) + log Kβ(X) + 1 = log Kβ(X) + 1 and this 

holds because Kβ(X) ≥ 8 then log Kβ(X) + 1 ≥ 4. If X = ε then Kβ(ε|ε) = 1 ≤ Kβ(ε) − Kβ(ε) + 

log Kβ(ε) + 1 = log Kβ(ε) + 1 = log 1 + 1 = 1. � 

Theorem 3.13. The empty object has no parts but itself. In other words, property 4 does hold 

for ⊆↑
β if β is transparent.  

Proof. if X  ≠ ε then Kβ(ε|X) = 2 ≤/  Kβ(ε) − Kβ(X) + log Kβ(X) + 1 = 2 − Kβ(X) + log Kβ(X) 

since ∀X∈Σ* Kβ(X) ≥ 1. � 

It is not difficult to find counterexamples for the transitive relation, however, we can see that 

if X ⊆↑
β Y, Y ⊆↑

β Z, then Kβ(Z|X) <
+
 Kβ(Z|Y) + Kβ(Y|X) ≤ Kβ(Z) − Kβ(Y) + log Kβ(Y) + Kβ(Y) − 

Kβ(X) + log Kβ(X) = Kβ(Z) + log Kβ(Y) − Kβ(X) + log Kβ(X). That is to say, ⊆↑
β is sometimes 

not transitive but just about log Kβ(Y) and a small constant. 

3.3. Joint Versions 

Although theorem 3.9 says that definitions 3.1 and 3.8 are equivalent up to an additive term 

O(min{log K(X), log K(Y)}), they can be quite different for small objects. It would be 

interesting to use both definitions in a unified way. We have seen that the constructive version 

is compliant with properties 1,2, and 4 if we choose a β to be 8-transparent. However, the 

removable version is not compliant with them. The easiest way to make it follow properties 

1,2, and 4 is: 

DEFINITION  3.14. CORRECTED REMOVABLE UNIVERSAL PART 

The relation “corrected removable universal part”, denoted by X ⊆↓’
β Y, is defined as: 

 X ⊆↓’
β Y  = X ⊆↓

β Y iff X ≠ Y, X ≠ ε, Y ≠ ε 

 1. ∀X∈Σ*,  ε ⊆↓’
β X  

 2. ∀X∈Σ*,  X ⊆↓’
β X  

 4. ∀X∈(Σ*−ε),  X ⊆/
↓’

β ε 

Finally, we are able to define a joint version: 

DEFINITION  3.15. JOINT UNIVERSAL PART 

The object X is a joint universal part of an object Y in β, denoted by X ⊆         β Y,  iff X ⊆↑
β Y and X 

⊆↓’
β Y 

It is obvious that this definition follows properties 1, 2 and 4. 

One of the nice properties of this joint definition is that it avoids that the program x* would 

always be a part of x. In the case of ⊆↑
, it would be very likely, because K(x|x*) = 0 + k, with k 

being very small. However, according to ⊆↓’
, the disequality K(x*|x) < log l(x) + k’ is very 

close to the real limit and the constant is large; this would rarely be less than log K(x*) and it 

would not be a part.  

On the other hand, it avoids that x would be always a part of the program x*. According to 

⊆↓’
, it would be very likely, because K(x|x*) = 0 + k, with k being very small. However, 

according to  ⊆↑
, K(x*|x) < log l(x) + k’. In order to be less than K(x*) − K(x) + log Kβ(x) + 1, 

since the first two terms are similar, x should be almost random to make K(x) > l(x). In this 

case, x* is “PRINT x” and K(x*|x) is close to 0. This is highly intuitive since a program 

“PRINT x” has as part “x”. 

Now, we will address property 5, antisymmetry. A first idea is to add to definition 3.15 the 

property a), i.e. K(x) ≤ K(y). With this solution there would be still many pairs of objects such 

that X ⊆ β Y and Y ⊆ β X (for instance two images one the negative of the other) and X≠Y. With 

or without property a), these objects could be said to be isomorphic, denoted by X ≡ Y. 



However, ≡ is not and cannot be made transitive because all the objects with the same size 

would collapse in the same equivalence class. 

A better way to make ⊆  β antisymmetric without using property a) is to define X as a part of 

Y iff X ⊆  β Y  and (if Y ⊆  β X then ((K(X|Y) < K(Y|X) ∨ (K(X|Y) = K(Y|X) ∧ X ≤lex Y)). 

Finally, we answer negatively to the question whether ⊆  β has a maximal object: 

Theorem 3.16. There is no maximal object Ω such that ∀X∈Σ* X ⊆  β Ω.  

Proof. Using ⊆↓
, if Ω is finite then it is obvious since a random and independent string x 

much greater than Ω can be chosen. If Ω is infinite every X requires an index or program to 

use different information from Ω. By a simple counting argument, this is impossible, 

because all the objects of length less than n, we would require 2
n
 different indexes, which 

can only be expressed with a mean length n, which is not less then log K(X) ≤ log n. The 

constructive version gives the same result. � 

It can be derived from this theorem that very small objects are difficult to be part of very large 

objects. The rationale is the fact that is necessary to index ‘where’ the part is, and this may be 

quite large for a large object. 

4. PARTITIONS 

One of the first concepts that can be derived from the notion of part is the notion of partition. 

The following definitions can be particularised for the different relations we have been seeing 

with slightly different interpretations. We will refer generically as any of them with the 

relation symbol ⊆. 

First of all, we require a useful relation: 

DEFINITION  4.1. PROPER UNIVERSAL PART 

An object y is a proper part of an object x in β, denoted by y ⊂β x, iff y ⊆β x but x ⊆/ β y. 

From here we are able to define the notion of partition and reduced partition: 

DEFINITION  4.2. PARTITION 

A set of objects Y = { y1, y2, ..., ym } is a partition of an object x in β iff ∀yi: 1 ≤ i ≤ m: yi ⊆ x 

and there exists an ordering oj of Y such that x ⊆ yo1 · yo2 · ... · yom. 

DEFINITION  4.3. REDUCED PARTITION 

The set of objects Y is a reduced partition of an object x in β iff it is a partition of x in β and 

¬∃Y’ subset of Y such that Y’ is a partition of x. 

It is easy to prove that for every object X there is always a reduced partition Y = { X } because 

X ⊆ X. However, this is not true for a proper partition: 

DEFINITION  4.4. PROPER PARTITION 

A set of objects Y = {y1, y2, ..., ym} is a proper partition of an object x in β iff ∀yi: 1 ≤ i ≤ m: 

yi ⊂ x and there exists an ordering oj of Y such that x ⊆ yo1 · yo2 · ... · yom. 

From here we can define the notion of cohesion of an object. Intuitively, an object 

abaabbaaabbbaaaabbbb..
 n

..a
k
b

k
 is very cohesive, because any partition usually requires more 

information than the whole. On the contrary 1
n
0

m
 is not cohesive, because it is natural to 

divide it into 1
n
 and 0

m
. The following three definitions give three distinct degrees of 

cohesion: 

DEFINITION  4.5. EASY PARTITION 

A proper partition Y = {y1, y2, ..., ym} of X is easy iff there exists an ordering oj of Y : 

K(yo1 · yo2 · ... · yom | x)  < log K(x) 

DEFINITION  4.6. NATURAL PARTITION 

A proper partition Y = {y1, y2, ..., ym} of X is natural iff for every ordering oj of Y : 

K(yo1 · yo2 · ... · yom | x)  < log K(x) 



DEFINITION  4.7. CHARACTERISTIC PARTITION 

A proper partition Y = {y1, y2, ..., ym} of X is characteristic iff: 

K(y1) + K(y2) + ... + K(ym) ≤ K(x) 

For instance, for x=1
n
, we have that K(x) = log n + c, being c small. In this case definition 4.5 

and 4.6 coincide and any partition of 1
n
, once concatenated, is equal to x, so it makes that 

K(yo1 · yo2 · ... · yom | x) = c’  < log K(x) = log (log n + c) which is quite probable if n or c are 

large. On the contrary, it is difficult to find a characteristic partition for 1
n
. Finally, it is easy to 

see that 1
n
0

m
 has also an easy and natural partition, and for many descriptional mechanisms it 

has also a characteristic partition 1
n
 and 0

m
. As a conclusion from these examples, definitions 

4.5 to 4.7 should be understood asymptotically or under a particular descriptional mechanism, 

in order to make more sense from them. 

Finally, there are other many notions that could be extracted and studied in detail from the 

notion of partition. For example, two alternative levels of separation could be defined if there 

are two partitions Y and Y’. They would be two disjoint levels of separation if none of the 

elements Y or Y’ are parts of an element of the other partition. On the other hand, 

DEFINITION  4.8. THINNER PARTITIONS 

A partition Y = {y1, y2, ..., ym} of X is thinner than a partition Y’ = {y’1, y’2, ..., y’n} of X iff: 

∀yi∈Y  ∃y’j∈Y’ : yi ⊆ y’j 

This last definition makes it possible for a hierarchisation of ontological levels of a system. 

5. COGNITIVE PART 

The definitions of section 3 are said to be universal because the time is not considered. 

However, any cognitive system is resource-bounded, especially by time. A part of an object 

could be discovered after a long observation; if this time is extremely long, it would not 

probably considered as a cognitive part. For this reason, we can easily adapt the definitions of 

section 3 to the time-considering version of K(·), Levin Complexity: Kt(·). 

DEFINITION  5.1. REMOVABLE COGNITIVE PART 

An object X is a removable cognitive part of an object Y in β, denoted by X 
t⊆↓

 β Y,  iff: 

Ktβ(X|Y) ≤ log Ktβ(X) 

The interpretation of this definition is slightly different from definition 3.1, because the part is 

significantly easier to describe in space and time. The inclusion of time makes clearer some 

phenomena that already appeared in definition 3.1. For instance, there is a low probability to 

find a removable cognitive part X of Y with l(X) + log l(X) < log l(Y). The rationale is 

asympotical. Since the term Ktβ(X|Y) includes the time of reading Y, then Ktβ(X|Y) > log l(Y). 

By definition Ktβ(X) <
+
 l(X) + log l(X). So we have that Ktβ(X|Y) >

+
 Ktβ(X). 

Although the major advantage of definition 5.1 is that it is computable, it has the same 

problems with properties 1,2 and 4. 

In contrast, the constructive variant is free from most of these problems: 

DEFINITION  5.2. CONSTRUCTIVE COGNITIVE PART 

An object X is a constructive cognitive part of an object Y in β, denoted by X 
t⊆↑

β Y,  iff: 

Ktβ(Y|X) ≤ Ktβ(Y) − Ktβ(X) + log Ktβ(X) + 1 

Again we must prove the subsequent properties by the use of transparent machines: 

Theorem 5.3. The empty object is always a part of any non-empty object. In other words, 

property 1 does hold for 
t⊆↑

β. 

Proof. Ktβ(Y|ε)=Ktβ(Y) ≤ Ktβ(Y)−Ktβ(ε)+log Ktβ(ε) +1 since Ktβ(ε) = 1. � 

Theorem 5.4. Any object is always a part of itself. In other words, property 2 does hold for 
t⊆↑

 if β is 32-transparent.  



Proof. If X  ≠ ε then Ktβ(X|X) = 4 + log 4 = 6 ≤ Ktβ(X) − Ktβ(X) + log Ktβ(X) + 1 = log Ktβ(X) 

+ 1 and this holds because Ktβ(X) ≥  32 + log 32 then log Ktβ(X) + 1 ≥  (log 37) + 1 > 6. If X 

= ε then Ktβ(ε|ε) = 1 + log 1 = 1 ≤ Ktβ(ε) − Ktβ(ε) + log Ktβ(ε) + 1= log Ktβ(ε) + 1 = log (1 + 

log 1) + 1 = 0 + 1 = 1. � 

Theorem 5.5. The empty object has no parts but itself. In other words, property 4 does hold 

for 
t⊆↑

. if β is transparent.  

Proof. if X  ≠ ε then Ktβ(ε|X) = 2 + log 2 ≤/  Ktβ(ε) − Ktβ(X) + log Ktβ(X) + 1 = 1 + log 1 − 

Ktβ(X) + log Ktβ(X) + 1 since ∀X∈Σ* Ktβ(X) ≥ 1. � 

Once again, property 3 does not hold for 
t⊆↑

. However, we can see that if X 
t⊆↑

 Y, Y 
t⊆↑

 Z, then 

Ktβ(Z|X) <
+
 Ktβ(Z|Y) − log l(Y) + Ktβ(Y|X) because in Ktβ(Z|X) the object Y must only be read 

once, and l(Y) units of time are saved. Then we have Ktβ(Z|Y) − log l(Y) + Ktβ(Y|X) ≤ Ktβ(Z) − 

Ktβ(Y) + log Ktβ(Y) + Ktβ(Y) − Ktβ(X) + log Ktβ(X) + 2 − log l(Y) = Ktβ(Z) − Ktβ(X) + log 

Ktβ(X) + (log Ktβ(Y) − log l(Y) + 1). Since ∀Y, Ktβ(Y) < l(Y) + log l(Y) + c, we have that log 

Ktβ(Y) − log l(Y) + 1 < log (l(y) + log l(y) + c) − log l(Y) + 1 < log log l(Y) + c’.  This makes 
t⊆↑

 transitive up to a term log log l(Y) being Y the intermediate object. 

6. CONCLUSIONS 

Different definitions of part have been introduced based on variants of descriptional 

complexity. We have studied their properties and we have shown those particular cases where 

they do not match with intuition. However, they are the first general and formal definitions of 

part which only require the description of the whole to discern what and what is not a part of 

it. Of course, they must be better studied with more space and specialised to particular 

frameworks in order to see their efficacy. 

In the immediate future, it should be interesting to study in more detail the different 

versions of partitions and their application to Systems Science. Definition 5.1 could be refined 

by adding log l(Y) and properties 1, 2 and 4 should be studied after this inclusion under 

specific machines. 

Finally, we envisage a very appealing definition for computer science: 

DEFINITION  6.1. SUBPROGRAM (OR SUBTHEORY) 

The object y is a subprogram of an object x in β iff y ⊆β x and φ(y) ⊆β φ(x) 

REFERENCES 

Balcázar, J.; Díaz, J.; Gabarró, J., Structural Complexity, Springer Verlag, vol.1., 1988. 

Beneyto, R., Status Epistemológico de la Sistémica, 1994 

Bennett, C.H.; Gács, P.; Li, M.; Vitanyi, P.M.B.; Zurek, W.H. Information Distance, IEEE Trans. Information 

Theory,  IT-44:4, 1407-1423, 1998. 

Bertalanffy, L.V., Teoria generale dei sistemi, Istituto Librario Internationale, Milano 1971. 

Blum, M., A machine-independent theory of the complexity of recursive functions, J. ACM 14, 4:322-6, 1967. 

Chaitin, G. J., Algorithmic Information Theory, fourth printing, Cambridge University Press, 1992. 

Forrester, J.W., Principles of Systems, Wright-Allen, Cambridge 1968 

Herken, R. The Universal Turing Machine, Oxford University Press, 1994.  

Kolmogorov, A.N., Three Approaches to the Quantitative Definition of Information, Problems Inform. 

Transmission, 1(1):1-7, 1965. 

Kolmogorov, A.N., Logical basis for information theory and probability theory, IEEE Trans. Inform. Theory, 

vol. IT-14, pp. 662-664, sept. 1968. 

Levin, L.A., Universal search problems, Problems Inform. Transmission, 9:265-266, 1973. 

Li, M.; Vitanyi, P., An Introduction to Kolmogorov Complexity and its Applications, 2nd Ed. Springer, 1997. 

Watanabe, S., Pattern recognition as information compression, in: Watanabe (ed.) Frontiers of Pattern 

Recognition, New York: Academic Press, 1972. 


