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Preface 
 

This volume contains the proceedings of the Third International Workshop on ROC 
Analysis in Machine Learning, ROCML-2006. The workshop was held as part of the 23rd 
International Conference on Machine Learning (ICML-2006) in Pittsburgh (USA) on June 29, 
2006.  

Receiver Operating Characteristic Analysis (ROC Analysis) is related in a direct and 
natural way to cost/benefit analysis of diagnostic decision making. Widely used in medicine for 
many decades, it has been introduced relatively recently in machine learning. In this  context, 
ROC analysis provides tools to select possibly optimal models and to discard suboptimal ones 
independently from (and prior to specifying) the cost context or the class distribution. 
Furthermore, the Area Under the ROC Curve (AUC) has been shown to be a better evaluation 
measure than accuracy in contexts with variable misclassification costs and/or imbalanced 
datasets. AUC is also the standard measure when using classifiers to rank examples, and, hence, 
is used in applications where ranking is crucial, such as campaign design, model combination, 
collaboration strategies, and co-learning. 

Nevertheless, there are many open questions and some limitations that hamper a broader 
use and applicability of ROC analysis. Its use in data mining and machine learning is still below 
its full potential. An important limitation of ROC analysis, despite some recent progress, is its 
possible but difficult extension for more than two classes. 

This workshop follows up a first workshop (ROCAI-2004) held within ECAI-2004 and a 
second workshop (ROCML-2005) held within ICML-2005. This third workshop is intended to 
investigate on the hot topics identified during the two previous workshops (e.g. multiclass 
extension, statistical analysis, alternative approaches), on the one hand, and to encourage cross-
fertilisation with ROC practitioners in medicine, on the other hand, thanks to an invited medical 
expert. 

We would like to thank everyone who contributed to make this workshop possible. First 
of all, we thank all the authors who submitted papers to ROCML-2006. Each of these was 
reviewed by two or more members from the Program Committee, who finally accepted nine 
papers (eight research papers and one research note). In this regard, we are grateful to the 
Program Committee and the additional reviewers for their excellent job. We wish to express our 
gratitude to our invited speaker, Dr. Darrin C. Edwards from Department of Radiology, 
University of Chicago, who presented the state-of-the-art of ROC analysis in radiology. 
Moreover, his research group provided a three-class medical dataset to support exchanges 
between medical experts and participants. Finally, we have to express our gratitude to the 
ICML-2006 organization for the facilities  provided. 
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Abstract  
Receiver Operating Characteristic (ROC) 
analysis is a common tool for assessing the 
performance of various classification tools 
including biological markers, diagnostic tests, 
technologies or practices and statistical models. 
ROC analysis gained popularity in many fields 
including diagnostic medicine, quality control, 
human perception studies and machine learning. 
The area under the ROC curve (AUC) is widely 
used for assessing the discriminative ability of a 
single classification method, for comparing 
performances of several procedures and as an 
objective quantity in the construction of 
classification systems. Resampling methods such 
as bootstrap, jackknife and permutations are 
often used for statistical inferences about AUC 
and related indices when the alternative 
approaches are questionable, difficult to 
implement or simply unavailable. Except for the 
simple versions of the jackknife, these methods 
are often implemented approximately, i.e. based 
on the random set of resamples, and, hence, 
result in an additional sampling error while often 
remaining computationally burdensome. As 
demonstrated in our recent publications, in the 
case of the nonparametric estimator of the AUC 
these difficulties can sometimes be circumvented 
by the availability of closed-form solutions for 
the ideal (exact) quantities. Using these exact 
solutions we discuss the relative merits of the 
jackknife, permutation test and bootstrap in 
application to a single AUC or difference 
between two correlated AUCs. 

1.  Introduction 

Many different fields are faced with the practical 
problems of detection of a specific condition or 

classification of findings – the tasks that can be 
collectively described as classification of the subjects into 
categories. The system that defines the specific manner of 
a classification process is termed differently depending on 
the field and task at hand (e.g. diagnostic marker, 
diagnostic system, technology or practice, predictive 
model, etc.). In this manuscript we will use the terms 
classification system or tool to refer to such a system 
regardless of the field and the task. 

————— 
Key words: ROC, AUC, bootstrap, permutations, jackknife, exact 
variances 

Since the ultimate goal is an application of the 
classification system to subjects from the general “target” 
population the performance in the target population is one 
of the important characteristics of the classification 
system. Since in practice it is usually impossible to apply 
the classification system to the whole population it is 
applied to a sample of subjects from the target population. 
Based on such a sample the performance of the 
classification system in the target population can be 
assessed using statistical methods. 

For classification problems, performance is typically 
assessed in terms of the multiple probabilities of the 
possible outputs conditional on the true status of subjects 
(for binary classification - sensitivity or true positive rate 
and specificity or false positive rate). Multiple 
probabilities are considered in order to avoid specification 
of the relative costs and conditioning on the true class is 
performed in order to eliminate a dependence on the class 
distribution within the sample. 

Some classification systems can be supervised to produce 
different classification rules. Most commonly such 
classification systems produce a quantitative output (e.g. 
probability of belonging to a specific class) and a decision 
rule is determined by a specific threshold. Another 
example is an unlabelled classification tree where a 
decision rule is determined by a specific labeling of the 
terminal nodes (Ferri, Flach, & Hernandez-Orallo 2002). 
For such classification systems an operating mode 
(threshold, labeling etc.) is often chosen considering the 
class distribution in the target population and relative cost 
and benefits of the specific decisions. Because of that, 
when assessing the performance of the classification 
system using a sample from the population it is often 
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desirable to have a performance measure that is also 
independent from a specific operating mode. 

For binary classification tasks (subjects are classified into 
the two classes), conventional ROC analysis provides a 
tool to assess the performance of a classification system 
simultaneously for all operating thresholds and 
independently of the class distribution in the sample and 
costs and benefits of various decisions. The conventional 
ROC analysis originated in signal detection theory and 
presently is a widely used tool for the evaluation of 
classification systems (Swets & Picket, 1982; Zhou, 
Obuchowski and McClish, 2002; Pepe, 2003). The 
keystone of ROC analysis is the ROC curve which is 
defined as a plot of sensitivity (true positive rate) versus 
1-specificity (false positive rate) computed at different 
possible operating modes. It illustrates the tradeoff 
between the two classification rates and enables the 
assessment of the inherent ability of a classification 
system to discriminate between subjects from different 
classes (e.g. with and without a specific disease or 
abnormality). Another beneficial feature of the ROC 
curve is its invariance to monotone transformations of the 
data. For example, the ROC curve corresponding to a pair 
of normal distributions representing classification scores 
(binormal ROC) is the same as the ROC curve for any 
pair of distribution that is monotonically transformable to 
the original pair. 

Because its construction requires the probabilities of 
various classifications conditional on the true class of the 
subjects, a conventional Receiver Operating 
Characteristic (ROC) analysis is only applicable in 
situations where the true class is known for all subjects. 
On the other hand this feature enables ROC analysis to be 
used for studies where a fixed number of subjects have 
been selected from each class separately as opposed to 
taking a sample from the total population. Selection of 
subjects from each class separately eliminates problem 
resulting from low frequency of a specific class (e.g. low 
prevalence of a specific disease) and permits more 
efficient study design in regard to statistical 
considerations.  

Although the ROC curve is quite a comprehensive 
measure of performance, because it is a whole curve there 
is often a desire to obtain a simpler summary index. Thus, 
for summarizing the performance of a classification 
system, more simple indices such as the area under the 
ROC curve (AUC), or partial AUC are typically used. 
The area under the ROC curve (AUC) is a widespread 
measure of the overall diagnostic performance and has a 
practically relevant interpretation as the probability of a 
correct discrimination in a pair of randomly selected 
representatives of each class (Bamber, 1975; Hanley & 
McNeil, 1982). In the presence of a continuous 
classification score the AUC is the probability of 
stochastic dominance of an “abnormal’ class versus 
“normal” class, where “abnormal” class is expected to 
have greater scores on average. 

The AUC is used for assessing the performance of a 
single classification system, comparing several systems 
and as an objective quantity for constructing a classifier 
(Verrelst et al 1998; Pepe & Tompson 2000; Ferri, Flach, 
& Hernandez-Orallo 2002; Yan et al 2003; Pepe, 2006). 

An assessment of the performance of a single or a 
comparison of several classification systems is often  
initiated by computing the AUCs from the sample 
selected from the target population (“sample AUC”). 
Since the performances in the sample might differ from 
that in the target population, inferences about the 
population performance should incorporate assessment of 
the sample-related uncertainty. A common approach to 
evaluate the sample-related uncertainty is to estimate the 
variance of the AUC estimator. The variance estimator 
can than be used to place confidence intervals, test 
hypothesis or plan future studies. 

When comparing two classification systems, an attempt is 
often made to control for variability by design. Namely, 
the data is collected under a paired design where the same 
set of subjects is evaluated under different classification 
systems, reducing the effect of heterogeneity of the 
samples of subjects. On the one hand the paired design 
leads to correlated estimators of the AUCs, requiring 
specific analytic methods, but on the other hand, similar 
to the paired t-test, because of the completely paired 
structure the variance for the difference of the correlated 
AUCs can be obtained from the variance of a single AUC 
by direct substitution. 

Many nonparametric estimators of the variance of a single 
AUC and the difference between two correlated AUCs 
have been proposed. The methods proposed by Bamber in 
1975 (based on formula from Noether 1967) and Wieand, 
Gail & Hanley (1983) provide unbiased estimators of the 
variance of a single AUC and the covariance of two 
correlated AUCs correspondingly. Hence, these 
estimators are useful for assessing the magnitude of the 
variability but may provide no advantages in hypothesis 
testing. The estimator proposed by Hanley & McNeil 
(1982) explicitly depends only upon the AUC and sample 
size and thus enables simple estimation of the sample size 
for a planned study. However, this estimator is known to 
underestimate or overestimate variance depending on the 
underlying parameters (Obuchowski 1994; Hanley & 
Hajian-Tilaki 1997) and thus is not optimal for either 
variance estimation or hypothesis testing (an improved 
estimator of the same kind was proposed by Obuchowski 
in 1994). Perhaps the most widely used estimator which 
offers both relatively accurate estimator of the variability 
and leads to acceptable hypothesis testing is the estimator 
proposed by DeLong, DeLong and Clarke-Pearson 
(1988). This estimator possesses an upward bias which on 
the one hand results in an improved (compared to the 
unbiased estimator) type I error of the statistical test for 
equality of the AUCs when AUCs are small, but on the 
other hand results in loss of statistical power when AUCs 
are large (Bandos 2005; Bandos, Rockette & Gur 2005). 
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Absence of a uniformly superior method, potentially poor 
small-sample properties of the asymptotic procedures; 
complexity or unavailability of the variance formulas for 
generalized indices (such as for AUC extensions for 
clustered, repeated and multi-class data) have lead many 
investigators to suggest using the resampling methods 
such as jackknife, bootstrap and permutations in 
applications to the AUC and its extensions (Dorfman, 
Berbaum & Metz, 1992; Mossman 1995; Song, 1997; 
Beiden, Wagner, & Campbell, 2000; Emir et al, 2000; 
Rutter, 2000; Hand & Till, 2001; Nakas & Yiannoutsos 
2004; Bandos, Rockette, & Gur, 2005, 2006a,b).  
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Also, the dot in the place of the index in the subscript of a 
quantity denotes summation over the corresponding 
index; and the bar over the quantity, placed in addition to 
the dot in the subscript, denotes the average over the 
doted index. 

Because of the variety of methods for assessing variability 
of a single AUC estimate or comparing several AUCs it is 
important to know their relative advantages and 
limitations. Previously we developed a permutation test 
for comparing AUCs with paired data, constructed a 
precise approximation based on the closed-form solution 
for the exact permutation variance and investigated its 
properties relative to the conventional approach (Bandos 
et al 2005). The closed-form solutions for the exact (ideal) 
resampling variances that we derived in that as well as in 
our other works permit a better understanding of the 
relationships and relative advantages of resampling 
procedures and other methods for the assessment of 
AUCs (Bandos 2005; Bandos et al. 2006b). In this paper 
we discuss the relative merits of the jackknife, bootstrap 
and permutation procedures applied to a single AUC or 
difference between two correlated AUCs. 

Under a paired design, the difference in AUCs can be 
written as: 
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This representation illustrates that the difference in areas 
under a paired design has the same structure as the single 
AUC estimator (1) and allows one to modify expressions 
derived for a single AUC to those for the AUC difference 
simply by replacing ψij with wij. 2.  Preliminaries 

We assume that the true class (“normal” or “abnormal”) is 
uniquely determined and known for each subject. Hence, 
according to the true status, every subject in the 
population can be classified as normal or abnormal. We 
term the ordinal output of the classification as the 
subject’s classification score and denote x and y as scores 
for normal and abnormal subjects correspondingly. 
Furthermore, without loss of generality, we will assume 
that higher values of the scores are associated with higher 
probabilities of the presence of “abnormality”. 

3.  Resampling approaches 

Resampling approaches such as jackknife, bootstrap, 
permutations and combination thereof are widely used 
whenever conventional solutions are questionable, 
difficult to derive or unavailable. Major advantages of 
these methods include offering reliable statistical 
inferences in small sample problems and circumventing 
the difficulties of deriving the statistical moments of 
complex summary statistics.  

The general layout of the data we consider consists of 
scores assigned to samples of N “normal” and M 
“abnormal” subjects by each of the classification systems. 
We enumerate subjects with subscripts i, k (for normal); j, 
l (for abnormal). Thus, i , j  denote the classification 
scores assigned to the ith “normal” and jth “abnormal” 
subjects. When operating with more than one 
classification system we distinguish between them with 
the superscript m (e.g. i ). However, when the 
discussion concerns primarily a single-system setting we 
omit the corresponding index for the sake of simplicity.  

x y

m

3.1  Jackknife 

Jackknife is a simple resampling approach that is often 
attributed to Quenouille (1949) and Tukey (1958). Many 
different varieties of the jackknife can be implemented in 
practice. The performance of several of them in 
hypothesis testing about AUC was considered by Song 
(1997). Although often forgotten, the variance estimators 
used in the procedure proposed by the DeLong et al. 
(1989) is also a jackknife variance estimator for the two-
sample U-statistics (Arvesen, 1969). This procedure, 
which we will often term as “two-sample jackknife”, is 
perhaps the most commonly used nonparametric method 
for comparing several correlated AUCs. In a more 
complex multi-reader setting a conventional “one-

x

Using the conventions defined above, the nonparametric 
estimator of the AUC or “sample AUC” (equivalent to the 
Wilxocon-Mann-Whitney statistic) can be written as: 
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sample” jackknife was employed by Dorfman, Berbaum 
& Metz (1992) within an ANOVA framework. 

The general idea of the jackknife is to generate multiple 
samples from the single original one by eliminating a 
fixed number of observations. The jackknife samples are 
then used as a base for calculation of the pseudo-values of 
a summary statistic, that are later used for inferential 
purposes. Since the nonparametric estimator of the AUC 
is an unbiased statistic, the one-sample and two-sample 
jackknife estimator (averages of the pseudovalues) are 
equal to the original one. Thus, the difference in these 
jackknife approaches occurs in the variances. A one-
sample jackknife computes the variability of the 
pseudovalues regardless of the class of the eliminated 
subject while the two-sample jackknife computes a 
stratified variance. Both variances can be expressed in a 
closed-form and thus permit an easy comparison of these 
(Bandos 2005). Namely, the two-sample jackknife 
variance for the AUC (DeLong et al) can be written as: 
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A one-sample jackknife variance has the following form:  
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A straightforward comparison of formulas (5) and (6) 
reveals that a one-sample jackknife variance is always 
larger than the two-sample one. This fact limits the 
usefulness of a one-sample variance since the two-sample 
jackknife variance is already greater than the Bamber-
Wieand unbiased estimator and thus has an upward bias 
(Bandos 2005). 

Although the jackknife approach is straightforward to 
implement and possesses good asymptotic properties, it is 
generally considered to be inferior compared to more 
advanced resampling techniques such as bootstrap. In 
application to the difference between AUCs the bootstrap 
variance estimator was also found to have lower mean 
squared error than the jackknife (Bandos, 2005). 
However, under certain conditions the jackknife can be 
considered as a linear approximation to the bootstrap 
(Efron & Tibshirani, 1993) and for some problems the 
jackknife might result in a statistical procedure that is 
practically indifferent from the bootstrap-based one. 

3.2  Bootstrap 

A good summary of the general bootstrap methodology 
can be found in the book by Efron & Tibshirani (1993). In 
ROC analysis bootstrap is commonly used for estimation 
of variability or for construction of confidence intervals. 

In recent years it has gained increased popularity in 
connection with its ability to obtain insight into the 
components of the variability of the indices estimated in 
multi-reader data (Beiden, Wagner & Campbell, 2000). 
The bootstrap was also proposed to be used for estimation 
of the variance of the partial AUC (Dodd & Pepe, 2003b), 
variance of the AUC computed from patient-clustered 
(Rutter, 2000) and repeated measures data (Emir et al., 
2000). 

The concept of the bootstrap is to build a model for the 
population sample space from the resamples (with 
replacement) of the original data. The nonparametric 
bootstrap completes the formation of the bootstrap sample 
space by assigning equal probability to all bootstrap 
samples. Next, a value of the summary statistic (called its 
bootstrap value) is calculated from every bootstrap 
sample and the set of all bootstrap values determines a 
bootstrap distribution. Such a bootstrap distribution of the 
summary statistic is a nonparametric maximum likelihood 
estimator of the distribution of the statistic computed on a 
sample randomly selected from a target population and 
serves as the basis for the bootstrap estimators of 
distributional parameters.  

Since, even for a moderately sized problem, it may not be 
computationally feasible to draw all possible bootstrap 
samples, the conventional approach is to approximate the 
bootstrap distribution by computing the bootstrap values 
corresponding to a random sample of the bootstrap 
samples. Such a procedure is often called Monte Carlo or 
approximate bootstrap and the quantities computed from 
an approximate bootstrap distribution are called Monte 
Carlo bootstrap estimators in contrast to the quantities of 
the exact bootstrap distribution which are called ideal 
bootstrap estimators. The Monte Carlo bootstrap might 
still be computationally burdensome and also leads to an 
additional sampling error in the resulting estimators.  

Some summary statistics permit circumventing the 
drawbacks of the Monte Carlo approach by allowing 
computation of ideal (exact) bootstrap quantities directly 
from the data. Unfortunately, the exact bootstrap variance 
is rarely obtainable except for simple statistics such as the 
sample mean. Some other estimators for which the exact 
bootstrap moments have been derived include sample 
median (Maritz & Jarret, 1978) and L-estimators (Hutson 
& Ernst, 2000).  

In our recent work (Bandos 2005; Bandos, Rockette & 
Gur, 2006b) we have shown that the nonparametric 
estimator of the AUC permits the derivation of the 
analytical expression for the ideal bootstrap variance for 
several commonly used data structures (the bootstrap 
expectation of the AUC is equal to the original estimate). 
These results not only eliminate the need of the Monte 
Carlo approximation to the bootstrap of the AUC in 
existing methods, but can also be extended to the 
bootstrap applications for the patient-clustered data, 
repeated measure data, partial areas and potentially to a 
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multi-class AUC extension (Hand & Till, 2001; Nakas & 
Yiannoutsos, 2004). For the single AUC the exact 
bootstrap variance has the following form: 
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Unfortunately, there is no uniform relationship between 
the bootstrap variance and that of any of the considered 
jackknife variances. The Monte Carlo investigations 
indicate that the bootstrap variance has uniformly smaller 
mean squared error. It also has a smaller bias except for 
very large AUC. Thus, the bootstrap often provides a 
better estimator of the variability than the jackknife. 
However, the estimator of Bamber (1975) and Wieand et 
al. (1983), because of its unbiasedness, might be preferred 
by some investigators. 

Although the nonparametric bootstrap is a powerful 
approach that produces nonparametric maximum 
likelihood estimators, it is not uniformly the best 
resampling technique. Davison & Hinkley (1997) indicate 
that for hierarchical data a combination of resampling 
with and without replacement may better reflect the 
correlation structure in the general population. 
Furthermore, although the bootstrap can be implemented 
for a broad range of problems, in situations where there is 
something to permute (e.g. single index hypothesis 
testing, comparison of several indices) the permutation 
approach may be preferable because of the exact nature of 
the inferences (Efron & Tibshirani, 1993). 

3.3  Permutations 

Permutation procedures are usually associated with the 
early works of Fisher (1935). In ROC analysis 
permutation tests have been employed for comparison of 
the diagnostic modalities (Venkatraman & Begg, 1996; 
Venkatraman 2000; Bandos, Rockette & Gur, 2005). 

Permutation based procedures are resampling procedures 
that are specific to hypothesis testing. Similar to the 
bootstrap, a permutation procedure constructs a 
permutation sample space, which consists of the equally 
likely permutation samples. The permutation samples are 
created by interchanging the units of the data that are 
assumed to be “exchangeable” under the null hypothesis. 
However, unlike the bootstrap sample space, the 
permutation sample space is the exact probability space of 
the possible arrangements of the data under the null 
hypothesis given the original sample.  

The same permutation scheme can be used with different 
summary statistics resulting in different statistical tests. 
The choice of the summary statistic determines the 

alternatives that are more likely to be detected, but may 
not affect the null hypothesis. In this respect, permutation 
tests are similar to the tests of trend which, still assuming 
overall equality under the null hypothesis, aim to detect 
specific alternatives in the complementary hypothesis, 
e.g. a specific trend (linear, quadratic). 

For example, when two diagnostic systems are to be 
compared with paired data, the natural permutation 
scheme consists of exchanging the paired units. Several 
reasonable permutation tests are possible under such a 
permutation scheme. One of these was developed by 
Venkatraman & Begg (1996) for detecting any 
differences between two ROC curves. For this purpose 
the authors used a measure specifically designed to detect 
the differences at every operating point. In our recent 
work (Bandos, Rockette & Gur, 2005) on a test that is 
especially sensitive to the difference in overall diagnostic 
performance we used the differences in nonparametric 
AUCs as a summary measure. Both of these tests assume 
the same condition of exchangeability of the diagnostic 
results under the null hypothesis, but differ with respect to 
their sensitivity to specific alternatives and the availability 
of an asymptotic version. Namely our permutation test 
better detects different ROC curves if they differ with 
respect to the AUC, and it has an easy-to-implement and 
precise approximation which is unavailable for the test of 
Venkatraman & Begg. 

The availability of the asymptotic approximation to the 
permutation test can be an important issue since the exact 
permutation tests are practically impossible to implement 
with even moderate sample sizes and the Monte Carlo 
approximation to the permutation test is associated with a 
sampling error. Fortunately, in some cases the asymptotic 
approximation can be constructed by appealing to the 
asymptotic normality of the summary statistic and using 
the estimator of its variance, if the latter is derivable. For 
the nonparametric estimator of the difference in the AUC 
we demonstrated (Bandos, Rockette & Gur, 2005) that the 
exact permutation variance can be calculated directly 
without actually permuting the data, i.e.: 
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denotes the difference in the order indicators computed 
over the scores combined over the two systems. 

The availability of an analytical expression for the exact 
permutation variance not only permits constructing an 
easy-to-compute approximation, but also makes such an 
approximation very precise even with small samples. 
Because of the restriction to the null hypothesis, the 
permutation variance is not directly comparable to 
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previously mention estimation methods which provide 
estimators of the variance regardless of the magnitude of 
the difference. However, the properties of the statistical 
tests can be compared directly with Monte Carlo and the 
availability of the closed-form solution for the 
permutation variance greatly alleviates the computational 
burden of this task. The comparison of the asymptotic 
permutation test with the widely used procedure of 
DeLong et al. indicate the advantages of the former for 
the range of parameters common in diagnostic imaging , 
i.e. AUC greater than 0.8 and correlation between scores 
greater than 0.4 (Bandos et al., 2005).  

4.  Discussion 

In this paper we discussed the relative merits of basic 
resampling approaches and outline some recent 
developments in the resampling-based procedures focused 
on the area under the ROC curve. The major drawbacks 
of the advanced resampling procedures are computational 
burden and sampling error. Sampling error results from 
the application of the Monte Carlo approximation to the 
resampling process, and adds to the uncertainty of the 
obtained results. Although alleviated by the development 
of faster computers the computational burden can still be 
substantial especially in the case of iteratively obtained 
estimators such as m.l.e. of AUC (Dorfmann & Alf 1969; 
Metz, Herman & Shen 1998) or when assessing the 
uncertainty of the resampling-based estimators (e.g. 
jackknife- or bootstrap-after-bootstrap). In our previous 
works we showed that for the nonparametric estimator of 
the AUC presented here all of the considered resampling 
procedures permit derivation of the ideal variances 
directly avoiding implementation of the resampling 
process or its approximation. Such closed-form solutions 
greatly reduce computational burden, eliminate a 
sampling error associated with the Monte Carlo 
approximation to the resampling variances, permit 
construction of precise approximations to the exact 
methods and facilitate assessment and comparison of the 
properties of various statistical procedures based on 
resampling. 

In general jackknife provides a somewhat simplistic 
method that, depending on the problem, may still offer 
valuable solutions. In application to estimation of the 
nonparametric AUC, the two-sample jackknife is 
preferable over the one-sample due to a smaller upward 
bias. Bootstrap is a more elaborate resampling procedure 
that provides nonparametric maximum likelihood 
estimators by offering an approximation to the population 
sample space. Bootstrap is usually preferred over the 
jackknife because of cleaner interpretation and sometimes 
better precision. Exploiting a formula for the exact 
bootstrap variance of the AUC we demonstrated that it 
provides an estimator of the variance that is more accurate 
in terms of the mean squared error than the two-sample 
jackknife variance and is often more efficient than the 
unbiased estimator. In the case of comparing two AUCs 

the asymptotic tests based on the bootstrap and jackknife 
variances have very similar characteristics. However, for 
more complex problems the bootstrap may perform better 
than the jackknife. The permutations explore the 
properties of the population sample space assuming the 
exchangeability satisfied under the null hypotheses. For 
the comparison of the performances under a paired design 
the permutation test can be considered as preferable over 
the bootstrap and jackknife due to the exact nature of the 
permutation inferences. The availability of the exact 
permutation variance permits construction of an easy-to–
implement and precise approximation and facilitates 
investigation of the properties of the permutation test. 
Compared to the two-sample jackknife asymptotic test for 
comparing two correlated AUCs, the asymptotic 
permutation test was shown to have greater statistical 
power for the range of parameter common in diagnostic 
radiology.  

Although this paper focuses on the most commonly used 
summary index, AUC, the availability of the analytical 
expression for the exact variances is not limited to this 
relatively simple case. Formulas for ideal variances may 
also appear derivable for other AUC related indices and 
for different types of data (multi-reader, clustered, 
repeated measures and multi-class data) as well as under 
other, more complex, resampling schemes or study 
designs. 
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Abstract  
In this paper we analyse three different 
techniques to establish an optimal-cost class 
threshold when training data is not available. 
One technique is directly derived from the 
definition of cost, a second one is derived from a 
ranking of estimated probabilities and the third 
one is based on ROC analysis. We analyse the 
approaches theoretically and experimentally, 
applied to the adaptation of existing models. The 
results show that the techniques we present are 
better for reducing the overall cost than the 
classical approaches (e.g. oversampling) and 
show that cost contextualisation can be 
performed with good results when no data is 
available.  

 

1.  Introduction 

The traditional solution to the problem of contextualising 
a classifier to a new cost is ROC analysis. In order to 
perform ROC analysis (as well as other techniques), we 
need a training or validation dataset, from which we draw 
the ROC curve in the ROC space. In some situations, 
however, we don't have any training or validation data 
analysis available. 

This situation is frequent when we have to adapt an 
existing method which was elaborated by a human expert, 
or the model is so old that we do not have the old training 
data used for constructing the initial model available. This 
is a typical situation in many areas such as engineering, 
diagnosis, manufacturing, medicine, business, etc. 

————— 
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Therefore, the techniques from machine learning or data 
mining, although they are more and more useful and 
frequent in knowledge acquisition, cannot be applied if 
we have models that we want to adapt or to transform, but 
we do not have the original data. 

An old technique that can work without training data is 
the recently called "cost-sensitive learning by example 
weighting" (Abe et. al., 2004). The methods which follow 
this philosophy modify the data distribution in order to 
train a new model which becomes cost-sensitive. The 
typical approach in this line is stratification (Breiman et. 
al., 1984; Chan and Stolfo, 1998) by oversampling or 
undersampling. 

An alternative approach is the use of a threshold. A 
technique that could be adapted when data is not available 
can be derived from the classical formulas of cost-
sensitive learning. It is straightforward to see (see e.g. 
Elkan, 2001) that the optimal prediction for an example x 
in class i is the one that minimises 

∑=
j

jiCx|jPixL ),()(),(  (1) 

where P(j|x) is the estimated probability for each class j 
given the example x, and C(i,j) is the cell in the cost 
matrix C which defines the cost of predicting class i when 
the true class is j. From the previous formula, as we will 
see, we can establish a direct threshold without having 
any extra data at hand. In fact, some existing works 
(Domingos, 1999) have used the previous formula to 
establish a threshold which generates a model which is 
cost sensitive. 

One of the most adequate ways to establish a class 
threshold is based on ROC analysis. (Lachiche & Flach, 
2003) extend the general technique and show that it is 
also useful when the cost has not changed. However, in 
these cases we need additional validation data, in order to 
draw the curves. 

In order to tackle the problem that we have described at 
the beginning (adapting an existing model without data), 
it would be interesting, then, to analyse some techniques 



 

 

which combine the direct threshold estimation based on 
formula 1 (which ignores any estimated probabilities) and 
methods which take them into account (either their 
ranking or their absolute value) in a similar way ROC 
analysis works, but without data. 

In order to adapt the existing models, we use the mimetic 
technique (Domingos, 1997, 1998; Estruch, Ferri, 
Hernández & Ramírez, 2003; Blanco, Hernández & 
Ramírez, 2004) to generate a model which is similar to 
the initial model (oracle) but contextualised to the new 
cost. In order to do this, we propose at least six different 
ways to diminish the global cost of the mimetic model. 
Three criteria for adapting the classification threshold, as 
we have mentioned, and several different schemas for the 
mimetic technique are set out (without counting on the 
original data). We have centered our study on binary 
classification problems. 

The mimetic method is a technique for converting an 
incomprehensible model into one simple and 
comprehensible representation. Basically, it considers the 
incomprehensible model as an oracle, which is used for 
labelling an invented dataset. Then, a comprehensible 
model (for instance, a decision tree) is trained with the 
invented dataset. The mimetic technique has usually been 
used for obtaining comprehensible models. However, 
there is no reason for ignoring it as a cost-sensitive 
adaptation technique since it is in fact a model 
transformation technique.  

Note that the mimetic technique is a transformation 
technique which can use any learning technique, since the 
mimetic model is induced from (invented) data. 

 
Figure 1. The mimetic context. 

The mimetic context validation (see Figure 1) that we 
propose allows us to change the context of the initial 
model (oracle) so that it becomes sensitive to the new 
cost. 

The main advantages of our proposal are that it does not 
require a retraining of the initial model with the old data 
and, hence, it is not necessary to know the original data. 
The only thing we need from the original data or for the 
formulation of the problem is to know the maximum and 
minimum values of its attributes. 

From these maximum and minimum values and applying 
the uniform distribution we can obtain an invented 
dataset, which is labelled by using the oracle. We can use 
the cost information in different points: on the invented 
dataset, on the labelling of the data or on the thresholds. 
This settles three moments at which the cost information 
is used (see Figure 1, the points Mim1, Mim2 and Mim3). 
One of the points (Mim2) is especially interesting from 
the rest because it generates a “specific rule formulation” 
for the model, which might serve as any explanation of 
the adaptation to the new costs. 

The paper is organised as follows. In section 2 we 
describe the three methods to determine the thresholds 
and analyse theoretically the relationships between them. 
In section 3 we describe the four styles for the generation 
of invented data and, the schemes used in this work for 
the learning of the mimetic models. In section 4 we 
describe the different configurations. We also include the 
experimental evaluation conducted and the general 
results, which demonstrate the appropriateness and 
benefits of our proposal to contextualise any model to a 
new cost context. Finally, section 5 presents the 
conclusions and future work. 

2.  Threshold Estimation 

In this section, we present three different methods to 
estimate an optimal threshold following different 
philosophies. We also study some theoretical properties of 
the methods. 

In contexts where there are different costs associated to 
the misclassification errors, or where the class 
distributions are not identical, a usual way of reducing 
costs (apart from oversampling) is to find an optimal 
decision threshold in order to classify new instances 
according to their associated cost. Traditionally, the way 
in which the threshold is determined is performed in a 
simple way (Elkan, 2001), only taking the context skew 
into account.  

As we have said in the introduction, the methods based on 
ROC analysis (e.g. Lachiche & Flach, 2003) require a 
validation dataset, which is created at the expense of 
reducing data in the training dataset. Here, we are only 
interested in threshold estimation methods that don’t 
require extra data, since we do not have any data available 
(either old or new training or test). Therefore, we will not 
study this method or others which are related which 
require a dataset. We will just present methods which can 
work without it. 
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In this section we consider two-class problems, with class 
names 0 and 1. Given a cost matrix C, we define the cost 
skew as: 

)0,0()0,1(
)1,1()1,0(

CC
CCskew

−
−

=  (2) 

2.1  Direct Threshold 

The first method to obtain the threshold completely 
ignores the estimated probabilities of the models, i.e., to 
estimate the threshold it only considers the cost skew. 
According to (Elkan, 2001), the optimal prediction is 
class 1 if and only if the expected cost of this prediction is 
lower than or equal to the expected cost of predicting 
class 0: 

)1,0()1()0,0()0()1,1()1()0,1()0( Cx|PCx|PCx|PCx|P ⋅+⋅≤⋅+⋅
 

If p = P(1|x) we have: 
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Then, the threshold for making optimal decisions is a 
probability p* such that: 
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Assuming that C(1,0)>C(0,0) and C(0,1)>C(1,1) (i.e. 
misclassifications are more expensive than right 
predictions), we have 
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Finally, we define the threshold as: 
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2.2  Ranking or Sorting Threshold 

The previous method for estimating the classification 
ignores the estimated probabilities in a proper way. This 
can be a problem for models that do not distribute the 
estimated probabilities. Imagine a model that only assigns 
probabilities within the range 0.6-0.7. In this situation, 
most of the skews will not vary the results of the model. 

In order to partially avoid this limitation, we propose a 
new method to estimate the threshold. The idea is to 
employ the estimated probabilities directly to compute the 

threshold. For this purpose, if we have n examples, we 
rank these examples according to their estimated 
probabilities of being class 0. We select a point (Pos) 
between two points (a,b) in this rank such that there are 
(approximately) n/(skew+1) examples on the left side and 
(n* skew/(skew+1)) examples on the right side. In this 
division point we can find the desired threshold. We can 
illustrate this situation with Figure 2: 

 

Figure 2. Position of the threshold in the sorting method 

Following this figure, we have 
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where Lower computes the integer part of a real number. 
Then we estimate the threshold as: 

fracpppThreshold baaOrd ⋅−−= )(  (4) 

where 

aPosfrac −=  

In the case we find more than one example with the same 
estimated probability, we distribute these examples in a 
similar way. A complete explanation of the procedure can 
be found in (Blanco, 2006). 

2.3  ROC Threshold 

Although the previous method considers the skew and the 
estimated probabilities to compute the threshold, it has an 
important problem because the value of the threshold is 
restricted to the range of the probabilities computed by 
the model. I.e, if a model always computes probability 
estimates between 0.4 and 0.5, the threshold will be 
within this range for any skew. 

Motivated by this limitation, we have studied a new 
method to compute the threshold based on ROC analysis. 
Suppose that a model is well calibrated, this fact means 
that if a model gives a probability 0.8 of being class 0 to 
100 examples, 80 should be of class 0, and 20 should be 
of class 1. In the ROC space, this will be a segment going 
from point (0,0) to the point (20,80) with a slope of 4. 

In order to compute this new threshold we define a 
version of the ROC curve named NROC. This new curve 
is based on the idea that a probability represents a 
percentage of correctly classified instances (calibrated 
classifier).  
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If we have a set of n examples ranked by the estimated 
probability of being class 0, we define Sum0 as the sum of 
these probabilities. We consider normalised probabilities, 
then Sum0

 + Sum1
 = n. The space NROC is a 2 dimension 

square limited by (0,0) and (1,1). In order to draw a 
NROC curve, we only take the estimated probabilities 
into account, and we proceed as follows. If the first 
example has an estimated probability p1 of being class 0, 
we draw a segment from the point (0,0) to the point 
((1−p1)/Sum1, p1/Sum0). The next instance (p2) will 
correspond to the second segment will be from 
((1−p1)/Sum1,p1/Sum0) to (((1−p1)+(1−p2))/Sum1, 
((p1+p2)/Sum0). Following this procedure, the last segment 
will be between the points (Sum1−(1−pn))/Sum1, 
(Sum0−pn)/Sum0) and (1,1). 

Once we have defined the NROC space, let us explain 
how we use it to determine the threshold. First, since we 
work on a normalised ROC space (1×1) and Sum0 is not 
always equal to Sum1, we need to normalise the skew. 
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If skew’ is exactly parallel to a segment, then the 
threshold must be exactly the probability that corresponds 
to that segment, i.e if skew’=pi/(1−pi) the threshold must 
be pi. This means: 
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Using the relationship between skew’ and skew: 
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2.4  Theoretical analysis of the threshold methods 

Now, we study some properties of the methods for 
obtaining the threshold which we have described in the 
previous subsections. First, we show that the threshold 
which is calculated by each of the three methods is well-
defined, that is, it is a real value between 0 and 1, as 
expected. Secondly, we analyse which the relationship 
between the three thresholds is. 

The maximum and minimum values of the ThresholdDir 
and ThresholdROC depend on the skew by definition 
(formulae 3 and 5). Trivially, ThresholdOrd belongs to the 
interval [0..1] since it is defined as a value between two 
example probabilities. 

Maximum: For the direct and the ROC methods, the 
maximum is obtained when skew=∞: 
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The upper limit of ThresholdOrd is not necessarily 1, since 
it is given by the example with highest probability. 

Minimum: For the direct and the ROC methods, the 
minimum is obtained when skew=0: 
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As in the previous case, the lower limit of ThresholdOrd is 
not necessarily 0, since it is given by the example with 
lowest probability. 

Regarding the relationship among the three threshold 
methods, it is clear that we can found cases for which 
ThresholdDir > ThresholdOrd, and viceversa, because, as 
we have just said, the ThresholdOrd value depends on the 
example probability of being of class 0. A similar 
relationship holds between ThresholdROC and 
ThresholdOrd. 

However, the relationship between ThresholdROC and 
ThresholdDir depends on the relationship between Sum1 
and Sum0, as the following proposition shows: 

Proposition 2. Given n examples, let Sum0
 be the sum of 

the n (normalised) example probabilities of being in class 
0, and let Sum1

 be 1−Sum0
. If Sum0/Sum1 > 1 then 

ThresholdROC > ThresholdDir, if Sum0/Sum1 < 1 then 
ThresholdROC < ThresholdDir, and if Sum0/Sum1 = 1 then 
ThresholdROC = ThresholdDir . 

The following theorem shows that the three thresholds 
coincide when the probabilities are uniformly distributed.  

.Proposition 3. Given a set of n examples whose 
probabilities are uniformly distributed. Let P0 be the 
sequence of these probabilities ranked downwardly: 
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such that the probability of example i being in class 0 and 
class 1 are given respectively by 

m
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m
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where m=n−1. 

 Then, ThresholdROC=ThresholdDir=ThresholdOrd. 

3.  Mimetic Context 

In this section we present the mimetic models we will 
study experimentally in the next section along with the 
threshold estimation seen in Section 2. For this purpose, 
we first introduce several ways to generate the invented 
dataset, as well as different learning schemes. Then, each 
configuration to be considered will be obtained by 
inventing its training dataset in a certain way, by applying 
one of the learning schemes and by using one of the 
thresholds defined in the previous section. 

3.1  Generation of the training dataset for the mimetic 
technique 

As we said in the introduction, we are assuming that the 
original dataset used for training the oracle is not 
available. Hence, the mimetic model is training by using 
only an invented dataset (labelled by the oracle) which is 
generated using the uniform distribution. This is a very 
simple approach, because in very few cases data follow 
this distribution. If we could know the a priori distribution  
of the data or we could have a sample where we could 
estimate this distribution, the results would be probably 
better. Note that, in this way we only need to make use of 
the range value of each attribute (that is, its maximum and 
minimum values). 

In general, the invented dataset D can be generated by 
applying one of the following methods: 

• Type a: A priori method. In this method, D preserves 
the class distribution of the original training dataset. 
To do this, the original class proportion has to be 
known at the time of the data generation. 

• Type b: Balanced method. The same number of 
examples of each class is generated by this method. So 
D is composed by a 50% of examples of class 1 and a 
50% of examples of class 0. 

• Type c: Random method. The invented dataset D is 
obtained by only using the uniform distribution as it is 
(that is, no conditions about the class frequency in D 
are imposed).   

• Type d: Oversampling method. This method makes 
that the class frequencies in the invented dataset are 
defined in terms of the skew, such that D contains a 
proportion of 1/(skew+1) of instances of class 0 and a 
proportion of skew/(skew+1)  of instances of class 1. 

In order to obtain the four types, we generate random 
examples and  then we label them using the oracle. This 
process is finished when we obtain the correct percentage 
according to the selected type. 

3.2  Mimetic Learning Schemes 

In order to use the mimetic approach for a context 
sensitive learning, different mimetic learning schemes can 
be defined depending on the step of the mimetic process 
the context information is used: at the time of generating 
the invented dataset (scheme 3), at the time of labelling 
the invented dataset (scheme 1) or at the time of 
application of the mimetic model (scheme 2). We also 
consider another scheme (scheme 0) which corresponds to 
the situation where the context information is not used (as 
a reference). More specifically, we define the following 
mimetic learning schemes: 

• Scheme 0 (Mim0 model): This is the basic mimetic 
scheme. The mimetic model is obtained by applying a 
decision tree learner to the labelled data, namely the 
J48 classifier with pruning (Figure 3). Then, Mim0 is 
applied as a non sensitive context model that classifies 
a new example of class 0 if the probability for this 
class is greater or equal to 0.5 (threshold=0.5).  

 

Figure 3. Scheme 0: The simple mimetic learning method. 

• Scheme 1 (Mim1 model): This is a posteriori scheme 
in that the context information is used when the 
mimetic model is applied. First, the mimetic model is 
obtained as usually (by using the J48 classifier 
without pruning). Then, the threshold is calculated 
from the mimetic model and the invented dataset. 
Finally, the Mim1 model uses these parameters to 
classify new examples. Figure 4 shows this learning 
scheme. 

 

Figure 4. Scheme 1: The context information is used at the time 
of the mimetic model application. 

• Scheme 2 (Mim2 model): This is a priori scheme in 
which the context information is used before the 
mimetic model is learned. Once the invented dataset 
has been labelled by the oracle, the threshold and the 
Ro index (if it is needed) are calculated from them. 
Then, the invented dataset is re-labelled using these 
parameters. The new dataset is used for training the 
mimetic model which is applied as in scheme 0. This 
learning scheme is very similar to the proposal of  
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(Domingos, 1999). Figure 5 illustrates this learning 
scheme. 

 

Figure 5. Scheme 2: The context information is used to re-label 
the invented dataset before the mimetic model is trained. 

• Scheme 3 (Mim3 model): This is a scheme in which 
the context information is used for generating the 
invented dataset using oversampling. Then, the 
mimetic model is generated and applied as in scheme 
0 (Figure 6).  

 

Figure 6. The context information is used at the time to generate 
the invented dataset by oversampling. 

Note that the J48 learning method has been used with 
pruning in all the schemes except to scheme 1. This is due 
to the fact that, in this case, we need that the mimetic 
model provides good estimations of probabilities in order 
to calculate the threshold from them. 

4.  Experiments 

In this section, we present the global results of the 
experimental evaluation of the mimetic technique as a 
model contextualization approach. A more exhaustive 
experimental evaluation can be found in (Blanco, 2006). 
The combinations we will analyse are obtained as 
follows. First, we combine the Mim1 and Mim2 models 
with the three thresholds defined in Section 2. This gives 
6 different configurations. We also consider the Mim0 
and Mim3 models. Finally, we combine all these models 
(except from Mim3) with the different ways of inventing 
the training dataset defined in Section 3. Summing up, the 
experimental configuration is composed by 22 mimetic 
models to be studied. In that follows, a mimetic model is 
denoted as MimnConfigType, where n denotes a learning 
scheme (0≤n≤3), Config denotes the threshold used (Ord, 
Dir, ROC), and Type denotes the different types of 
invented dataset generation (a,b,c,d) described in section 
3.1. 

4.1  Experimental Setting  

For the experiments, we have employed 20 datasets from 
the UCI repository (Black & Merz, 1998) (see Table 
1¡Error! No se encuentra el origen de la referencia.). 

Datasets from 1 to 10 have been used for the experiments 
in an (almost)-balanced data scenario, whereas the rest of 
them have been used for two unbalanced data situations: 

first, considering class 1 as the majority class and, 
secondly, as minority class. In all cases, we use cost 
matrices with skew values of 1, 2, 3, 5, and 10. The 
mimetic models have been built using the J48 algorithm 
implemented in Weka (Witten & Frank, 2005). Also, we 
have used two oracles: a Neural Network and a Naive 
Bayes algorithm (their implementations in Weka). This 
allows us to analyse our approach both when the oracle is 
calibrated (the case of the neural network which provides 
good calibration) and non-calibrated (the Naive Bayes 
classifier). The size of the invented dataset is 10,000 for 
all the experiments and we use Laplace correction for all 
the probabilities. For all the experiments, we use 10x10-
fold cross-validation. Finally, when we show average 
results, we will use the arithmetic mean. We show the 
means because the number of variants is too large to 
include here the table with the paired t-tests.  You can see 
these results in (Blanco, 2006). 

Table 1. Information about the datasets used in the experiments. 

Attributes Size  No. Dataset Balanced Num. Nom. Size Class 0 Class 1
1 credit-a Almost 6 9 690 307 383
2 heart-statlog Almost 13 0 270 150 120
3 monks1 yes 0 6 556 278 278
4 monks3 Almost 0 6 554 266 288
5 monks2 Yes 0 6 412 206 206
6 tic-tac Yes 0 8 664 332 332
7 breast-cancer Yes 0 9 170 85 85
8 labor Yes 8 8 40 20 20
9 vote Yes 0 16 336 168 168
10 diabetes Yes 8 0 536 268 268
11 haberman-breast No 3 0 306 81 225
12 monks2 No 0 6 601 206 395
13 abalone-morethan No 7 1 4177 1447 2730
14 tic-tac No 0 8 958 332 626
15 breast-cancer No 0 9 286 85 201
16 labor No 8 8 57 20 37
17 vote No 0 16 435 168 267
18 credit-g No 7 13 1000 300 700
19 diabetes No 8 0 768 268 500
20 liver No 6 0 345 145 200

 

4.2  General Results 

An overview of our approach is shown in Table 2, which 
presents the cost average of the mimetic models obtained 
in all experiments grouped by skew. As can be observed, 
for skew=1, the cost is quite similar in all mimetic models. 
However, as the skew value increases, the cost differences 
are more meaningful. Globally, and for skew values 
greater than 2, Mim2Ordb model presents the best 
behaviour, followed by Mim2Orda. For lower skew 
values, the best models are Mim2Dira and Mim2Dirb. 
Hence, from a cost point of view, it seems preferable to 
apply the cost information before the mimetic model is 
built (Mim2 configurations). 
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Table 2. Cost averages of all the mimetic models grouped by 
skew. In bold those with the lowest global cost. 

skew Model  1 2 3 5 10 Mean 

Mim0a 19.74 29.58 39.68 59.53 109.81 51.67 
Mim0b 20.24 30.30 40.27 60.91 114.45 53.24 
Mim0c 20.56 31.35 41.95 63.39 116.87 54.82 
Mim1Dira 20.00 29.41 38.03 51.34 75.88 42.93 
Mim1Dirb 20.37 30.05 38.37 51.19 73.11 42.62 
Mim1Dirc 20.72 30.82 39.29 51.74 73.16 43.15 
Mim1Orda 25.20 32.00 34.32 36.86 39.07 33.49 
Mim1Ordb 20.67 29.36 33.03 36.43 38.76 31.65 
Mim1Ordc 26.17 34.85 39.49 43.84 47.22 38.32 
Mim1ROCa 20.25 29.65 37.80 51.03 71.92 42.13 
Mim1ROCb 20.37 29.84 37.66 50.60 72.49 42.19 
Mim1ROCc 20.73 29.31 36.54 48.25 68.92 40.75 
Mim2Dira 19.74 27.00 31.86 39.25 51.74 33.92 
Mim2Dirb 20.24 27.58 32.24 39.67 51.91 34.33 
Mim2Dirc 20.56 29.02 34.69 42.98 58.87 37.22 
Mim2Orda 23.80 29.98 32.75 35.77 37.42 31.94 
Mim2Ordb 20.61 28.51 31.69 34.84 37.03 30.54 
Mim2Ordc 24.75 33.26 38.11 41.83 45.74 36.74 
Mim2ROCa 20.43 27.77 32.65 39.10 50.22 34.03 
Mim2ROCb 20.58 28.13 33.75 40.83 53.47 35.35 
Mim2ROCc 20.83 29.30 34.92 44.46 60.12 37.93 
Mim3 20.33 28.51 34.85 44.69 61.65 38.01 

Table 3. Accuracies and cost averages of all the models 
according to the experiment type. Acc is Accuracy. 

Balanced Majority Minority Model Acc. Cost Acc. Cost Acc. Cost 
Mim0a 77.40 23.32 73.62 52.76 73.65 78.93
Mim0b 77.53 23.46 72.09 64.49 72.32 71.75
Mim0c 76.24 29.53 72.92 63.73 73.01 71.22

Mim1Dira 76.22 20.30 73.36 41.73 70.84 66.76
Mim1Dirb 76.32 20.34 73.06 47.58 69.27 59.94
Mim1Dirc 75.62 22.98 72.98 47.77 70.34 58.69
Mim1Orda 65.38 17.39 69.53 33.69 50.70 49.39
Mim1Ordb 65.49 17.44 70.40 30.51 55.04 46.99
Mim1Ordc 63.88 20.87 68.03 41.35 54.28 52.72
Mim1Roca 76.31 20.28 73.42 46.78 68.27 59.33
Mim1Rocb 76.37 20.29 73.29 46.48 68.71 59.81
Mim1Rocc 75.81 19.52 73.36 45.30 67.74 57.43
Mim2Dira 75.05 14.59 74.11 35.63 67.92 51.53
Mim2Dirb 75.06 14.59 73.37 39.25 66.46 49.14
Mim2Dirc 73.75 20.96 73.33 40.68 66.77 50.03
Mim2Orda 67.58 16.53 71.32 32.59 54.77 46.71
Mim2Ordb 67.64 16.50 71.56 30.18 58.03 44.94
Mim2Ordc 65.98 20.39 69.82 39.31 57.17 50.51
Mim2ROCa 75.64 15.50 73.86 38.76 65.53 47.83
Mim2ROCb 75.57 15.65 73.21 40.51 66.42 49.90
Mim2ROCc 74.73 20.03 72.81 42.26 67.07 51.48

Mim3 76.08 19.44 73.38 39.98 68.02 54.60
Oracle 81.43 20.61 77.57 54.70 77.55 60.47

Let us see now the effect of working with balanced or 
non-balanced datasets on the accuracy and cost 
average(Table 3). Regarding the cost, we observe the 
same minima as in the overview. The greater increase 
w.r.t. the cost of the oracle is due to those datasets in 
which the skew acts positively over the majority class. 

The improvement of cost w.r.t. Mim3, which represents 
the approach by oversampling, is also meaningful. In the 
cases in which the skew acts positively over the minority 
class, the reduction of cost is also important for some 
methods (like Mim2Ordb) but not for all (for instance, 
Mim1Dira). Concerning accuracy, we do not observe a 
meaningful decrease. Note that the mimetic technique 
itself provides models whose accuracy is always lower 
than the accuracy of the oracle. Nevertheless, as expected, 
the success ratio in the case of minority class has been the 
most affected. Finally, the balanced situation shows an 
intermediate behaviour. 

Table 4 shows the AUC of the models depending on the 
type of datasets. From these results, we can conclude that 
Mim1 obtains slightly better AUC than the rest of models. 
The differences are more important for the non-balanced 
datasets. Comparing and we can see that Mim2Roca is a 
good option if we look between a compromise between 
cost and AUC. 

Table 4 AUC of all the models according to the experiment type. 

Model Balanced Majority Minority 
Mim0a 0.811 0.722 0.722 
Mim0b 0.812 0.727 0.727 
Mim0c 0.804 0.726 0.726 

Mim1Dira 0.813 0.731 0.732 
Mim1Dirb 0.814 0.733 0.733 
Mim1Dirc 0.811 0.731 0.731 
Mim1Orda 0.813 0.731 0.732 
Mim1Ordb 0.814 0.733 0.733 
Mim1Ordc 0.811 0.731 0.731 
Mim1Roca 0.813 0.731 0.732 
Mim1Rocb 0.814 0.733 0.733 
Mim1Rocc 0.811 0.731 0.731 
Mim2Dira 0.796 0.707 0.721 
Mim2Dirb 0.797 0.710 0.722 
Mim2Dirc 0.786 0.706 0.717 
Mim2Orda 0.758 0.688 0.693 
Mim2Ordb 0.758 0.673 0.684 
Mim2Ordc 0.738 0.668 0.684 

Mim2ROCa 0.799 0.714 0.721 
Mim2ROCb 0.799 0.712 0.722 
Mim2ROCc 0.790 0.708 0.717 

Mim3 0.807 0.716 0.723 
Oracle 0.862 0.798 0.798 

5.  Conclusions 

In this paper, we have presented several methods to derive 
a class threshold without training or validation data and 
we have analysed them theoretically and experimentally. 
As a result we can affirm that the introduced techniques 
are useful to reduce the costs of the model, being superior 
to the classical approach based on oversampling. So, not 
having data is not an obstacle if we want to adapt an 
existing model to a new cost context. 



 

 

Theoretically, we have seen that the three approaches are 
similar if the probabilities are uniform. This is rarely the 
case. The approach based on ROC analysis is optimal, if 
the probabilities are well calibrated. However, this is not 
the case in many situations either. Consequently, the 
approach based on sorting the probabilities only assumes 
that the probabilities are reasonably well ordered and 
works well in this case. In general, this method seems to 
be better if no assumption is made on the quality of the 
probabilities. 

From all the proposed configurations, Mim2 (a priori) is 
preferable and the reason can be found in the fact that the 
oracle is almost always better than its imitation (the 
mimetic model). So, the search of the threshold can be 
performed on the oracle more reliably. Secondly, from the 
three main types for the generation of the invented 
dataset, the results show that a) (a priori) and b) 
(balanced) are clearly better than c) (random). Hence, it is 
important to tune the proportion of classes which are 
labelled by the oracle. Although the differences between 
a) and b) are not high, they depend on the configuration 
and whether the dataset is balanced or not. Thirdly, 
regarding the method for determining the threshold, we 
can say that the direct method would work very well if the 
probabilities would be calibrated. Since this is not 
generally the case, we have to take the order of the 
probabilities into account as a more reliable thing and 
obtain the threshold according to this order (the sort 
method). This option seems to give the best results w.r.t. 
costs. Nonetheless, given that the threshold method is 
affected by the range in which the estimated probabilities 
can vary, we devised a method based on ROC analysis, 
and we proposed a threshold derivation based on the 
newly introduced NROC curves. Although they are worse 
on costs, they present a good compromise between cost, 
accuracy and AUC. The recommendation from the 
general results is that when the goal is to minimise the 
global cost the preferable configuration is to use the a 
priori method (i.e. Mim2), with the sort threshold and 
with the invented data in a balanced way (Mim2Ordb). 

As future work it would be interesting to analyse the 
threshold derivation methods after performing a 
calibration. In this situation, we think that the method 
based on ROC analysis can be better than the other two. 
We have not tried this calibration for this paper since here 
we have considered a situation with almost no 
assumptions, in particular we do not have training or 
validation sets and, hence, we cannot calibrate the 
probabilities. An additional future work could be to find 
hybrid techniques between the Ord and ROC methods. 
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Abstract

We study the problem of optimizing a multi-
class classifier based on its ROC hypersur-
face and a matrix describing the costs of each
type of prediction error. For a binary classi-
fier, it is straightforward to find an optimal
operating point based on its ROC curve and
the relative cost of true positive to false posi-
tive error. However, the corresponding multi-
class problem (finding an optimal operating
point based on a ROC hypersurface and cost
matrix) is more challenging. We present sev-
eral heuristics for this problem, including lin-
ear and nonlinear programming formulations,
genetic algorithms, and a customized algo-
rithm. Empirical results suggest that genetic
algorithms fare the best overall, improving
performance most often.

1. Introduction

We study the problem of re-weighting classifiers to op-
timize them for new cost models. For example, given
a classifier optimized to minimize classification error
on its training set, one may attempt to tune it to im-
prove performance in light of a new cost model (say,
a change in the ratio of true positive to false positive
error). Equivalently, a change in the class distribution
(the probability of seeing examples from each partic-
ular class) can be handled by modeling such a change
as a change in cost model.

For two-class problems, the problem of finding the op-
timal operating point of a classifier given a ratio of true
positive cost to false positive cost is straightforward

Appearing in Proceedings of the ICML 2006 workshop on
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via Receiver Operating Characteristic (ROC) analy-
sis. ROC analysis takes a classifier h that outputs
confidences in its predictions (i.e. a ranking classifier),
and precisely describes the tradeoffs between true pos-
itive and false positive errors. By ranking all examples
x ∈ X by their confidences h(x) from largest to small-
est (denoted X = {x1, . . . , xn}), one achieves a set
of n + 1 binary classifiers by setting thresholds {θi =
(h(xi)+h(xi+1))/2, 1 ≤ i < n}∪{h(x1)− ε, h(xn)+ ε}
for some constant ε > 0. Given a relative cost c of true
positive error to false positive error and a validation
set X of labeled examples, one can easily find the opti-
mal threshold θ based on X and c (Lachiche & Flach,
2003). To do so, simply rank the examples in X , try
every threshold θi as described above, and select the
θi minimizing the total cost of all errors on X .

Though the binary case lends itself to straightfor-
ward optimization, working with multi-class problems
makes things more difficult. A natural idea is to think
of m-class ROC space having dimension m(m − 1).
A point in this space corresponds to a classifier, with
each coordinate representing the misclassification rate
of one class into some other class1. According to Srini-
vasan (1999), the optimal classifier lies on the convex
hull of these points. Given this ROC polytope, a val-
idation2 set X , and an m × m cost matrix M with
entries c(Cj , Ck) (the cost associated with misclassi-
fying a class Cj example as class Ck), Lachiche and
Flach (2003) define the optimization problem as find-

1Assuming that cost is zero if the classification is cor-
rect, we need only m(m− 1) instead of m2 dimensions.

2Lachiche and Flach ran their experiments with X as
an independent validation set and with X as the original
training set. They found little difference in their experi-
mental results.



ing a weight vector ~w ≥ ~0 to minimize3∑
1≤j≤m

∑
1≤k≤m

p(Cj) r(Cj , Ck) c(Cj , Ck) , (1)

where p(Cj) is the prior probability of class Cj , and
r(Cj , Ck) is the proportion of examples from X of ac-
tual class Cj that are predicted as class Ck. The pre-
dicted class of an example x is

ŷx = argmax
1≤i≤m

{wif(x,Ci)} ,

where f(x, Ci) is the classifier’s confidence that exam-
ple x is in class Ci.

No efficient algorithm is known to optimally solve (1),
and Lachiche and Flach speculate that the problem
is computationally hard. We present several new al-
gorithms for this problem, including an integer lin-
ear programming relaxation, a sum-of-linear fractional
functions (SOLFF) formulation, a direct optimization
of (1) with a genetic algorithm and finally, a new
custom algorithm based on partitioning C into meta-
classes. In our experiments, our algorithms yielded
several significant improvements both in minimizing
classification error and minimizing cost.

The rest of this paper is as follows. In Section 2 we
discuss related work and in Section 3 we discuss our
approaches to this problem. We then experimentally
evaluate our algorithms in Section 4 and conclude in
Section 5.

2. Related Work

The success of binary ROC analysis gives hope that
it may be possible to adapt similar ideas to multi-
class scenarios. However, research efforts (Srinivasan,
1999; Hand & Till, 2001; Ferri et al., 2003; Lachiche &
Flach, 2003; Fieldsend & Everson, 2005) have shown
that extending current techniques to multi-class prob-
lems is not a trivial task. One key aspect to binary
ROC analysis is that it is highly efficient to represent
trade-offs of misclassifying one class into the other via
binary ROC curves. In addition, the “area under the
curve” (AUC) nicely characterizes the classifier’s abil-
ity to produce correct rankings without committing to
any particular operating point. Decisions can be post-
poned until a desired trade-off is required (e.g. finding
the lowest expected cost).

Now consider the problem of classification in an m-
class scenario. A natural extension from the binary
case is to consider a multi-class ROC space as having

3Assuming c(Cj , Cj) = 0 ∀j.

dimension m(m−1). A point in this space corresponds
to a classifier with each coordinate representing the
misclassification rate of one class into some other class.
Following from Srinivasan (1999), the optimal classifier
lies on the convex hull of these points.

Previous investigations have all shared this basic
framework (Mossman, 1999; Srinivasan, 1999; Hand &
Till, 2001; Ferri et al., 2003; Lachiche & Flach, 2003;
Fieldsend & Everson, 2005; O’Brien & Gray, 2005).
They differ, however, in the metrics they manipulate
and in the approach they use to solve multi-class op-
timization problems. Mossman (1999) addressed the
special case of three-class problems, focusing on the
statistical properties of the volume under the ROC
surface. This motivated the later work of Ferri et al.
(2003), Lachiche and Flach (2003), and O’Brien and
Gray (2005). Hand and Till (2001) extended the def-
inition of two-class AUC by averaging pairwise com-
parisons. They used this new metric in simple, artifi-
cial data sets and achieved some success. Ferri et al.
(2003) took a different approach in which they strictly
followed the definition of two-class AUC by using “Vol-
ume Under Surface” (VUS). They were able to com-
pute the bounds of this measure in a three-class prob-
lem by using Monte Carlo methods. However, it is
not known how well this measure performs in more
complex problems.

Fieldsend and Everson (2005), Lachiche and Flach
(2003) and O’Brien and Gray (2005) developed algo-
rithms to minimize the overall multi-class prediction
accuracy and cost given some knowledge of a multi-
class classifier. In particular, Fieldsend and Everson
(2005) approximate the ROC Convex Hull (ROCCH)
using the idea of “Pareto front.” Consider the fol-
lowing formulation: let Rj,k(θ) be the misclassifica-
tion rate of predicting examples from class j as class
k. This is a function of some generalized parameter θ
that depends on the particular classifiers. For exam-
ple, θ may be a combination of a weight vector ~w and
hypothetical cost matrix M . The goal is to find θ that
minimizes Rj,k(θ) for all j, k with j 6= k. Consider two
classifiers θ and φ. We say θ strictly dominates φ if all
misclassification rates for θ are no worse than φ and at
least one rate is strictly better. The set of all feasible
classifiers such that no one is dominated by the other
forms the Pareto front. Fieldsend and Everson (2005)
present an evolutionary search algorithm to locate the
Pareto front. This method is particularly useful when
misclassification costs are not necessarily known.

More closely related to our work are the results of
Lachiche and Flach (2003) and O’Brien and Gray
(2005). Lachiche and Flach (2003) considered the case



when the misclassification cost is known, and the goal
is to find the optimal decision criterion that fits the
training set. Recall that this can be solved optimally
for the binary case. In particular, only one threshold
θ is needed to make the decision for two-class prob-
lems. Since there are only n + 1 possible thresholds
for n examples, it is efficient enough to simply test
all possibilities and select the one that gives the mini-
mum average error (or cost). However, the situation is
more complicated for multi-class problems. The main
obstacle in the multi-class case is that the number of
possible classification assignments grows exponentially
in the number of instances: Ω(mn).

Lachiche and Flach (2003) formulated the multi-class
problem as follows. Suppose the multi-class learning
algorithm will output a positive, real-valued function
f : {x1, . . . , xn}×{C1, . . . , Cm} → R+. Here, f(xi, Cj)
gives the confidence that example xi belongs to class
Cj . The decision criterion simply assigns example xi

to the class with maximum score. Reweighting the
classes involves defining a nonnegative weight vector
~w = (w1, w2, . . . , wm), and predicting the class for an
example x as

h(x) = argmax
1≤j≤m

{
wjf(x,Cj)

}
.

It should be apparent that ~w has only m − 1 degrees
of freedom, so we can fix w1 = 1.

Lachiche and Flach (2003) used a hill climbing or se-
quential optimization heuristic to find a good weight
vector ~w. In particular, they took advantage of the
fact that the optimal threshold for the two-class prob-
lem can be found efficiently. For each coordinate in the
weight vector, they mapped the problem to a binary
problem. The algorithm starts by assigning w1 = 1
and all other weights 0. It then tries to decide the
weight for one class at a time as follows. Let X be the
set of training examples and let p be the current class
for which we want to assign a “good” weight wp. Then
the set of possible weights for wp is{

maxj∈{1,...,p−1} f(x,Cj)
f(x,Cp)

∣∣∣∣ x ∈ X
}

.

It is not difficult to see that at any stage there are
at most O(|X |) possible weights that can influence
the prediction. Thus choosing the optimal weight in
this setting can be easily achieved by checking all
possibilities. Overall, their algorithm runs in time
Θ(mn log n). Though there is no guarantee that this
approach can find an optimal solution, they gave em-
pirical results that it works well for optimizing 1BC, a
logic-based Bayes classifier (Lachiche & Flach, 1999).

Although only briefly mentioned in Lachiche and Flach
(2003), this ROC thresholding technique is quite ex-
tensible to cost-sensitive scenarios. O’Brien and Gray
(2005) investigated the role of a cost matrix in parti-
tioning the estimated class probability space and as a
replacement for the weights. Assuming that M is a
misclassification cost matrix, an optimal decision cri-
terion would be

h(x) = argmin
1≤k≤m

 ∑
1≤j≤m

c(Cj , Ck) p̂(x,Cj)

 .

If p̂(x,Cj) is a good probability estimate of example
x belonging to class Cj , this prediction results in the
lowest expected cost. However, if p̂(x, Cj) is not an ac-
curate probability estimate, then to ensure optimality,
the cost matrix M has to be altered accordingly. Thus
the cost matrix M plays a similar role as Lachiche and
Flach’s weight vector in defining the decision bound-
ary in estimated probability space. O’Brien and Gray
(2005) defined several standard operations to manip-
ulate the cost matrix M and proposed the use of a
greedy algorithm to find the altered cost matrix (called
a boundary matrix ).

3. Our Contributions

In this section, we first present new mathematical pro-
gramming formulations. In particular, we reformu-
late the objective function (1) given by Lachiche and
Flach (2003) as a relaxed integer linear program as
well as give a formulation that is a sum of linear frac-
tional functions. We also describe a new heuristic al-
gorithm approach, MetaClass. Finally (in Section 4)
we present experimental results from these formula-
tions. We give evidence that the objective function
landscape for this problem is highly discontinuous and
thus more amenable to global optimization methods
such as genetic algorithms.

3.1. Mathematical Programming Formulations

3.1.1. Relaxed Integer Linear Program

We start by reformulating (1) as follows:

minimize
~w,~I

 ∑
1≤j≤m

p(Cj)
|Cj |

∑
1≤k≤m

c(Cj , Ck)
∑

xi∈Cj

Ii,k

 ,

(2)
where Cj ⊆ X is the set of instances of class j, p(Cj) is
the prior probability of class Cj , c(Cj , Ck) is the cost
of misclassifying an example from class Cj as Ck, and

Ii,k =
{

1 if wkf(xi, Ck) ≥ wlf(xi, Cl), l 6= k
0 otherwise.



Here we assume c(Cj , Cj) = 0 for all Cj . Formalizing
this as a constrained optimization problem, we want
to minimize (2) subject to

Ii,jwjf(xi, Cj) = Ii,j max1≤k≤m{wkf(xi, Ck)} (3)∑
1≤j≤m Ii,j = 1 (4)
Ii,j ∈ {0, 1} (5)

wj ≥ 0 (6)

where each constraint holds for all i ∈ {1, . . . , n} and
j ∈ {1, . . . ,m}. Equation (3) allows only the class that
has the max value of wkf(xi, Ck) to be indicated by ~I
to be the predicted class of example xi and (4) forces
exactly one class to be predicted per example xi.

We can change the optimization problem in two ways
to get an equivalent problem. First, we change the
“=” in (3) to “≥”. Second, we can relax (5) to
be Ii,j ∈ [0, 1]. Note that (3) (even when amended
with “≥”) will only be satisfied if Ii,j = 0 for all
Cj that don’t maximize the RHS of (3). Thus, so
long as we never have wkf(xi, Ck) = wk′f(xi, Ck′)
for some k 6= k′, the relaxation is equivalent to the
original problem. Further, even if there is such a
tie for classes Ck and Ck′ , it will not be an issue if
the corresponding entries in the cost matrix are dif-
ferent, since an optimal solution will set Ii,k = 1
and Ii,k′ = 0 if c(Cj , Ck) < c(Cj , Ck′). The poten-
tial problem of both wkf(xi, Ck) = wk′f(xi, Ck′) and
c(Cj , Ck) = c(Cj , Ck′) is fixed by (after optimizing)
checking for any Ii,k 6∈ {0, 1} and arbitrarily choosing
one to be 1 and the rest 0. Note that since there is a
tie in this case, the prediction can go either way and
the weight vector ~w returned is still valid.

Everything except (3) is linear. We now reformulate
it. First, for each i ∈ {1, . . . , n}, we substitute γi for
max1≤k≤m{wkf(xi, Ck)}:

Ii,jwjf(xi, Cj) ≥ γi Ii,j (7)
wkf(xi, Ck) ≤ γi , (8)

for all i ∈ {1, . . . , n} and j, k ∈ {1, . . . ,m} where each
γi is a new variable. Obviously (8) is a linear con-
straint, but (7) is not even quasiconvex (Boyd & Van-
denberghe, 2004). The complexity of this optimization
problem motivates us to reformulate it a bit further.

Let us assume that f(xi, Ck) ∈ (0, 1] (e.g. if f(·, ·)
are probability estimates from näıve Bayes or logistic
regression). Now we can optimize (2) subject to:

γi − wjf(xi, Cj) + Ii,j ≤ 1 (9)
γi ≥ wjf(xi, Cj) (10)∑

1≤j≤m Ii,j = 1 (11)

Ii,j ∈ {0, 1} (12)
wj ≥ 0 (13)

for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.

So long as wjf(xi, Cj) ∈ (0, 1] and Ii,j ∈ {0, 1} for
all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, this is another
equivalent optimization problem, this time a {0, 1} in-
teger linear program. Unfortunately, we cannot relax
(12) to Ii,j ∈ [0, 1] as we did before to get an equiva-
lent problem. But we still use the relaxation as a linear
programming heuristic. To help avoid overfitting, we
also add a linear regularization term to (2):

minimize
~w,~I

 ∑
1≤j≤m

p(Cj)
|Cj |

∑
1≤k≤m

c(Cj , Ck)
∑

xi∈Cj

Ii,k

+η‖~w −~1‖1

}
(14)

where ‖ · ‖1 is the 1-norm, ~1 is the all-1s vector, and η
is a parameter. This regularizer penalizes large devia-
tions from the original classifier f(·, ·).

3.1.2. Sum of Linear Fractional Function
Formulation

Another formulation comes from changing how pre-
dictions are made from deterministic to probabilis-
tic. In this prediction model, given a new example
x to predict on, first compute wkf(x,Ck) for each
k ∈ {1, . . . ,m}. Then predict class Ck for example
x with probability

wkf(x,Ck)∑
1≤`≤m w`f(x, C`)

.

Assuming a uniform distribution over the data set, the
expected cost of this predictor is∑

1≤j≤m

p(Cj)
|Cj |

∑
1≤k≤m

c(Cj , Ck)
∑

xi∈Cj

ϕ(i, k) , (15)

where

ϕ(i, k) =
wkf(xi, Ck)∑

1≤`≤m w`f(xi, C`)

subject to wk ≥ 0 for all k ∈ {1, . . . ,m}. We now
have eliminated the variables Ii,k and their integer con-
straints. However, we now have a nonlinear objective
function in (15). Each individual term of the sum-
mation of (15) is a linear fractional function, which
is quasiconvex and quasiconcave, and thus it is effi-
ciently solvable optimally. However, the sum of linear



fractional functions (SOLFF) problem is known to be
hard (Matsui, 1996) and existing algorithms for this
problem are inappropriate (they either restrict to few
terms in the summation or to low-dimensional vec-
tors). Instead, we apply a genetic algorithm to directly
optimize (15).

3.2. The MetaClass Heuristic Algorithm

In addition to the linear programming formulations,
we present a new algorithm that we call MetaClass
(Algorithm 1). This algorithm is similar to that of
Lachiche and Flach (2003) in that we reduce the multi-
class problem to a series of two-class problems. How-
ever, we take what can be considered a top-down
approach while the algorithm of Lachiche and Flach
(2003) can be considered bottom-up. Moreover, Meta-
Class has a faster time complexity. The output of the
algorithm is a decision tree with each internal node la-
beled by two metaclasses and a threshold value. Each
leaf node is labeled by one of the classes in the original
problem. At the root, the set of all classes is divided
into two metaclasses. The criterion for this split may
be based on any statistical measure, but for simplic-
ity, experiments were performed by splitting classes so
that each metaclass would have roughly the same num-
ber of examples. For each metaclass, our algorithm de-
fines confidence functions f1 and f2 for each instance,
which are simply the sum of the confidences of the
classes in C1 and C2, respectively. The ratio F = f1

f2
is

used to find a threshold θ. We find θ by sorting the
instances according to F and choose a threshold that
minimizes error. (This threshold will be the average
of F (xi) and F (xi+1) for some instance xi.) The sit-
uation for cost is slightly more complicated since it is
not clear which class in the metaclass an example is
misclassified as. Instead, we use the average cost of
misclassifying instances into metaclasses in C1 and C2.
In this case, a threshold is chosen that minimizes the
overall cost. We recursively perform this procedure on
the two metaclasses until there is only a single class, at
which point a leaf is formed. The MetaClass algorithm
is presented as Algorithm 1.

T0 : θ = 0.8169
C1 = {C4, C3}
C2 = {C1, C5, C2}

T1 : θ = 0.2897
C1 = {C3}
C2 = {C4}

predict C3

f1 = f(x, C3)

predict C4

f2 = f(x, C4)

f1 =
X

i=3,4

f(x, Ci)

T2 : θ = 144.31
C1 = {C5}
C2 = {C1, C2}

predict C5

f1 = f(x, C5)

T3 : θ = 9.322
C1 = {C1}
C2 = {C2}

predict C1

f1 = f(x, C1)

predict C2

f2 = f(x, C2)

f2 =
X

j=1,2

f(x, Cj)

f2 =
X

j=1,2,5

f(x, Cj)

Figure 1. Example run of MetaClass on Nursery, a 5-class
problem.

Input : A set of instances, X = {x1, . . . , xn}; a
set of classes, C = {C1, . . . , Cm}; a
learned confidence function
f : X × C → R+ and a tree node T

Output : A decision tree with associated weights.

Split C into two meta-classes C1, C21

foreach Instance xi ∈ X do2

f1(xi, C1) =
P

Cj∈C1
f(xi, Cj)3

f2(xi, C2) =
P

Cj∈C2
f(xi, Cj)4

F (xi) = f1(xi)/f2(xi)5

end6

Sort instances according to F7

Compute a threshold θ that minimizes error/cost8

w.r.t. F

Label T with θ, C1, C29

Create two children of T : Tleft, Tright10

Split X into two classes, X1,X2 according to C1, C211

Recursively perform this procedure on X1, C1, Tleft12

and X2, C2, Tright until |C| = 1

Algorithm 1: MetaClass

Figure 1 gives an example of a tree built by the Meta-
Class algorithm on the UCI (Blake & Merz, 2005) data
set Nursery, a 5 class data set. At the root, the classes
are divided into two metaclasses each with about the
same number of examples represented in their respec-
tive classes. In this case, the threshold θ = 0.8169 fa-
vors the sum of confidences in metaclass C1 = {C4, C3}
as an optimal weight.

Predictions for a new example y are made as follows.
Starting at the root node, we traverse the tree towards



a leaf. At each node T we compute the sum of confi-
dences of y with respect to each associated metaclass.
We traverse left or right down the tree depending on
whether f1/f2 ≥ θ. When a leaf is reached, a final
class prediction is made.

The number of nodes created by MetaClass is Θ(m),
where m is the number of classes. At each node, the
most complex step is sorting at most n instances ac-
cording to the confidence ratio. Thus, the overall per-
formance is bounded by Θ(n log n log m). Since for
most applications, n � m, we may consider its actual
running time to simply be O(n log n). Classification is
also efficient. At each node we compute a sum over an
exponentially shrinking number of classes. The overall
number of operations is thus

log (m)−1∑
i=0

m

2i
,

which is linear in the number of classes: Θ(m).

4. Experimental Results

The following experiments were performed on 25 stan-
dard UCI data sets (Blake & Merz, 2005), using
Weka’s näıve Bayes (Witten et al., 2005) as the base-
line classifier. We ran experiments evaluating improve-
ments both in classification accuracy and total cost.
We used 10-fold cross validation for error rate experi-
ments (Table 1). For the cost experiments of Table 2,
10-fold cross validations were performed on 10 differ-
ent cost matrices for each data set. Costs were integer
values between 1 and 10 assigned uniformly at ran-
dom. Costs on the diagonal were set to zero. The
average cost per test instance was reported for each
experiment. Table 2 gives the average cost over all
100 experiments per data set, per algorithm.

In both tables, for each data set m denotes the num-
ber of classes and NB indicates our baseline classi-
fier’s performance. For comparison, we have included
wins and losses (and significance) for the algorithms re-
ported by Lachiche and Flach (2003) and O’Brien and
Gray (2005). Raw numbers are omitted since these
results are not directly comparable to ours: in addi-
tion to being based on different data partitions, the
results from Lachiche and Flach (2003) were from an
optimization run on the base classifier 1BC (Lachiche
& Flach, 1999). Moreover, the results in O’Brien
and Gray (2005) (here, we have used one of their
best formulations, “column multiply”) pruned classes
that did not have “sufficient” representation. Further-
more, Lachiche and Flach (2003) did not consider cost-
sensitive experiments. Thus, the results in Table 2 for

Lachiche & Flach are taken from the implementation
and results reported by O’Brien and Gray.

The results of our experiments can be found in the last
four columns of each table. Here, MC is the MetaClass
algorithm (Algorithm 1). LP is a linear programming
algorithm (MOSEK ApS, 2005) on Equation (14) with
η = 10−6. The first GA is the Sum of Linear Frac-
tional Functions formulation (Equation (15)) using a
genetic algorithm. The final column is a genetic al-
gorithm performed on Equation (1). Both GA imple-
mentations were from Abramson (2005). Parameters
for both used the default Matlab settings with a pop-
ulation size of 20, a maximum of 200 generations and
a crossover fraction of 0.8. The algorithm terminates
if no change is observed in 100 continuous rounds. In
addition, the mutation function of Abramson (2005) is
guaranteed to only generate feasible solutions (in our
case, all weights must be nonnegative). Upon termi-
nation, a direct pattern search is performed using the
best solution from the GA.

Data for some entries were not available and are de-
noted “n/a” (either the source did not report results
or, in the case of our experiments, data sets were too
large for Matlab). Therefore, for comparison it is im-
portant to note the ratio of significant wins to signifi-
cant losses rather than merely total wins or losses. For
all columns, bold entries indicate a significant differ-
ence to the baseline with at least a 95% confidence
according to a Student’s-t method. The overall best
classifier for each data set is underlined.

Regarding classification error, in every case each algo-
rithm showed some significant performance improve-
ments. With the exception of LPR, all algorithms were
competitive with no clear overall winner. However, Ta-
ble 3.2 does, in fact, show a clear winner when costs
are non-uniform. The success when using a GA on
Equation (1) gives evidence that the objective function
surface is likely to be very rough with many local mini-
mums (it is certainly discontinuous given the use of the
argmax function). This also may explain why other
methods did not perform as well. The GA is search-
ing globally; in contrast all other methods (including
Lachiche and Flach (2003)) search locally. Even the
integer linear programming relaxation, which in gen-
eral has a good track record, came up short.

5. Conclusion & Future Work

When the cost model or class distribution of a learn-
ing problem deviates from the conditions under which
a classifier f was trained, one may wish to re-optimize
f . For two-class problems, it is well-known how to do



this via ROC analysis, but the multi-class problem is
more challenging. We presented multiple algorithms
for the multi-class version of this problem and empir-
ically showed their competitiveness. Direct optimiza-
tion by a genetic algorithm was particularly effective.

Future work includes answering the question posed by
Lachiche and Flach (2003): is this optimization prob-
lem computationally intractable? Assuming it is, then
a more tractable and useful special case of this prob-
lem may be when the number of classes is restricted
to a constant. In particular, can we find a provably
optimal algorithm when the number of classes is 3?
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Table 1. Error Rates. L&F are from Lachiche and Flach (2003) and O&G are from O’Brien and Gray (2005). W indicates that the optimized

classifier performed better than its baseline and L indicates a performance loss. NB is our baseline. Bold font denotes a significant difference

to the baseline with at least 95% confidence. The overall best classifier among our algorithms is underlined.

LP GA GA
Data Set m L&F O&G NB MC Eq. (14) Eq. (15) Eq. (1)

Audiology 24 W L 0.3095 0.4816 0.2869 0.2826 0.2872
Bridges 2 (material) 3 W W 0.1582 0.2436 0.2709 0.1764 0.2136
Bridges 2 (rel-l) 3 W tie 0.3164 0.3336 0.3081 0.3355 0.3455
Bridges 2 (span) 3 tie n/a 0.2227 0.2245 0.2427 0.4018 n/a
Bridges 2 (type) 6 W W 0.4564 0.4564 0.4654 0.4664 0.4655
Bridges 2 (t-or-d) 2 W n/a 0.1755 0.1955 0.1754 0.1936 0.2500
Car 4 W W 0.1464 0.1267 0.1336 0.1724 0.1209
Post-Op 3 W n/a 0.4949 0.4881 0.4948 0.4990 0.4908
Horse-colic (code) 3 W L 0.3173 0.3179 0.3172 0.2931 0.3120
Horse-colic (surgical) 2 tie n/a 0.2089 0.1710 0.2089 0.1791 0.1791
Horse-colic (site) 63 W L 0.7634 0.7770 0.7634 0.7444 0.7661
Horse-colic (subtype) 2 W W 0.0027 0.0027 0.0027 0.0027 0.0027
Horse-colic (type) 8 W L 0.0409 0.0272 0.0409 0.0327 0.0354
Credit 2 L n/a 0.2490 0.2570 0.2490 0.2720 0.2580
Dermatology 6 L tie 0.0273 0.0192 0.0273 0.0273 0.0165
Ecoli 8 L tie 0.1516 0.1608 0.1545 0.1640 0.1368
Flags 8 L tie 0.3761 0.4213 0.3707 0.3705 0.3808
Glass 7 L L 0.5236 0.5472 0.5235 0.4260 0.4959
Mushroom 2 W n/a 0.0420 0.0181 0.0374 0.0192 0.0178
Nursery 5 W W 0.0968 0.0849 n/a n/a 0.0847
Image Segmentation 7 L W 0.1974 0.1485 0.1974 0.1260 0.1727
Solar Flare (common) 8 W W 0.2364 0.1745 0.2364 0.1708 0.1980
Solar Flare (moderate) 6 W n/a 0.0732 0.0356 0.0731 0.0338 0.0507
Solar Flare (severe) 3 W n/a 0.0282 0.0085 0.0234 0.0047 0.0207
Vote 2 L n/a 0.0965 0.1081 0.0964 0.0942 0.0965

Win/Loss 15/8 7/6 – 11/12 6/5 13/11 15/9
Significant Win/Loss 9/1 6/4 – 8/2 3/1 7/3 8/3

Table 2. Costs. L&F and O&G are both from O’Brien and Gray (2005).

Data Set m L&F O&G NB MC LP (14) GA (15) GA (1)

Audiology 24 L L 1.7720 2.7935 1.6386 1.7245 1.5194
Bridges 2 (material) 3 L L 0.8611 1.3542 1.4725 1.0059 1.2181
Bridges 2 (rel-l) 3 L L 1.9355 1.9441 1.9003 2.5553 1.9875
Bridges 2 (span) 3 n/a n/a 1.1872 1.6153 1.2930 1.9934 1.4491
Bridges 2 (type) 6 L L 2.4585 2.3160 2.6020 2.7605 2.5220
Bridges 2 (t-or-d) 2 n/a n/a 0.9655 0.8946 0.9568 1.0794 0.9705
Car 4 W W 0.8484 0.8898 0.8074 1.6665 0.6523
Post-Op 3 n/a n/a 2.9242 3.0450 2.9993 3.6611 2.7057
Horse-colic (code) 3 W W 1.7915 1.7243 1.7863 1.7950 1.6989
Horse-colic (surgical) 2 n/a n/a 1.3788 1.0060 1.3890 1.6364 1.0629
Horse-colic (site) 63 L L 4.0892 4.2372 4.1084 4.2647 4.0809
Horse-colic (subtype) 2 W W 0.0114 0.5741 0.0114 0.0113 0.0114
Horse-colic (type) 8 W W 0.2225 0.1447 0.2172 0.1704 0.1970
Credit 2 n/a n/a 1.3203 1.0444 1.3951 2.1906 1.0531
Dermatology 6 L L 0.1744 0.1105 0.1564 0.1775 0.1147
Ecoli 8 L L 0.8105 0.8514 0.8766 1.2116 0.7678
Flags 8 W W 2.1590 2.2803 2.1408 2.3013 1.9888
Glass 7 L L 3.1308 2.9330 3.1301 3.4910 2.6720
Mushroom 2 n/a n/a 0.1930 0.0994 0.1784 0.1262 0.1031
Nursery 5 W W 0.5565 0.6651 n/a n/a 0.4634
Image Segmentation 7 W W 1.0855 0.8416 1.0855 1.0989 0.8952
Solar Flare (common) 8 W W 1.3080 4.1595 1.3199 1.1622 0.9844
Solar Flare (moderate) 6 n/a n/a 0.4644 5.6085 0.4628 0.2749 0.2652
Solar Flare (severe) 3 n/a n/a 0.1682 6.0877 0.1556 0.0800 0.1070
Vote 2 n/a n/a 0.4510 0.3770 0.4510 0.5346 0.4577

Win/Loss 8/8 8/8 – 11/14 12/9 6/17 19/6
(Sig) 8/8 8/6 – 5/6 1/4 4/11 13/2



A Framework for Comparative Evaluation of Classifiers in the
Presence of Class Imbalance

William Elazmeh† welazmeh@site.uottawa.ca
Nathalie Japkowicz† nat@site.uottawa.ca
Stan Matwin†‡ stan@site.uottawa.ca
† School of Information Technology and Engineering, University of Ottawa
‡ Institute of Computer Science, Polish Academy of Sciences, Poland

Abstract

Evaluating classifier performance with ROC
curves is popular in the machine learning
community. To date, the only method to
assess confidence of ROC curves is to con-
struct ROC bands. In the case of severe class
imbalance, ROC bands become unreliable.
We propose a generic framework for classifier
evaluation to identify the confident segment
of an ROC curve. Confidence is measured by
Tango’s 95%-confidence interval for the dif-
ference in classification errors in both classes.
We test our method with severe class imbal-
ance in a two-class problem. Our evaluation
favors classifiers with low numbers of classi-
fication errors in both classes. We show that
our evaluation method is more confident than
ROC bands when faced with severe class im-
balance.

1. Motivation

Recently, the machine learning community has in-
creased the focus on classifier evaluation. Evaluation
schemes that compute accuracy, precision, recall, or F-
score have been shown to be insufficient or inappropri-
ate (Ling et al., 2003; Provost & Fawcett, 1997). Fur-
thermore, the usefulness of advanced evaluation mea-
sures, like ROC curves (Cohen et al., 1999; Provost &
Fawcett, 1997; Swets, 1988) and cost curves (Drum-
mond & Holte, 2000; Drummond & Holte, 2004), de-
teriorates in the presence of a limited number of pos-
itive examples. The need for confidence in classifier
evaluation in machine learning has lead to the con-

Appearing in Proceedings of the third Workshop on ROC
Analysis in Machine Learning, Pittsburgh, USA, 2006.
Copyright 2006 by the author(s)/owner(s).

Table 1. The statistical proportions in a confusion matrix.
Predicted + Predicted - total

Class + a (q11) b (q12) a+b
Class - c (q21) d (q22) c+d
total a+c b+d n

struction of ROC confidence bands. Methods in (Mac-
skassy et al., 2005; Macskassy & Provost, 2004) con-
struct ROC bands by computing confidence intervals
for points along the ROC curve. These methods are ei-
ther parametric (making assumptions of data distribu-
tions), or non-parametric and rely on carefully crafted
sampling methods. When faced with severe class im-
balance, sampling methods become unreliable, espe-
cially when the data distribution is unknown (Mac-
skassy & Provost, 2004). In fact, with severe imbal-
ance, the entire issue of evaluation becomes a serious
challenge even when making assumptions of data dis-
tributions (Drummond & Holte, 2005). In contrast,
biostatistical and medical domains impose strong em-
phasis on error estimates, interpretability of prediction
schemes, scientific significance, and confidence (Mo-
tulsky, 1995) whilst machine learning evaluation mea-
sures fail to provide such guarantees. Consequently,
the usefulness of some machine learning algorithms
remains inadequately documented and unconvincingly
demonstrated. Thus, despite their interest in using
learning algorithms, biostatisticians remain skeptical
of their evaluation methods and continue to develop
customized statistical tests to measure characteristics
of interest. Our work adopts Tango’s test (Tango,
1998) from biostatistics in an attempt to provide con-
fidence in classifier evaluation. Tango’s test is a non-
parametric confidence test designed to measure the dif-
ference in binomial proportions in paired data. Com-
puting the confidence based on the positive or neg-
ative rates (using a or d of the confusion matrix in
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Figure 1. b−c
n

and Tango’s 95%-confidence intervals for
ROC points. Left: all the ROC points. Right: only confi-
dent ROC points whose Tango’s intervals contain 0.

table 1) can be influenced by class imbalance in favor
of the majority class. Alternatively, applying a sta-
tistical significance test to those entries (b or c) that
resist such influence may provide a solution. Hence, to
counter the class imbalance, we favor classifiers with
similar normalized number of errors in both classes,
rather than similar error rates to avoid the imbalance.

In this paper; (1) we propose a framework for classi-
fier evaluation that identifies confident points along an
ROC curve using a statistical confidence test. These
points form a confident ROC segment to which we
recommend restricting the evaluation. (2) Although
our framework can be applied to any data, this work
focuses on the presence of severe imbalance where
ROC bands, ROC curves and AUC struggle to pro-
duce meaningful assessments. (3) We produce a rep-
resentation of classifier performance based on the av-
erage difference in classification errors and the Area
Under the Confident ROC Segment. We present ex-
perimental results that show the effectiveness of our
approach in severe imbalanced situations compared to
ROC bands, ROC curves, and AUC. Having motivated
this work, subsequent sections present discussions of
classification error proportions in both classes (in sec-
tion 2), our evaluation framework (in section 3), and
our experimental results (in section 4) followed by con-
clusions and future work (in section 5). We review
Tango’s statistical test of confidence in appendix A
(section 6).

2. Difference in Classification Errors

Common classifier performance measures in machine
learning estimate classification accuracy and/or errors.
ROC curves provide a visualization of a possible trade-
off between accuracy and error rates for a particular
class. For the confusion matrix presented in table 1 on
page 1, the ROC curve for the class + plots the true
positive rate a

a+b against the false positive rate c
c+d .

When the number of positive examples is significantly
lower than the number of negative examples, the row

totals a+ b << c+d. When changing the class proba-
bility threshold, the rate of change in the true positive
rate climbs faster with each example than that of the
false positives (due to using c and d). This inconsis-
tent rate of change gives the majority class (−) a clear
advantage in the rates calculated for the ROC curve.
Ideally, a classifier classifies both classes proportion-
ally, but due to the severe imbalance, comparing the
rates of accuracy and/or errors on both classes does
not evaluate proportionally. We propose to favor the
classifier that performs with similar number of errors
in both classes to eliminate the use of the number of
correctly classified examples (a and d) in the evalua-
tion to avoid a large portion of examples in the major-
ity class. In fact, our approach favors classifiers that
have lower difference in classification errors in both
classes, b−c

n . Furthermore, we normalize entries in the
confusion matrix by dividing by the number of exam-
ples n so the difference b−c

n remains within [−1,+1].

ROC curves are generated by classifying examples
while increasing class probability threshold T . When
T = 0, all data examples are classified as +, thus,
a = | + | (the number of positives), b = 0, c = | − |,
d = 0, and b−c

n ∈ [−1, 0]. Similarly, for T = 1, all ex-
amples are classified as −, then, a = 0, b = |+ |, c = 0,
d = |− |, and b−c

n ∈ [0,+1]. In fact, these two extreme
negative and positive values of b−c

n depend on class dis-
tributions in the data. Within these two extremes, b−c

n
exhibits a monotone behavior as the threshold varies
from 0 to 1. This is illustrated in figure 1. For each
threshold value T := 0 to 1, the classification produces
a confusion matrix a, b, c, d. Initially, a and c are at
their maximum values, while b and d are 0. As T in-
creases, examples are classified in any combination of
three possibilities; (1) c decreases when false positives
become correctly classified, (2) b increases when true
positives become misclassified, (3) or, b and c remain
unchanged because examples are correctly classified.
Since c never increases, b never decreases, and n is con-
stant, then b−c

n exhibits a monotone non-decreasing
behavior for a classifier on a set of data. Our eval-
uation method computes Tango’s 95%-confidence in-
tervals for b−c

n for ROC points. Those points whose
confidence intervals include the value zero, show no
evidence of statistically significant b−c

n and are con-
sidered confident. This is explained in more details
in the next section. In addition, Tango’s confidence
test is presented in (Tango, 1998) and is reviewed in
appendix A (section 6).
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1. ROC =


ti ∈ T, i = 1, · · · , |T |,

ai bi

ci di

ai bi

ci di
= K(D, ti),

0 ≤ Ti ≤ 1



2. S =


(ui, li) = Tangoα(bi, ci, n),

ai bi

ci di

ai bi

ci di
∈ ROC,

0 ∈ [ui, li],
i = 1, · · · , |ROC|, n = |D|


3. CAUC =

{
0 if S = empty
AUC(S) if S 6= empty

4. AveD =
1
m

∑m
i=1

bi−ci

n ∀ ai bi

ci di
∈ S,

m = |S|

Figure 2. Evaluating classifier K (on data D with T class
probability thresholds) by Tango at confidence level (1-α).
S contains confident ROC points, CAUC is the area under
S, and AveD is the average error difference.
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3. The Proposed Method of Evaluation

Presented in figure 2, our evaluation consists of four
steps: (1) Generate an ROC curve for a classifier K
applied on test examples D with increasing class prob-
ability thresholds ti (0 to 1). (2) For each resulting
point (a confusion matrix along the ROC curve), ap-
ply Tango’s test to compute the 95%-confidence inter-
val [ui, li], within which lies the point of the observed
difference bi−ci

n . If 0 ∈ [ui, li], then this point is iden-
tified as a confident point and is added into the set
of confident points S. Points in S form the confident
ROC segment illustrated in the left plot of figure 3.
Our framework is generic and accommodates a test of
choice provided that it produces a meaningful interpre-
tation of results. (3) Compute CAUC the area under
the confident ROC segment S, shown in the right plot
of figure 3. (4) Compute AveD the average normal-
ized difference ( b−c

n ) for all points in S. In our ex-
periments, we plot the area under the confident ROC

Table 2. UCI data sets (Newman et al., 1998)

Data Set Training Testing

dis 45(+)/(-)2755 13(+)/(-)959
hypothyroid 151(+)/(-)3012 –
sick 171(+)/(-)2755 13(+)/(-)959
sick-euthyroid 293(+)/(-)2870 –
SPECT 40(+)/(-)40 15(+)/(-)172
SPECTF 40(+)/(-)40 55(+)/(-)214

segment CAUC against the average observed classifi-
cation difference AveD. Lower values for AveD sug-
gests low classification difference and higher values for
CAUC indicate larger confident ROC segment. An
effective classifier shows low AveD and high CAUC.

4. Experiments

Having presented our evaluation framework, we now
present an overview of our experiments and their data
sets followed by an assessment of results to motivate
conclusions. The data sets, listed in table 2, are
selected from the UCI-Machine Learning repository
(Newman et al., 1998) and consist of examples of two-
class problems. They are severely imbalanced with the
number of positive examples reaching as low as 1.4%
(dis) and not exceeding 26% (spectf). Only (spect)
and (spectf) data sets have a balanced training set
and imbalanced testing set. On these data sets, we
train four classifiers and compare their performances
as reported by the ROC, by the AUC, and by our
method. If testing data sets are unavailable, we use
cross-validation of 10 folds. Using Weka 3.4.6 (Wit-
ten & Frank, 2005), we build a decision stump classifier
without boosting (S), a decision tree (T), a random for-
est (F), and a Naive Bayes (B) classifier. The rationale
is to build classifiers for which we can expect a ranking
of performance. A decision stump built without boost-
ing is a decision tree with one test at the root (only
2 leave nodes) and is expected to perform particularly
worse than a decision tree. Relatively, a decision tree
is a stronger classifier since it is more developed and
has more leave nodes that cover the training examples.
The random forest classifier is a reliable classifier and is
expected to outperform a single decision tree. Finally,
the naive Bayes classifier tends to minimize classifica-
tion error and is expected to perform reasonably well
when trained on a balanced training set.

We first investigate the usefulness of ROC confidence
bands on data with imbalance. Figure 4 shows the
ROC confidence bands for our four classifiers on the
most imbalanced dis data set. These bands are gen-
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Figure 4. ROC confidence bands for decision stump (S),
decision tree (T), random forest (F), and naive Bayes (B)
on (dis) data set. The bands are wide and are not very
useful.

Table 3. AUC values for decision stump (S), decision tree
(T), random forest (F), and naive Bayes (B) on data sets.

Data Set (S) (T) (F) (B)

dis 0.752 0.541 0.805 0.516
hypothyroid 0.949 0.936 0.978 0.972
sick 0.952 0.956 0.997 0.946
sick-euthyroid 0.931 0.930 0.978 0.922
spect 0.730 0.745 0.833 0.835
spectf 0.674 0.690 0.893 0.858

erated using the empirical fixed-width method (Mac-
skassy & Provost, 2004) at the 95% level of confi-
dence (like Tango’s test, this method of generating
ROC bands does not make assumptions of the under-
lying distributions of the data). We claim that with
severe imbalance, sampling-based techniques do not
work. Clearly, the generated bands are very wide and
contain more than 50% of the ROC space proving that
they are not very useful. This result is also consistent
on the other data sets.

Next, we consider the ROC curves of our four classi-
fiers on all data sets shown in figure 5. Recall, ROC
curves are compared by being more dominantly placed
towards the north-west of the plot (higher true positive
rate and lower false positive rate). We observe that the
decision stump (S) performs the same or better than
the decision tree (T) on all data sets. In addition, the
random forest (F), consistently, outperforms the naive
Bayes (B). In fact, (F) shows the best performance on
most data sets. When we consider the AUC values
of these classifiers, shown in table 3, (S) has similar or
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Figure 5. ROC curves for decision stump (S), decision tree
(T), random forest (F), and naive Bayes (B) on all data
set. The dark segments are Tango’s confident points.

higher AUC values than (T). Furthermore, the AUC of
(F) is, clearly, higher than that of the others on most
the data sets (the bold numbers in table 3). When
trained on a balanced data set (SPECT), (F) and (B)
classifiers perform significantly better than the others.

In contrast, the results obtained by our proposed eval-
uation measure are presented in figure 6. Each plot in
the figure reports our evaluation of the four classifiers
on each data set. The x-axis represents the average
normalized classification difference b−c

n for those con-
fident points on the ROC. The y-axis represents the
area under the confident segment of the ROC. This
area includes the TP area (vertical area) and the FP
area (the horizontal area) as illustrated in figure 3 on
page 3. Classifiers placed towards the top-left corner
perform better (bigger area under the confident ROC
segment and less difference in classification error) than
those placed closer to the bottom right corner (smaller
confident area and higher difference in classification er-
ror). Classifiers that fail to produce confident points
on their ROC curves are excluded from the plots. The
decision stump (S) fails to produce confident points
along its ROC, therefore, it does not appear in any of
the plots in the left column of figure 6. This is consis-
tent with our expectation of it being less effective. In
fact, plots in the right column of the same figure show
that (S) also performs poorly producing higher classi-
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Figure 6. Our evaluation for decision stump (S), decision
tree (T), random forest (F), and naive Bayes (B) on our
data sets. The y-axis shows the area under the confident
ROC segment and the x-axis shows the average observed
classification difference b−c

n
.

fication difference and/or covering smaller area under
its confident ROC segment. In fact, even when (S)
has higher confident AUC than (T), in the right plots
of figure 6, (S) still shows a significantly higher differ-
ence in classification error than that of (T). The deci-
sion tree (T), on the other hand, performs well in most
cases and outperforms all other classifiers in the bot-
tom right plot in figure 6. (T) certainly outperforms
the (S) which contradicts observations based on the
ROCs and AUCs. Furthermore, (T) fails to produce
confident points on the (spect) data set (bottom left
plot of the same figure). Perhaps, since (spect) is a bi-
nary data set extracted from the continuous (spectf)
set, this may suggest that the extraction process hin-
ders the decision tree learning. (F) and (B) classifiers
appear reasonably consistent on all data sets with (B)
being particularly strong on the (dis) data set. How-
ever, the surprise is (B) showing significantly higher
confident AUC than (F) on all data sets with the ex-
ception of the spect data set in the bottom left plot
of figure 6. Moreover, (B) shows significantly better
performance particularly on the (dis) data set.

Our results, clearly, contradict conclusions based on
the ROC and AUC evaluations. Therefore, we inves-
tigate those confident points along the ROCs for two
situations. First, when the four classifiers are trained
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Figure 7. Tango’s 95%-confidence intervals for ROC points
of decision tree (T), random forest (F), and naive Bayes (B)
on (dis) set. The center points are ( b−c

n
). (T) has a wide

range of thresholds (x-axis).

and tested on the same imbalanced dis data set us-
ing cross-validation. Second, when the four classifiers
are trained on a balanced training set and are tested
on an imbalanced testing SPECTF data set. For the
first situation (dis data set), the ROC curves reveal
that three of the classifiers produce confident classifi-
cation points in the bottom left section of the ROC
space (see the bold segments in the top left plot of
figure 5). These confident points are detected by our
method at the 95% level of confidence and are consis-
tent with having severely imbalanced data sets. When
we consider the corresponding Tangos 95%-confidence
intervals for these classifier (see figure 7), we see that
confident points produced by (T) cover a wider range
of probability threshold (0.1 to 0.65 on the x-axis of
the top left plot) with a low classification difference
(y-axis). This indicates added confidence in (T)’s per-
formance. (T) produces only two points which may
be due to the very low number of positive examples.
Alternatively, despite generating many more confident
points, (F) and (B) classifiers show higher variations
of classification difference for a much narrower range
of thresholds values. At the least, this indicates a dis-
tinction between these classifiers.

For the second situation (SPECTF data set), consider
the ROC curves in the bottom right plot of figure 5.
(T) and (B), clearly, outperform (S) and (F) on this
data set. Tango’s 95%-confidence intervals of the con-
fident ROC points (shown in figure 8) show that (T)
and (B) outperform the other classifiers. When trained
on the balanced spectf data set, (T) shows the least
difference in classification error and has a significantly
wider range of threshold values in which it produces
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Figure 8. Tango’s 95%-confidence intervals for ROC points
of decision stump (S), decision tree (T), random forest (F),
and naive Bayes (B) on (spectf) set. The center points are
( b−c

n
). (T) and (B) have a wider range of thresholds (x-

axis) and produce more confident points.

many confident points (0 to 1 along the x-axis of the
top right plot in figure 8). Also in this figure, (S) and
(T) produce classification points that have exactly zero
classification difference while the other two come close
to the zero classification difference.

5. Conclusions and Future Work

We propose a method to address classifier evaluation
in the presence of severe class imbalance with signifi-
cantly fewer positive examples. In this case, our exper-
iments show that ROC confidence bands fail to provide
meaningful results. We propose a notion of statistical
confidence by using a statistical tests, borrowed from
biostatistics, to compute the 95%-confidence intervals
on the difference in classification. Our framework in-
corporates this evaluation test into the space of the
ROC curves to produce confidence oriented evaluation.
Our method results in the presentation of the trade-
off between classification difference and area under the
confident segment of the ROC curve. Our experiments
show that our method is more reliable than general
ROC and AUC measures.

In the future, we plan to compare our evaluation re-
sults to other methods of generating ROC bands to
show further usefulness of our framework. Also, it can
be useful to compute confidence bands or intervals for
these proposed confident ROC segments. This remains
a difficult task because the confidence in our method
is computed on the classification difference which may
not map easily to the ROC space. We plan to inves-
tigate the feasibility of mapping the confidence inter-

vals from this work into the ROC space. This may
be interesting particularly when there is no danger of
imbalance. Although this work addresses the case of
severe imbalance in the data, Tango’s test of confi-
dence can still be applied to balanced data sets. We
plan to explore our framework in balanced situations
with the aim to drive useful and meaningful evaluation
metrics to provide confidence and reliability. Further-
more, Tango’s test is a clinical equivalence test. This
may possibly provide the basis to derive a notion of
equivalence on classification.
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6. Appendix A: Tango’s Confidence
Intervals

Clinical trials, case-control studies, and sensitivity
comparisons of two laboratory tests are examples of
medical studies that deal with the difference of two
proportions in a paired design. Tango’s test (Tango,
1998) builds a model to derive a one-sided test for
equivalence of two proportions. Medical equivalence
is defined as no more than 100∆ percent inferior,
where ∆(> 0) is a pre-specified acceptable difference.
Tango’s test also derives a score-based confidence in-
terval for the difference of binomial proportions in
paired data. Statisticians have long been concerned

with the limitations of hypothesis testing used to sum-
marize data (Newcombe, 1998b). Medical statisticians
prefer the use of confidence intervals rather than p-
values to present results. Confidence intervals have the
advantage of being close to the data and on the same
scale of measurement, whereas p-values are a proba-
bilistic abstraction. Confidence intervals are usually
interpreted as margin of errors because they provide
magnitude and precision. A method deriving confi-
dence intervals must be a priori reasonable (justified
derivation and coverage probability) with respect to
the data (Newcombe, 1998b).

The McNemar test is introduced in (Everitt, 1992) and
has been used to rank the performance of classifiers in
(Dietterich, 1998). Although inconclusive, the study
showed that the McNemar test has low Type I error
with high power (the ability to detect algorithm differ-
ences when they do exist). For algorithms that can be
executed only once, the McNemar test is the only test
that produced an acceptable Type I error (Dietterich,
1998). Despite Tango’s test being an equivalence test,
setting the minimum acceptable difference ∆ to zero
produces an identical test to the McNemar test with
strong power and coverage probability (Tango, 1998).
In this work, we use Tango’s test to compute confi-
dence intervals on the difference in classification errors
in both classes with a minimum acceptable difference
∆ = 0 at the (1-α) confidence level. Tango makes few
assumptions; (1) the data points are representative of
the class. (2) The predictions are reasonably corre-
lated with class labels. This means that the misclassi-
fied positives and negatives are relatively smaller than
the correctly classified positives and negatives respec-
tively. In other words, the classifier does reasonable
well on both classes, rather than performing a random
classification. We consider classifier predictions and
class labels as paired machines that fit the matched
paired design. As shown in table 1 on page 1, entries
a and d are the informative or the discordant pairs
indicating the agreement portion (q11 + q22), while b
and c are the uninformative or concordant pairs rep-
resenting the proportion of disagreement (q12 + q21)
(Newcombe, 1998a). The magnitude of the difference
δ in classifications errors can be measured by testing
the null hypothesis H0 : δ = q12 − q21 = 0. This mag-
nitude is conditional on the observed split of b and c
(Newcombe, 1998a). The null hypothesis H0 is tested
against the alternative H1 : δ 6= 0. Tango’s test de-
rives a simple asymptotic (1-α)-confidence interval for
the difference δ and is shown to have good power and
coverage probability. Tango’s confidence intervals can
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be computed by:

b− c− nδ√
n(2 ˆq21 + δ(1− δ))

= ±Zα
2

(1)

where Zα
2

denotes the upper α
2 -quantile of the normal

distribution. In addition, ˆq21 can be estimated by the
maximum likelihood estimator for q21:

ˆq21 =

√
W 2 − 8n(−cδ(1− δ))−W

4n
(2)

where W = −b− c + (2n− b + c)δ. Statistical hypoth-
esis testing begins with a null hypothesis and searches
for sufficient evidence to reject that null hypothesis.
In this case, the null hypothesis states that there is no
difference, or δ = 0. By definition, a confidence inter-
val includes plausible values for the null hypothesis.
Therefore, if the zero is not included in the computed
interval, then the null hypothesis δ = 0 is rejected.
On the other hand, if the zero value is included in
the interval, then we do not have sufficient evidence
to reject the difference being zero, and the conclusion
is that the difference can be of any value within the
confidence interval at the specified level of confidence
(1-α).

Tango’s test of equivalence can reach its limits in two
cases; (1) when the values of b and c are both equal to
zero where the Z statistic does not produce a value.
This case occurs when we build a perfect classifier and
is consistent with the test not using the number of cor-
rectly classified examples a and d. (2) The values b and
c differ greatly. This is consistent with the assump-
tion that the classifier is somewhat reasonably good,
i.e. the classifier is capable of detecting a reasonable
portion of the correct classifications in the domain. In
both cases of limitations, the confidence intervals are
still produced and are reliable (Tango, 1998) but may
be wider in range. Tango’s confidence intervals are
shown not to collapse nor they exceed the boundaries
of the normalized difference of [−1, 1] even for small
values of b and c.
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Abstract

We present abstention cost curves, a new
three-dimensional visualization technique to
illustrate the strengths and weaknesses of ab-
staining classifiers over a broad range of cost
settings. The three-dimensional plot shows
the minimum expected cost over all ratios of
false-positive costs, false-negative costs and
abstention costs. Generalizing Drummond
and Holte’s cost curves, the technique allows
to visualize optimal abstention settings and
to compare two classifiers in varying cost sce-
narios. Abstention cost curves can be used
to answer questions different from those ad-
dressed by ROC-based analysis. Moreover, it
is possible to compute the volume under the
abstention cost curve (VACC) as an indicator
of the classifier’s performance across all cost
scenarios. In experiments on UCI datasets
we found that learning algorithms exhibit dif-
ferent “patterns of behavior” when it comes
to abstention, which is not shown by other
common performance measures or visualiza-
tion techniques.

1. Introduction

In many application areas of machine learning it is
not sensible to predict the class for each and every
instance, no matter how uncertain the prediction is.
Instead, classifiers should have the opportunity to ab-
stain from risky predictions under certain conditions.
Our interest in abstaining classifiers is motivated by
specific applications, for instance in chemical risk as-
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sessment, where it is considered harmful to predict
the toxicity or non-toxicity of a chemical compound
if the prediction is weak and not backed up by suffi-
cient training material.

Abstaining classifiers can easily be derived from non-
abstaining probabilistic or margin-based classifiers by
defining appropriate thresholds which determine when
to classify and when to refrain from a prediction. The
lower and upper thresholds, within which no classi-
fications are made, constitute a so-called abstention
window (Ferri et al., 2004). Making use of absten-
tion windows, a recent approach based on ROC anal-
ysis (Pietraszek, 2005) derives an optimal abstaining
classifier from binary classifiers. In this approach the
thresholds can be determined independently of each
other from the convex hull of ROC curves. However,
ROC-based approaches assume at least known mis-
classification costs. Moreover, classifiers and optimal
abstention thresholds cannot be compared directly for
a range of possible cost matrices, as it is usually done
in cost curves (Drummond & Holte, 2000).

In this paper, we propose an alternative approach to
ROC-based analysis of abstaining classifiers based on
cost curves. The advantage of cost curves is that cost-
related questions can be answered more directly, and
that the performance over a range of cost scenarios can
be visualized simultaneously. The proposed general-
ization of cost curves plots the optimal expected costs
(the z-axis) against the ratio of false positive costs to
false negative costs (the x-axis) and the ratio of ab-
stention costs to false negative costs (the y-axis). The
fundamental assumption is that abstention costs can
be related to misclassification costs. As pointed out by
other authors (Pietraszek, 2005), unclassified instances
might take the time or effort of other classifiers (Ferri
et al., 2004), or even human experts. Another sce-
nario is that a new measurement has to be made for



Cost Curves for Abstaining Classifiers

the instance to be classified. Thus, abstention costs
link misclassification costs with attribute costs. Con-
sequently, the setting is in a sense related to active
learning (Greiner et al., 2002). Along those lines, we
also assume that abstention costs are the same inde-
pendently of the true class: Not knowing the class, the
instances are handled in the very same way.

We devised a non-trivial, efficient algorithm for com-
puting the three-dimensional plot in time linear in the
examples and in the number of grid points (Friedel,
2005). The algorithm takes advantage of dependen-
cies among optimal abstention windows for different
cost scenarios to achieve its efficiency. However, the
focus of this paper is not on the algorithm, but on
actual abstention cost curves of diverse classifiers on
standard UCI datasets. We present abstention cost
curves as well as “by-products”, showing the absten-
tion rates and the location of the abstention window
(the lower and upper interval endpoints). Moreover, a
new aggregate measure, the volume under the absten-
tion cost curve (VACC), is presented. VACC is related
to the expected abstention costs, if all cost scenarios
are equally likely.

2. Abstaining in a Cost-Sensitive
Context

Before going into detail, we need to specify some ba-
sic concepts and introduce the overall setting. First of
all, we assume that a classifier Cl has been induced by
some machine learning algorithm. Given an instance
x taken from an instance space X , this classifier as-
signs a class label y(x) taken from the target class
Y = {P,N}, where P denotes the positive class and
N the negative class. To avoid confusion, we use cap-
ital letters for the actual class and lowercase letters
for the labels assigned by the classifier. We would
now like to analyze this classifier on a validation set
S = {s1, s2, . . . , sr} containing r instances with classes
{y1, y2, . . . , yr}. As argued in the work on ROC curves
(e.g. in (Provost & Fawcett, 1998)), it can make sense
to use a different sampling bias for the training set
than for the validation set. In this case, the class
probabilities in the validation set might differ from
the class probabilities of the training set or the true
class probabilities. Thus, we do not explicitly assume,
that the validation set shows the same class distribu-
tion as the training set, even though this is the case
in many practical applications. However, we demand
that the classifier outputs the predicted class label as
well as some confidence score for each instance in the
validation set. For simplicity we model class label and
confidence score as one variable, the margin. The mar-

gin m(s) of an instance s is positive, if the predicted
class is p and negative otherwise. The absolute value
of the margin is between zero and one and gives some
estimate of the confidence in the prediction. Thus, the
margin m(s) of an instance s ranges from -1 (clearly
negative) over 0 (equivocal) to +1 (clearly positive).

Applying the classifier to the validation set, yields a
sequence of r (not necessarily distinct) margin values
M = (m(s1),m(s2), . . . ,m(sr)). Sorting this sequence
in ascending order yields a characterization of the un-
certainty in the predictions. The certain predictions
are located at the left and right end of the sequence
and the uncertain ones somewhere in between. Based
on the information in this sequence one can then al-
low the classifier Cl to abstain for instances with mar-
gin values between a lower threshold l and an upper
threshold u. Any such ordered pair of thresholds con-
stitutes an abstention window a := (l, u). A specific
abstaining classifier is defined by an abstention win-
dow a and its prediction on an instance x is given as

π(a, x) =

 p if m(x) ≥ u
⊥ if l < m(x) < u
n if m(x) ≤ l

(1)

where ⊥ denotes “don’t know”.

As both the upper and lower threshold of an absten-
tion window are real numbers, the set of possible ab-
stention windows is uncountably infinite. Therefore,
we have to restrict the abstention windows considered
in some way. If we are given the margin values as
a sorted vector (m1, . . . ,mk) of distinct values – i.e.,
m1 < · · · < mk – it is sensible to choose the thresholds
just in between two adjacent margin values. To model
this, we define a function v : {0, . . . , k} → R which
returns the center of the margin with index i and the
next margin to the right. We extend the definition of
v to the case where i < 1 or i = k to allow for absten-
tion windows that are unbounded on the left or on the
right:

v(i) =


mi+mi+1

2 if 1 ≤ i < k
−∞ if i = 0
+∞ if i = k.

(2)

Note that the original margin sequence may contain
the same margin value more than once, but v is de-
fined only on the k ≤ n distinct margin values. The
set of abstention windows A(Cl) for a classifier Cl is
then A(Cl) := {(v(i), v(j))|0 ≤ i ≤ j ≤ k}. Where
the classifier is clear from the context, we omit it and
denote the set just by A.

The performance of an abstention window is assessed
in terms of expected cost on the validation set. To
calculate this, we need information about the costs
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associated with each combination of true target class
and predicted target class. For our purposes, the costs
are given in a cost matrix C such that C(θ, π) is the
cost of labeling an instance of true class θ ∈ {P,N}
with π ∈ {p, n,⊥}:

C :=
(

C(P, p) C(P, n) C(P,⊥)
C(N, p) C(N,n) C(N,⊥)

)
(3)

As the relative frequency on the validation set
can be considered as a probability measure, we
use conditional probabilities to denote the classifica-
tion/misclassification rates of an abstention window
a = (l, u) on the validation set S. For example, the
false positive rate of the abstention window a on S is
denoted by

PS,a(p|N) :=

∣∣{s ∈ S|y(s) = N ∧ π(a, s) = p}
∣∣∣∣{s ∈ S|y(s) = N}

∣∣ (4)

Similarly, we have the true positive rate PS,a(p|P ), the
false negative rate PS,a(n|P ), the positive abstention
rate PS,a(⊥ |P ), the true negative rate PS,a(n|N), and
the negative abstention rate PS,a(⊥ |N). With this
we can calculate the expected cost of an abstention
window a on S for cost matrix C as the sum of the
products of cost and probability over all events:

EC (C, a, S) :=∑
θ∈{N,P}

∑
π∈{n,p,⊥}

C(θ, π)PS,a(π|θ)P (θ). (5)

In this equation P (θ) denotes the probability of an
example belonging to class θ ∈ {N,P}. In most appli-
cations this is just the fraction of positive and negative
examples in the validation set. Sometimes, one might
want to use other values for those quantities, for ex-
ample to accommodate for a resampling bias.

For a given cost matrix C, we are primarily in-
terested in the optimal abstention window aopt :=
argmina∈A EC (C, a, S), that is, the abstention win-
dow with the lowest expected cost on the validation
set. We observe that the optimal abstention window
does not depend on the absolute values of the costs,
but only on the relation of the individual costs to each
other and the class probabilities P (P ) and P (N). For
example, multiplying all values in the cost matrix by
a constant factor cm does not change the optimal win-
dow. Similarly, adding a constant cP to the upper row
and a constant cN to the lower row of the cost matrix
also has no effect on the optimal abstention window.
Let C ′ denote C with cP added to the upper row and

cN added to the lower row. Then:

EC (C ′, a) =

P (P )
∑

π∈{n,p,⊥}

(C(P, π) + cP )P (π|P )

+ P (N)
∑

π∈{n,p,⊥}

(C(N,π) + cN )P (π|N)

= EC (C, a) + P (P )cP + P (N)cN

Thus, argmina∈A EC (C ′, a, S) =argmina∈A EC (C, a, S)
and the optimal abstention window remains the same.
Consequently, we can transform any cost matrix
in a normal form C ′ by adding cP = −C(P, p)
and cN = −C(N,n) to the upper and lower
rows respectively and then multiplying with
cm = 1/(C(P, n) − C(P, p)). This “normalization”
operation does not change the optimal abstention
window, but it ensures that C ′(P, p) = C ′(N,n) = 0
and that C ′(P, n) = 1. In the following we always
assume a normalized cost matrix C ′ such that the
optimal abstention window depends only on the
relative false positive costs C ′(N, p) and abstention
costs C ′(P,⊥) and C ′(N,⊥):

C ′ :=
(

0 1 C ′(P,⊥)
C ′(N, p) 0 C ′(N,⊥)

)
(6)

In many applications abstaining on an instance results
in additional tests. As the true class of an instance is
not known at that point, the cost of such a test is the
same for both types of instances, i.e. the cost of ab-
stention is independent of the true class of an instance.
In the following we will therefore focus on cases where
C ′(P,⊥) = C ′(N,⊥) := C ′(⊥)1. This means that
the optimal window of a given cost matrix in normal
form is uniquely determined by just two parameters
µ := C ′(N, p) and ν := C ′(⊥). The normalized ex-
pected cost of an abstention window a can then be
written as a function of µ and ν:

c (a, µ, ν) :=
PS,a(n|P )P (P ) + µPS,a(p|N)P (N) + νPS,a(⊥) (7)

In this problem formulation µ represents the false pos-
itive costs relative to the false negative costs, while ν
controls the abstention costs relative to the false neg-
ative costs. As it turns out, abstention does not make
sense for all possible settings of µ and ν. For instance,
if ν is greater than µ, we can do better by classify-
ing an instance as positive instead of abstaining. The

1If this condition is not fulfilled, it is is still possible to
compute optimal abstention windows. However, the com-
putational efficiency suffers from more complicated cost
settings.
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following lemma quantifies this phenomenon. For the
sake of simplicity, we use the fractions of positive and
negative instances in the validation set for P (P ) and
P (N). Therefore, we can determine PS,a(n|P )P (P ),
PS,a(p|N)P (N) and PS,a(⊥) by counting the occur-
rences of each event and then dividing by the number
of instances r.

Lemma 1. Let S, µ and ν be defined as before. If
ν > µ

1+µ , the optimal abstention window aopt is empty,
i.e. lopt = uopt (proof omitted).

3. Cost Curves for Abstaining
Classifiers

If the cost matrix and the class probabilities in a learn-
ing setting are known exactly, one can determine the
optimal abstention window aopt simply by calculat-
ing the expected costs for all windows. However, for
most applications costs and class distributions are un-
certain and cannot be determined exactly. In such a
setting one would like to assess the performance of an
abstaining classifier for a broad range of cost settings.
Even in the case of non-abstaining classifiers one might
want to illustrate a classifier’s behavior for varying cost
matrices or class distributions. The two most promi-
nent visualization techniques to do so are ROC curves
(Provost & Fawcett, 1998) and cost curves (Drum-
mond & Holte, 2000). In the following we present a
novel method that allows to visualize the performance
of abstaining classifiers. In principle, one could ex-
tend ROC curves or cost curves with a third dimension
to accomodate for abstention. However, the meaning
of the new axis in such an “extended” cost curve is
not very intuitive, making it rather hard to interpret.
Since visualization tools rely on easy interpretability,
we follow a different approach2.

The presented cost curve simply plots the normalized
expected cost as given in equation (7). It is created
by setting the x-axis to µ, the y-axis to ν and the z-
axis to the normalized expected cost. Without loss of
generality, we assume that the positive class is always
the one with highest misclassification costs, so that
µ ≤ 1 (if this is not the case, just flip the class labels).
Furthermore, we can safely assume that ν ≤ 1, because
otherwise the optimal abstention window is empty (as
stated by lemma 1).

2Technically, the presented cost curve assumes a fixed
class distribution to allow for easier interpretation. We feel
that the gain in interpretability outweighs the need for this
additional assumption. In some settings cost curves that
extend (Drummond & Holte, 2000) might be more suited;
see (Friedel, 2005, section 3.4) for an elaborate comparison
with the cost curves presented in this paper.

 0  0.2 0.4 0.6 0.8  1
 0

 0.2
 0.4

 0.6
 0.8

 1 0.2
 0.25

 0.3
 0.35

 0.4
c(a, µ, ν)

µ
ν

c(a, µ, ν)

(a)

10.80.60.40.20

10.80.60.40.20

 0
 0.02
 0.04
 0.06
 0.08

 0.1
c(a, µ, ν)

µ
ν

c(a, µ, ν)

(b)

Figure 1: Example cost curves for uncertain costs, but
fixed class distributions. (a) shows a cost curve for a spe-
cific abstention window, (b) a cost curve for an example
classifier.

We can apply the cost curves in two ways. In the first
case, we plot the normalized expected cost against the
false positive and abstention costs for one fixed absten-
tion window a. Then the resulting cost curve is just a
plane, because z = c(a, x, y) is linear in its parameters
(see Figure 1(a)). This illustrates the performance of
a classifier for one particular abstention window. In
the second case, the cost curve is the lower envelope of
all abstention windows, i.e. z = mina∈A(Cl) c(a, x, y)
(see Figure 1(b)). This scenario is well suited for com-
paring two classifiers independently of the choice of
a particular abstention window. For easier analysis,
the curves can be reduced to two dimensions by color
coding of the expected cost (see Section 4).

Using the information from cost curves, several ques-
tions can be addressed. First, we can determine for
which cost scenarios one abstaining classifier Cls out-
performs another classifier Clt. This can be done by
examining a so-called differential cost curve D(s, t),
which is defined by di,j(s, t) := ki,j(s) − ki,j(t).
di,j(s, t) is negative for cost scenarios for which Cls
outperforms Clt and positive otherwise. Obviously, we
can also compare a non-trivial classifier with a trivial
one, which either always abstains or always predicts
one of the two classes. Second, we can determine which
abstention window should be chosen for certain cost
scenarios by plotting the lower and the upper threshold
of the optimal window for each cost scenario. Third,
we can plot the abstention rate instead of expected
costs in order to determine where abstaining is of help
at all.

Although cost curves are continuous in theory, the vi-
sualization on a computer is generally done by calcu-
lating the z-values for a grid of specific values of x
and y. The number of values chosen for x and y de-
termines the resolution of the grid and is denoted as
∆. For computational considerations, we can thus de-
fine a cost curve for a classifier Cl as a ∆ × ∆ ma-
trix K(p) with ki,j(p) := mina∈A(Cl) c(a, i/∆, j/∆)
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Figure 2: Schematic illustration of optimal abstention win-
dows (upper threshold above the plane, lower threshold be-
low) for various µ and ν. For the same µ and ν1 < ν2, the
optimal window for ν2 is contained in the window for ν1.

for 0 ≤ i, j ≤ ∆. Calculating such a cost curve for
moderately high values of ∆ can be computationally
demanding, as we have to determine the optimal ab-
stention window for a large number of cost settings.

A naive algorithm would compute the cost curve by
calculating the expected cost for each possible absten-
tion window for each cost scenario. As the number of
abstention windows is quadratic in the number of in-
stances, this results in an algorithm in O(∆2n2). Our
more efficient algorithm (Friedel, 2005) for computing
cost curves largely relies on two observations:

1. The optimal abstention window aopt can be com-
puted in linear time by first determining the op-
timal threshold for zero abstention for the respec-
tive µ, and then finding the best abstention win-
dow located around this threshold.

2. for fixed µ and ν1 < ν2, the optimal abstention
window for ν2 is contained in the optimal absten-
tion window for ν1.

Thus, the optimal thresholds and abstention windows
are arranged as illustrated by the schematic drawing
in Figure 2: The plane in the center gives the opti-
mal threshold between positive and negative classifi-
cation; above we have the upper threshold of the op-
timal abstention window, and below the lower thresh-
old. Based on these observations, it possible to design
an efficient algorithm linear in the number of exam-
ples: In the first step, the optimal thresholds for non-
abstention and the various values of µ are computed.
Subsequently, the precise upper and lower thresholds
around the optimal threshold found in the first step
are determined.

4. Experiments

To analyze and visualize the abstention costs, we
chose six two-class problems from the UCI repository:

Alg. Acc. AUC VACC Nrm. Nrm. Nrm.
(%) Acc. AUC VACC

breast-w
J48 95 0.96 0.032 0.98 0.96 1.00
NB 96 0.98 0.018 0.99 0.99 0.58
PART 95 0.97 0.030 0.98 0.98 0.95
RF 95 0.99 0.016 0.98 0.99 0.50
SVM 97 0.99 0.014 1.00 1.00 0.44

bupa
J48 65 0.67 0.16 0.97 0.90 0.93
NB 55 0.64 0.18 0.82 0.87 1.00
PART 62 0.67 0.17 0.93 0.91 0.97
RF 67 0.74 0.15 1.00 1.00 0.84
SVM 64 0.70 0.17 0.95 0.95 0.96

credit-a
J48 87 0.89 0.082 1.00 0.97 0.88
NB 78 0.90 0.093 0.90 0.98 1.00
PART 85 0.89 0.089 0.98 0.98 0.95
RF 85 0.91 0.088 0.99 1.00 0.94
SVM 85 0.86 0.081 0.98 0.95 0.87

diabetes
J48 73 0.75 0.15 0.96 0.90 1.00
NB 76 0.82 0.14 0.99 0.98 0.92
PART 74 0.79 0.14 0.96 0.95 0.94
RF 75 0.78 0.15 0.98 0.94 0.98
SVM 76 0.83 0.13 1.00 1.00 0.87

haberman
J48 69 0.61 0.12 0.93 0.87 1.00
NB 75 0.65 0.11 1.00 0.93 0.95
PART 71 0.59 0.11 0.96 0.84 0.95
RF 68 0.65 0.12 0.91 0.93 1.00
SVM 74 0.70 0.11 1.00 1.00 0.96

vote
J48 97 0.97 0.021 1.00 0.98 0.44
NB 90 0.97 0.046 0.93 0.98 1.00
PART 97 0.95 0.022 1.00 0.96 0.48
RF 96 0.98 0.021 1.00 0.99 0.44
SVM 96 0.99 0.022 0.99 1.00 0.47

Table 1: Summary of quantitative results of five learning
algorithms applied to six UCI datasets

breast-w, bupa, credit-a, diabetes, haberman and vote.
Five different machine learning algorithms, as imple-
mented in the WEKA workbench (Witten & Frank,
2005), were applied to those datasets: J48, Naive
Bayes (NB), PART, Random Forests (RF) and Sup-
port Vector Machines (SVM).

Our starting point is a summary of all quantitative re-
sults from ten-fold cross-validation on the datasets (see
Table 1).3 In the table, the predictive accuracy, the
area under the (ROC) curve (AUC) and the volume
under the abstention cost curve (VACC) are shown.
The volume under the abstention cost curve can be

3In the experiments, we assume that the class distribu-
tion observed in the data resembles the true class distribu-
tion. Experiments assuming a uniform distribution (50:50)
changed the absolute VACC numbers, but not their order-
ing.
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Figure 3: Abstention cost curves, optimal abstention rates and lower/upper thresholds of the optimal abstention window
on the breast-w dataset. From top to bottom: J48, NB, PART, RF, and SVM (as in Table 1)

defined as the double integral over µ and ν. VACC is
related to the expected value of the abstention costs
if all cost scenarios are equally likely. Moreover, the
normalized values of those measures are given, that is,
the value of the measure divided by the maximum over
the classifiers’ performance for the particular dataset.
The normalized values are given to facilitate an easier
comparison between the measures.

Overall, one can see that VACC in fact captures a
different aspect than accuracy or AUC. In the follow-
ing, we discuss the quantitative results from the ta-
ble one by one. On breast-w, the VACC measure in-
dicates significant differences in terms of abstention
costs, which is neither reflected in predictive accuracy
nor in AUC. For instance, we can see that there is
a clear order over the classifiers from different learn-
ing algorithms: SVMs perform best, followed by RF
and NB, whereas PART and J48 lag behind. This
is also illustrated by the plots in Figure 3, which are
discussed below. On the bupa dataset, NB performs
worst and RF performs best according to all measures.
However, the differences are not equally visible in all
measures (see, e.g., RF vs. SVM or, vice versa, NB
vs. PART). On credit-a, the comparison between J48
and NB hints at a marked difference in accuracy and
VACC, not shown by AUC. PART vs. SVM is a differ-
ent case: Comparable values for accuracy and AUC,
but a considerable gap in VACC. For the diabetes data,

a distinct difference is detected for RF vs. SVM in
AUC/VACC, but not in terms of accuracy. On the
haberman dataset, the variation in the quantitative
results is negligible (for details, see below). Finally,
the results on vote reveal that NB performs dramati-
cally worse than all other approaches, perhaps due to
the violated independence assumption on this partic-
ular dataset. This drop in performance is particularly
visible in the VACC results.

Next, we have a closer look at the abstention cost
curves and derived plots for all five learning algorithms
on the breast cancer data (see Figure 3). In the left-
most column, the optimal abstention costs over all cost
scenarios are visualized. Note that all plots are cut
at ν = 0.5, because for greater values of abstention
costs, the abstention window is already degenerate,
with l = u. The plots reflect the numbers from Table
1 adequately, but additionally show in which regions
of the space the majority of costs occur. The second
column from the left visualizes the abstention rate,
that is, the fraction of instances the classifiers leaves
unclassified. For instance, we can infer that PART
should refrain from 10% to 15% of the predictions if
the abstention costs are about one tenth of the false
negative costs. The two right-most colums visualize
the lower and the upper interval endpoints of the ab-
stention window. To enable a visual comparison, all
curves are plotted on the same scale. Considerable dif-



Cost Curves for Abstaining Classifiers

-0.015
-0.01
-0.005
 0
 0.005
 0.01
 0.015
 0.02
 0.025
 0.03

µ

ν

10.80.60.40.20

0.4

0.2

0

-0.01
-0.005
 0
 0.005
 0.01
 0.015
 0.02

µ

ν

10.80.60.40.20

0.4

0.2

0

-0.02
-0.015
-0.01
-0.005
 0
 0.005
 0.01

µ

ν

10.80.60.40.20

0.4

0.2

0

-0.02
-0.015
-0.01
-0.005
 0
 0.005
 0.01

µ

ν

10.80.60.40.20

0.4

0.2

0

J48 vs. PART (diabetes) J48 vs. PART (haberman) NB vs. PART (diabetes) NB vs. PART (haberman)
(a) (b) (c) (d)

 0
 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14

µ

ν

10.80.60.40.20

0.4

0.2

0

-1
-0.5
 0
 0.5
 1

µ

ν

10.80.60.40.20

0.4

0.2

0

-1
-0.5
 0
 0.5
 1

µ

ν

10.80.60.40.20

0.4

0.2

0

(e) (f) (g)
Figure 4: Differential cost curves for large differences ((a) and (b)) and small differences in VACC ((c) and (d)), differential
cost curve SVMs vs. trivial classifier(s) on bupa (e), lower (f) and upper (g) thresholds of abstention window

ferences in the classifiers’ abstention behavior become
apparent.

In the plots, the isolines of l and u have a remark-
ably different shape. This can be explained as follows:
First, both the upper and lower thresholds increase
not continuously with ν or µ, but in steps. This is due
to the fact that a critical value has to be reached for
the cost of abstaining or classifying the instances be-
tween different threshold values, before thresholds are
adjusted. Second, we observe that for values of ν for
which abstaining is too expensive, the upper and the
lower threshold are equal, as shown before.

The threshold shows a different behaviour only for
those values of ν and µ that allow abstaining. In this
range, the lower threshold depends only on the ratio
between false negative costs (which are constant) and
abstaining costs, and is thus independent of the false
positive costs. The upper threshold on the other hand
depends on both the abstaining costs ν and the false
positive costs µ. In the same way as the lower thresh-
old is effectively not affected by changes in µ in the
range for which abstaining is reasonable, the upper
threshold is not affected by changes in the false nega-
tive costs, which can easily be confirmed by switching
the positive and negative labels.

Next, we take a look at differential cost curves. Differ-
ential cost curves are a tool for the practitioner to see
in which regions of the cost space one classifier is to
be preferred over another. In Figure 4, differential cost
curves with large differences in VACC (upper row, (a)
and (b)) and small differences in VACC (upper row,
(c) and (d)) are shown. In Figure 4(a) and (b), J48 de-
cision trees have smaller abstention costs than PART
rules only in the bluish areas of the space. Differential
cost curves also shed light on differences that do not
appear in VACC, if a classifier is dominating in one
region as it is dominated in another (Figure 4 (c) and

(d)). The regions can be separated and quite distant
in cost space, as illustrated by Figure 4 (c). The differ-
ential cost curve of NB vs. PART on haberman (Fig-
ure 4 (d)) demonstrates that even for datasets with no
clear tendencies in accuracy, AUC or VACC, the plot
over the cost space clearly identifies different regions
of preference not shown otherwise.

Another interesting possibility is the comparison with
the trivial classifier that always predicts positive, neg-
ative, or always abstains. In Figure 4 (e), we compare
SVMs with trivial classifiers on the bupa dataset. In
the black areas near the left upper and the right lower
corner, the trivial classifer performs better than the
SVM classifier. To explain this, we take a look at the
lower and upper thresholds of the abstention window
in Figure 4 (f) and (g). Strikingly, we find that in
the upper left part l = u = −1, that is, everything is
classified as positive, because false positives are very
inexpensive compared to false negatives. However, in
the lower right part l = −1 and u = 1, i.e., not a
single prediction is made there, because abstention is
inexpensive.

It is clear that the discussion of the above results re-
mains largely on a descriptive level. However, ide-
ally we would like to explain or even better, predict
the behavior of classifiers on particular datasets. Un-
fortunately, this is hardly ever achieved in practice:
In the majority of cases it is not possible to explain
the error rate or AUC for a particular machine learn-
ing algorithm on a particular dataset at the current
state of the art. To learn more about the behavior
of the abstention cost curve and the VACC measure,
we performed preliminary experiments with J48 trees,
varying the confidence level for pruning, and SVMs,
varying the penalty/regularization parameter C. Over
all datasets, we observed only small, gradual shifts in
VACC and in the shape of the curves. While it is
hard to detect a general pattern, it is clear that no
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abrupt changes occur. It was also striking to see that
the changes over varying parameter values were con-
sistent for both learning schemes. It seems that the
VACC depends, to some extent, on the noise level of
a dataset.

5. Related Work

The trade-off between coverage and accuracy has been
addressed several times before, such as in articles by
(Chow, 1970), who described an optimum rejection
rule based on the Bayes optimal classifier, or (Pazzani
et al., 1994), who showed that a number of machine
learning algorithms can be modified to increase accu-
racy at the expense of abstention. Tortorella (Tor-
torella, 2005) and Pietraszek (Pietraszek, 2005) use
ROC analysis to derive an optimal abstaining clas-
sifier from binary classifiers. Pietraszek extends the
cost-based framework of Tortorella, for which a simple
analytical solution can be derived, and proposes two
models in which either the abstention rate or the error
rate is bounded in order to deal with unknown absten-
tion costs. Nevertheless, all of these ROC-based ap-
proaches assume at least known misclassification costs.
In contrast, abstention cost curves, as shown in this
paper, visualize optimal costs over a range of possi-
ble cost matrices. Ferri and Hernández-Orallo (Ferri
& Hernández-Orallo, 2004) introduce additional mea-
sures of performance for, as they call it, cautious clas-
sifiers, based on the confusion matrix. Our definition
of an abstention window can be considered as a spe-
cial case of Ferri and Hernández-Orallo’s model for
the two-class case. However, no optimization is per-
formed when creating cautious classifiers and only the
trade-off between abstention rate and other perfor-
mance measures such as accuracy is analyzed. Cau-
tious classifiers can be combined in a nested cascade
to create so-called delegating classifiers (Ferri et al.,
2004). Cost-sensitive active classifiers (Greiner et al.,
2002) are related to abstaining classifiers as they are
allowed to demand values of yet unspecified attributes,
before committing themselves to a class label based on
costs of misclassifications and additional tests.

6. Conclusion

In this paper, we adopted a cost-based framework to
analyze and visualize classifier performance when re-
fraining from prediction is allowed. We presented a
novel type of cost curves that makes it possible to
compare classifiers as well as to determine the cost sce-
narios which favor abstention if costs are uncertain or
the benefits of abstaining are unclear. In comprehen-
sive experiments, we showed that adding abstention

as another dimension, the performance of classifiers
varies highly depending on datasets and costs. View-
ing the optimal abstention behavior of various classi-
fiers, we are entering largely unexplored territory. We
performed preliminary experiments to shed some light
on the dependency of VACC on other quantities, such
as the noise level in a dataset. However, more work
remains to be done to interpret the phenomena shown
by the curves. Finally, we would like to note that an-
other, more qualitative look at abstention is possible.
In particular on structured data, refraining from clas-
sification is advisable if the instance to be classified is
not like any other instance from the training set.
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Abstract

Area under an ROC curve plays an impor-
tant role in estimating discrimination per-
formance – a well-known theorem by Green
(1964) states that ROC area equals the per-
centage of correct in two-alternative forced-
choice setting. When only single data point is
available, the upper and lower bound of dis-
crimination performance can be constructed
based on the maximum and minimum area
of legitimate ROC curves constrained to pass
through that data point. This position paper,
after reviewing a property of ROC curves pa-
rameterized by the likelihood-ratio, presents
our recently derived formula of estimating
such bounds (Zhang & Mueller, 2005).

1. Introduction

Signal detection theory (Green & Swets, 1966) is com-
monly used to interpret data from tasks in which stim-
uli (e.g., tones, medical images, emails) are presented
to an operator (experimenter, medical examiner, clas-
sification algorithm), who must determine which one
of two categories (high or low, malignant or benign,
junk or real) the stimulus belongs in. These tasks
yield a pair of measures of behavioral performance:
the Hit Rate (H), also called “true positive” rate, and
the False Alarm Rate (F ), also called “false positive”
rate. (The other two rates, those of Miss or “false
negative” and of Correct Rejection or “true negative”,
are simply one minus H and F , respectively.) H and
F are typically transformed into indices of sensitivity
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and bias based on assumptions about an underlying
statistical model. A curve c 7→ (F (c),H(c)) in the
ROC (Receiver-Operating Characteristic) space is a
collection of hit and false-alarm rates while the opera-
tor/receiver modifies the cutoff criterion c of accepting
the input stimulus as belonging to one category versus
another; often c is the likelihood ratio of the evidence
favoring the two corresponding hypotheses, or a mono-
tonic transformation thereof. In the machine learning
context, we map the “operator/receiver” in the SDT
sense to a “classification algorithm” or simply an “al-
gorithm”, the “stimulus” as an “input instance” or
simply “instance” which carries one of the two class
labels, and view c as a parameter of the algorithm
which biases the output of the algorithm to favor one
category or the other; the optimal setting of c is related
to the cost structure, i.e., individual payoffs related to
correct and incorrect classifications.

A well-known result in SDT is Green’s Theorem, which
relates the discrimination accuracy performance of an
operator to the area under the operator’s (i.e., the clas-
sification algorithm’s) ROC curve. This so-called ROC
area is thus a compact measure of how discriminable a
classification algorithm is between binary-class inputs.
Consequently, the performance of different algorithms
can be compared by comparing their respective ROC
areas.

Often, algorithms reported in the literature may not
contain a tradeoff analysis of the Hit and False Alarm
rates produced by varying parameters corresponding
to the algorithm’s bias. In these cases, the entire ROC
curve of an algorithm may not be available — in some
cases, only a few or even a single point (called “data
point”) in the ROC space is available. In this case, per-
formance comparison across different algorithms be-
comes a question of comparing areas of possible ROC
curves constrained to pass through these limited data



points.

In the mathematical psychology community, the prob-
lem of estimating area of ROC curves constrained to
pass through a single data point is particularly well
studied (Norman, 1964; Pollack & Norman, 1964; Pol-
lack & Hsieh, 1969; Grier, 1971; Smith, 1995; Zhang
& Mueller, 2005). These estimates of the ROC area
do not assume the ROC curves to arise from any spe-
cific class of parametric models, and so these estimates
are often referred to as a “non-parametric” indices
of an operator’s discriminability (sensitivity).1 Typ-
ically, the upper and lower bounds of discriminabil-
ity were obtained by considering the maximal and
minimum ROC areas among the class of “admissible”
ROC curves satisfying the data constraint. Interest-
ingly, though the basic idea was very simple and ad-
vanced over 40 years ago (Pollack & Norman, 1964),
the popular formula to calculate this index (Grier,
1971), dubbed A′ in psychometrics and cognitive psy-
chology literature, turned out to be erroneous, at least
insofar as its commonly understood meaning is con-
cerned; moreover, its purported correction (Smith,
1995), dubbed A′′, also contained an error. These for-
mulae incorrectly calculated the upper bound of ad-
missible ROC curves, using either an ROC curve that
was not admissible (Pollack & Norman, 1964), or one
that was not the maximum for some points (Smith,
1995). Zhang and Mueller (2005) rectified the error
and gave the definite answer to the question of non-
parametric index of discriminability based on ROC ar-
eas.

In this note, we first review the notion of
“proper” (or “admissible”) ROC curves and prove
a lemma basically stating that all ROC curves are
proper/admissible when the likelihood functions (for
the two hypotheses) used to construct the ROC curve
are parameterized by the likelihood ratio (of those hy-
potheses). We then review Green’s Theorem, which
related area under an ROC curve to percentage cor-
rect in a two-alternative discrimination task. Finally,
we present the upper and lower bounds on a 1-point
constrained ROC area and reproduce some of the basic
arguments underlying their derivation. All technical
contents were taken from Zhang and Mueller (2005).

1Though no parametric assumption is invoked in the
derivation of these indices, the solution itself may cor-
respond to certain models of underlying likelihood pro-
cess, see MacMillan and Creelman, 1996. In other words,
parameter-free here does not imply model-free.

2. Slope of ROC curve and likelihood
ratio

Recall that, in the traditional signal detection frame-
work, an ROC curve uc 7→ (F (uc),H(uc)) is parame-
terized by the cutoff criteria value uc along the mea-
surement (evidence) axis based on which categoriza-
tion decision is made. Given underlying signal distri-
bution fs(u) and noise distribution fn(u) of measure-
ment value u2, a criterion-based decision rule, which
dictates a “Yes” decision if u > uc and a “No” decision
if u < uc, will give rise to

H(uc) = Pr(Yes|s) = Pr(u > uc|s) =
∫ ∞

uc

fs(u)du,

F (uc) = Pr(No|s) = Pr(u > uc|n) =
∫ ∞

uc

fn(u)du.

(1)

As uc varies, so do H and F ; they trace out the ROC
curve. Its slope is

dH

dF

∣∣∣∣
F=F (uc),H=H(uc)

=
H ′(uc)
F ′(uc)

=
fs(uc)
fn(uc)

≡ l(uc) .

With an abuse of notation, we simply write

dH(u)
dF (u)

= l(u) . (2)

Note that in the basic setup, the likelihood ratio l(u)
as a function of decision criterion u (whose optimal
setting depends on the prior odds and the payoff struc-
ture) need not be monotonic. Hence, the ROC curve
u 7→ (F (u),H(u)) need not be concave. We now in-
troduce the notion of “proper (or admissible) ROC
curves”.

Definition 2.1. A proper (or admissible) ROC curve
is a piece-wise continuous curve defined on the unit
square [0, 1] × [0, 1] connecting the end points (0,0)
and (1,1) with non-increasing slope.

The shape of a proper ROC curve is necessarily con-
cave (downward-bending) connecting (0,0) and (1,1).
It necessarily lies above the line H = F . Next we pro-
vide a sufficient and necessary condition for an ROC
curve to be proper/admissible, that is, a concave func-
tion bending downward.

Lemma 2.2. An ROC curve is proper if and only if
the likelihood ratio l(u) is a non-decreasing function
of decision criterion u.

2In machine learning applications, “signal” and “noise”
simply refer the two category classes of inputs, and “signal
distribution” and “noise distribution” are likelihood func-
tions of the two classes.



Proof. Differentiate both sides of (2) with respect to u

dF

du
· d

dF

(
dH

dF

)
=

dl

du
.

Since, according to (1)

dF

du
= −fn(u) < 0,

therefore

dl

du
≥ 0 ⇐⇒ d

dF

(
dH

dF

)
≤ 0

indicating that the slope of ROC curve is non-
increasing, i.e., the ROC curve is proper. �

Now it is well known (see Green & Swets, 1966) that
a monotone transformation of measurement axis u 7→
v = g(u) does not change the shape of the ROC curve
(since it is just a re-parameterization of the curve),
so a proper ROC curve will remain proper after any
monotone transformation. On the other hand, when
l(u) is not monotonic, one wonders whether there al-
ways exists a parameterization of any ROC curve to
turn it into a proper one. Proposition 1 below shows
that the answer is positive — the parameterization of
the two likelihood functions is to use the likelihood
ratio itself!

Proposition 2.3. (Slope monotonicity of ROC
curves parameterized by likelihood-ratio). The slope
of an ROC curve generated from a pair of likelihood
functions (F (lc),H(lc)), when parameterized by the
likelihood-ratio lc as the decision criterion, equals the
likelihood-ratio value at each criterion point lc

dH(lc)
dF (lc)

= lc. (3)

Proof. When likelihood-ratio lc is used the decision
cutoff criterion, the corresponding hit rate (H) and
false-alarm rate (F ) are

H(lc) =
∫
{u:l(u)>lc}

fs(u)du,

F (lc) =
∫
{u:l(u)>lc}

fn(u)du.

Note that here u is to be understood as (in general)
a multi-dimensional vector, and du should be under-
stood accordingly. Writing out H(lc + δl) − H(lc) ≡
δH(lc) explicitly,

δH(lc) =
∫
{u:l(u)>lc+δl}

fs(u)du−
∫
{u:l(u)>lc}

fs(u)du

= −
∫
{u:lc<l(u)<lc+δl}

fs(u)du ' −
∫
{u:l(u)=lc}

fs(u) δu

where the last integral
∫

δu is carried out on the set
∂ ≡ {u : l(u) = lc}, i.e., across all u’s that satisfy
l(u) = lc with given lc. Similarly,

δF (lc) ' −
∫
{u:l(u)=lc}

fn(u) δu .

Now, for all u ∈ ∂

fs(u)
fn(u)

= l(u) = lc

is constant, from an elementary theorem on ra-
tios, which says that if ai/bi = c for i ∈ I
(where c is a constant and I is an index set), then
(
∑

i∈I ai)/(
∑

i∈I bi) = c,

δH(lc)
δF (lc)

=

∫
∂

fs(u) δu∫
∂

fn(u) δu
=

fs(u) δu

fn(u) δu

∣∣∣∣
u∈∂

= lc .

Taking the limit δl → 0 yields (3). �.

Proposition 2.3 shows that the slope of ROC curve is
always equal the likelihood-ratio value regardless how
it is parameterized, i.e., whether the likelihood-ratio
is monotonically or non-monotonically related to the
evidence u and whether u is uni- or multi-dimensional.
The ROC curve is a signature of a criterion-based de-
cision rule, as captured succinctly by the expression

dH(l)
dF (l)

= l .

Since H(l) and F (l) give the proportion of hits and
false alarms when a decision-maker says “Yes” when-
ever the likelihood-ratio (of the data) exceeds l, then
δH = H(l + δl) − H(l), δF = F (l + δl) − F (l) are
the amount of hits and false-alarms if he says “Yes”
only when the likelihood-ratio falls within the interval
(l, l+δl). Their ratio is of course simply the likelihood-
ratio.

Under the likelihood-ratio parameterization, the signal
distribution fs(l) = −dH/dl and the noise distribution
fn(l) = −dF/dl can be shown to satisfy

Es{l} =
∫ l=∞

l=0

lfs(l)dl ≥ 1 =
∫ l=∞

l=0

lfn(l)dl = En{l}.

The shape of the ROC curve is determined by H(l) or
F (l). In fact, its curvature is

κ =
d

dl

(
dH

dF

)
/

(
1 +

(
dH

dF

)2
)

=
1

1 + l2
.



3. Green’s Theorem and area under
ROC curves

The above sections studies the likelihood-ratio classi-
fier in a single-instance paradigm — upon receiving an
input instance, the likelihood functions in favor of each
hypothesis are evaluated and compared with a pre-set
criterion to yield a decision of class label. Both prior
odds and payoff structure can affect the optimal set-
ting of likelihood ratio criterion lc by which class la-
bel is assigned. On the other hand, in two-alternative
force choice paradigms with two two instances, each
instance is drawn from one category, and the opera-
tor must match them to their proper categories. For
example, an auditory signal may be present in one
of two temporal intervals, and the operator must de-
termine which interval contains the signal and which
contains noise. In this case, the likelihood-ratio clas-
sifier, after computing the likelihood-ratios for each of
the instances, simply compares the two likelihood-ratio
values la and lb, and matches them to the two class la-
bels based on whether la < lb or la > lb. It turns
out that the performance of the likelihood-ratio clas-
sifier under the single-instance paradigm (“detection
paradigm”) and under the two-instance forced-choice
paradigm (“identification paradigm”) are related by a
theorem first proven by Green (1964).

Proposition 3.1. (Green, 1964). Under the
likelihood-ratio classifier, the area under an ROC curve
in a single-observation classification paradigm is equal
to the overall probability correct in the two-alternative
force choice paradigm.

Proof. Following the decision rule of the likelihood-
ratio classifier, the percentage of correctly (“PC”)
matching the two input instances to the two categories
is

PC =
∫ ∫

0≤lb≤la≤∞
fs(la) fn(lb) dla dlb

=
∫ ∞

0

(∫ ∞

lb

fs(la) dla

)
fn(lb) dlb

=
∫ lb=∞

lb=0

H(lb) dF (lb) =
∫ F=1

F=0

HdF,

which is the area under the ROC curve lc 7→
(F (lc),H(lc)). �

Green’s Theorem (Proposition 3.1) motivates one to
use the area under an ROC curve to as a mea-
sure of discriminability performance of the operator.
When multiple pairs of hit and false alarm rates
(Fi,Hi)i=1,2,··· (with F1 < F2 < · · · ,H1 < H2 < · · ·)
are available, all from the same operator but under ma-
nipulation of prior odds and/or payoff structure and

Figure 1. Proper ROC curves through point p must lie
within or on the boundaries of the light shaded regions A1

and A2. The minimum-area proper ROC curve through p
lies on the boundary of region I.
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(F, H) = p

I
A2

A1

with the constraints

0 ≤ · · · ≤ H3 −H2

F3 − F2
≤ H2 −H1

F2 − F1
≤ ∞,

then it is possible to construct proper ROC curves
passing through these points, and the bounds for their
area can be constructed. The question of finding the
areal bounds of ROC curves passing through a single
data point has received special attention in the past
(since Norman, 1964), because as more data points
are added, the uncertain in ROC area (difference be-
tween the upper and lower bounds of area measure) de-
creases. We discuss the bounds of 1-point constrained
ROC area in the next sections.

4. ROC curves constrained to pass
through a data point

When the data point p = (F,H) is fixed, the non-
increasing property of the slope (Corollary 1) imme-
diately leads to the conclusion that all proper ROC
curves must fall within or on the bounds of light
shaded regions A1 and A2 (shown in Figure 1). This
observation was first made in Norman (1964). The
proper ROC curve with the smallest area lies on the
boundary between I and A1 (to the right of p) and A2

(to the left of p), whereas the proper ROC curve with
the largest area lies within or on the boundaries of A1

and A2.

Pollack and Norman (1964) proposed to use the aver-
age of the areas A1 + I and A2 + I as an index of dis-
criminability (so-called A′), which turns out to equal



Figure 2. Example of a proper ROC curve through p. The
ROC curve C, a piecewise linear curve denoted by the dark
outline, is formed by following a path from (0, 0) to (0, 1−y)
to (x, 1) (along a straight line that passes through p =
(F, H)) and on to (1, 1).

0 1
0

1

H
it 

R
at

e 
  

False Alarm Rate

p = (F, H)

x

y F
1 − H

t1

t2

(0, 1 − y)

(x, 1)

1/2+ (H −F )(1+H −F )/(4H(1−F )) (Grier, 1971).
However, the A′ index was later mistakenly believed to
represent the average of the maximal and minimum ar-
eas of proper ROC curves constrained to pass through
p = (F,H). Rewriting

1
2
((A1 + I) + (A2 + I)) =

1
2
(I + (A1 + A2 + I)),

the mis-conceptualization probably arose from (incor-
rectly) taking the area A1 + A2 + I to be the maximal
area of 1-point constrained proper ROC curves while
(correcting) taking the are I to be the minimal area of
such ROC curves, see Figure 1. It was Smith (1995)
who first pointed out this long, but mistakenly-held
belief, and proceeded to derive the true upper bound
(maximal area) of proper ROC curves, to be denoted
A+. Smith claimed that, depending on whether p is to
the left or right of the negative diagonal H + F = 1,
A+ is the larger of I + A1 and I + A2. This conclu-
sion, unfortunately, is still erroneous when p is in the
upper left quadrant of ROC space (i.e., F < .5 and
H > .5) — in this region, neither I + A1 nor I + A2

represents the upper bound of all proper ROC curves
passing through p.

5. Lower and upper bound of area of
1-point constrained proper ROC
curves

The lower bound A− of the area of all proper ROC
curves constrained to pass through a given point p =

(F,H) can be derived easily (the area labelled as I in
Figure 1):

A− =
1
2
(1 + H − F ).

In Zhang and Mueller (2005), the expression was de-
rived for the upper bound A+ of such ROC area.

Proposition 5.1. (Upper Bound of ROC Area). The
areal upper bound A+ of proper ROC curves con-
strained to pass through one data point p = (F,H)
is

A+ =


1− 2H(1− F ) if F < 0.5 < H ,

1−F
2H if F < H < 0.5 ,

1− 1−H
2(1−F ) if 0.5 < F < H .

Proof. See Zhang and Mueller (2005). �

The ROC curve achieving the maximal area generally
consists of three segments (as depicted in Figure 2),
with the data point p bisecting the middle segment –
in other words, t1 = t2 in Figure 2. When p falls in
the F < H < 0.5 (0.5 < F < H, resp) region, then the
vertical (horizontal, resp) segment of the maximal-area
ROC curve degenerates to the end point (0, 0) ((1, 1),
resp), corresponding to y = 1 (x = 1, resp) in Figure 2.

With the upper and lower bounds on ROC area de-
rived, Figure 3 plots the difference between these
bounds — that is, the uncertainty in the area of proper
ROC curves that can pass through each point. The fig-
ure shows that the smallest differences occur along the
positive and negative diagonals of ROC space, espe-
cially for points close to (0, 1) and (.5, .5). The points
where there is the greatest difference between the lower
and upper bounds of ROC area are near the lines
H = 0 and F = 1. Thus, data observed near these
edges of ROC space can be passed through by proper
ROC curves with a large variability of underlying ar-
eas. Consequently, care should be taken when trying
to infer the ROC curve of the observer/algorithm when
the only known data point regarding its performance
(under a single parameter setting) falls within this re-
gion.

By averaging the upper and lower bound A = (A+ +
A−)/2, we can derive the (non-parametric) index of
discriminability performance

A =


3
4 + H−F

4 − F (1−H) if F ≤ 0.5 ≤ H ;

3
4 + H−F

4 − F
4H if F < H < 0.5 ;

3
4 + H−F

4 − 1−H
4(1−F ) if 0.5 < F < H .

One way to examine A is to plot the “iso-
discriminability” curve, i.e, the combinations of F and



Figure 3. Difference between the lower and upper bounds
of area of proper ROC curves through every point in ROC
space. Lighter regions indicate smaller differences.
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Figure 4. Iso-discriminability contours in ROC space.
Each line corresponds to combinations of F and H that
produce equal values of A, in increments of 0.05.
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H will produce a given value of A. The topography of
A in ROC space can be mapped by drawing isopleths
for its different constant values. Figure 4 shows these
topographic maps for A.

Finally, since the slope of any proper ROC curve is
related to the likelihood ratio of the underlying dis-
tributions, we can construct an index of decision bias
(Zhang & Mueller, 2005), denoted b, as being orthog-
onal to the slope of the constant-A curve (called b):

b =


5−4H
1+4F if F ≤ 0.5 ≤ H ;

H2+H
H2+F if F < H < 0.5 ;

(1−F )2+1−H
(1−F )2+1−F if 0.5 < F < H .

6. Conclusion

We showed that the relationship of ROC slope to
likelihood-ratio is a fundamental relation in ROC anal-
ysis, as it is invariant with respect to any contin-
uous reparameterization of the stimulus, including
non-monotonic mapping of uni-dimensional and multi-
dimensional evidence in general. We provided an up-
per bound for the area of proper ROC curves passing
through a data point and, together with the known
lower bound, a non-parametric estimate of discrim-
inability as defined by the average of maximal and
minimum ROC areas.
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Abstract 

The Sigma-Point Kalman Filters (SPKF) is a
family of filters that achieve very good
performance when applied to time series.
Currently most researches involving time series
forecasting use the Sigma-Point Kalman Filters,
however they do not use an ensemble of them,
which could achieve a better performance. The
REC analysis is a powerful technique for
visualization and comparison of regression
models. The objective of this work is to advocate
the use of REC curves in order to compare the
SPKF and ensembles of them and select the best
model to be used.

1.  Introduction

In the past few years, several methods for time series
prediction were developed and compared. However, all
these studies based their conclusions on error
comparisons.

Results achieved by Provost, Fawcett and Kohavi (1998)
raise serious concerns about the use of accuracy, both for
practical comparisons and for drawing scientific
conclusions, even when predictive performance is the
only concern. They indicate ROC analysis (Provost &
Fawcett, 1997) as a superior methodology than the
accuracy comparison in the evaluation of classification
learning algorithms. Receiver Operating Characteristic
(ROC) curves provide a powerful tool for visualizing and
comparing classification results. A ROC graph allows the
performance of multiple classification functions to be
visualized and compared simultaneously and the area
under the ROC curve (AUC) represents the expected
performance as a single scalar.

But ROC curves are limited to classification problems.
Regression Error Characteristic (REC) curves (Bi &
Bennett, 2003) generalize ROC curves to regression with
similar benefits. As in ROC curves, the graph should

—————
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characterize the quality of the regression model for
different levels of error tolerance.

The Sigma-Point Kalman Filters (SPKF) (van der Merwe
& Wan, 2003) is a family of filters based on
derivativeless statistical linearization. It was shown that
Sigma-Point Kalman Filters achieve very good
performance when applied to time series (van der Merwe
& Wan, 2003).

Current research on time series forecasting mostly relies
on use of Sigma-Point Kalman Filters, achieving high
performances. Although most of these works use one of
the filters from the SPKF family, they do not use an
ensemble (Dietterich, 1998) of them, which could achieve
a better performance. Therefore, the main goal of this
paper is to advocate the use of REC curves in order to
compare ensembles of Sigma-Point Kalman Filters and
choose the best model to be used with each time series.

This paper is organized as follows. The next section has a
brief review of REC curves. Then, a summary of the main
characteristics of the Sigma-Point Kalman Filters is
presented in Section 3. An experimental evaluation
comparing the REC curves provided by each algorithm
and ensembles of them is reported in Section 4. Finally, in
Section 5, the conclusions and the plans for future
research are presented.

2.  Regression Error Characteristic Curves

Results achieved by Provost, Fawcett and Kohavi (1998)
indicate ROC analysis (Provost & Fawcett, 1997) as a
superior methodology to the accuracy comparison in the
evaluation of classification learning algorithms. But ROC
curves are limited to classification problems. Regression
Error Characteristic (REC) curves (Bi & Bennett, 2003)
generalize ROC curves to regression with similar benefits.

The REC curve is a technique for evaluation and
comparison of regression models that facilitates the
visualization of the performance of many regression
functions simultaneously in a single graph. A REC graph
contains one or more monotonically increasing curves
(REC curves), each corresponding to a single regression
model.
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One can easily compare many regression functions by
examining the relative position of their REC curves. The
shape of the curve reveals additional information that can
be used to guide modeling.

REC curves plot the error tolerance on the x-axis and the
accuracy of a regression function on the y-axis. Accuracy
is defined as the percentage of points predicted within the
tolerance. A good regression function provides a REC
curve that climbs rapidly towards the upper-left corner of
the graph, in other words, the regression function achieves
high accuracy with a low error tolerance.

In regression, the residual is the analogous concept to the
classification error in classification. The residual is
defined as the difference between the predicted value f(x)
and actual value y of response for any point (x, y). It could
be the squared error (y − f(x))2 or absolute deviation | y −
f(x) | depending on the error metric employed. Residuals
must be greater than a tolerance e before they are
considered as errors.

The area over the REC curve (AOC) is a biased estimate
of the expected error for a regression model. It is a biased
estimate because it always underestimates the actual
expectation. If e is calculated using the absolute deviation
(AD), then the AOC is close to the mean absolute
deviation (MAD). If e is based on the squared error (SE),
the AOC approaches the mean squared error (MSE). The
evaluation of regression models using REC curves is
qualitatively invariant to the choices of error metrics and
scaling of the residual. The smaller the AOC is, better the
regression function will be. However, two REC curves
can have equal AOC's but have different behaviors. The
one who climbs faster towards the upper-left corner of the
graph (in other words, the regression function that
achieves higher accuracy with a low error tolerance) may
be preferable. This kind of information can not be
provided by the analysis of an error measure.

Figure 1. Example of REC graph.

In order to adjust the REC curves in the REC graph, a null
model is used to scale the REC graph. Reasonable
regression approaches produce regression models that are
better than the null model. The null model can be, for
instance, the mean model: a constant function with the
constant equal to the mean of the response of the training
data.

An example of REC graph can be seen in Figure 1. The
number between parentheses in the figure is the AOC
value for each REC curve. A regression function
dominates another one if its REC curve is always above
the REC curve corresponding to the other function. In the
figure, the regression function dominates the null model,
as should be expected.

3.  Sigma-Point Kalman Filters

It is known that for most real-world problems, the optimal
Bayesian recursion is intractable. The Extended Kalman
Filter (EKF) (Jazwinsky, 1970) is an approximate solution
that has become one of the most widely used algorithms
with several applications.

The EKF approximates the state distribution by a
Gaussian random variable, which is then propagated
through the “first-order” linearization of the system. This
linearization can introduce large errors which can
compromise the accuracy or even lead to divergence of
any inference system based on the EKF or that uses the
EKF as a component part.

The Sigma-Point Kalman Filters (SPKF) (van der Merwe
& Wan, 2003), a family of filters based on derivativeless
statistical linearization, achieve higher performance than
EKF in many problems and are applicable to areas where
EKFs can not be used.

Instead of linearizing the nonlinear function through a
truncated Taylor-series expansion at a single point
(usually the mean value of the random variable), SPKF
rather linearize the function through a linear regression
between r points, called sigma-points, drawn from the
prior distribution of the random variable, and the true
nonlinear functional evaluations of those points. Since
this statistical approximation technique takes into account
the statistical properties of the prior random variable the
resulting expected linearization error tends to be smaller
than that of a truncated Taylor-series linearization.

The way that the number and the specific location of the
sigma-points are chosen, as well as their corresponding
regression weights, differentiate the SPKF variants from
each other. The SPKF Family is composed by four
algorithms: Unscented Kalman Filter (UKF), Central
Difference Kalman Filter (CDKF), Square-root Unscented
Kalman Filter (SR-UKF) and Square-root Central
Difference Kalman Filter (SR-CDKF).
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Now we will present a brief overview of the main
characteristics of the Sigma-Point Kalman Filters. See
(van der Merwe & Wan, 2003) for more details.

3.1  The Unscented Kalman Filter

The Unscented Kalman Filter (UKF) (Julier, Uhlmann &
Durrant-Whyte, 1995) derives the location of the sigma-
points as well as their corresponding weights so that the
sigma-points capture the most important statistical
properties of the prior random variable x. This is achieved
by choosing the points according to a constraint equation
which is satisfied by minimizing a cost-function, whose
purpose is to incorporate statistical features of x which are
desirable, but do not necessarily have to be met. The
necessary statistical information captured by the UKF is
the first and second order moments of p(x).

3.2  The Central Difference Kalman Filter

The Central Difference Kalman Filter (CDKF) (Ito &
Xiong, 2000) is another SPKF implementation, whose
formulation was derived by replacing the analytically
derived first and second order derivatives in the Taylor
series expansion by numerically evaluated central divided
differences. The resulting set of sigma-points for the
CDKF is once again a set of points deterministically
drawn from the prior statistics of x. Studies (Ito & Xiong,
2000) have shown that in practice, just as UKF, the
CDKF generates estimates that are clearly superior to
those calculated by an EKF.

3.3  Square-Root Forms of UKF and CDKF

SR-UKF and SR-CDKF (van der Merwe & Wan, 2001)
are numerically efficient square-root forms derived from
UKF and CDKF respectively. Instead of calculating the
matrix square-root of the state covariance at each time
step (a very costly operation) in order to buid the sigma-
point set, these forms propagate and update the square-
root of the state covariance directly in Cholesky factored
form, using linear algebra techniques. This also provides
more numerical stability.

The square-root SPKFs (SR-UKF and SR-CDKF) achieve
equal or slightly higher accuracy when compared to the
standard SPKFs. Besides, they have lower computational
cost and a consistently increased numerical stability.

4.  Experimental Evaluation

Since the experiments described in (Bi & Bennett, 2003)
used just one data set and their results were only for REC
demonstration, we first did tests with two well-known
regression algorithms using 25 regression problems, in
order to better evaluate the REC curves as a tool for
visualizing and comparing regression learning algorithms.

Then we present the results of the comparison by using
REC curves of SPKFs and EKF applied to time series and

finally we investigate the use of an ensemble method
(stacking (Wolpert, 1992)) with the tested models,
evaluating it with REC curves, as suggested by Bi and
Bennett (2003). In this work, 12 time series with real-
world data were used in order to try to establish a general
ranking among the models tested. The names and sizes of
the used time series are shown in Table 1. All data are
differentiated and then the values are rescaled linearly to
between 0.1 and 0.9. As null model we choose the mean
model, a constant function with the constant equal to the
mean of the response of the training data.

Table 1. Time series used in the experimental evaluation.

Time series Data points
A1 1000
Burstin2 2001
Darwin2 1400
Earthquake2 2097
Leuven3 2000
Mackey-Glass4 300
Series 15 96
Series 2 5 96
Series 3 5 96
Soiltemp2 2306
Speech2 1020
Ts1 2 1000

4.1  Preliminary Results with Regression

Initial experiments were carried out in order to reinforce
the conclusions reached out by Bi and Bennett (2003) in
favor of the use of REC curves as a mean to compare
regression algorithms (similarly to arguments for ROC
curves in classification).

We have used REC curves in order to compare the
performance of the Naive Bayes for Regression (Frank,
Trigg, Holmes & Witten, 2000) to the performance of
Model Trees (Quinlan, 1992). Naive Bayes for
Regression (NBR) uses the Naive Bayes methodology for
numeric prediction tasks by modeling the probability
distribution of the target value with kernel density
estimators. Model Tree predictor is a state-of-the-art
method for regression. Model trees are the counterpart of

—————
1 Data from a competition sponsored by the Santa Fe

Institute. (http://www-psych.stanford.edu/%7Eandreas/Time-
Series/SantaFe)

2 Data from the UCR Time Series Data Mining Archive
(Keogh & Folias, 2002).

3 Data from the K.U. Leuven competition. (ftp://ftp.esat.
kuleuven.ac.be/pub/sista/suykens/workshop/datacomp.dat)

4 Numerical solution for the Mackey-Glass delay-
differential equation.

5 Data of monthly electric load forecasting from Brazilian
utilities (Teixeira & Zaverucha, 2003).
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decision trees for regression tasks. They have the same
structure as decision trees, but employ linear regression at
each leaf node to make a prediction. In (Frank, Trigg,
Holmes & Witten, 2000) an accuracy comparison of these
two learning algorithms is presented and its results show
that Model Trees outperform NBR significantly for
almost all data sets tested.

The 25 regression data sets used in this study were
obtained from the UCI Repository of Machine Learning
Databases (Blake & Merz, 2006). With 16 of the data sets
the Model Tree predictor clearly outperforms NBR, as
can be seen, for instance, in Figure 2. The number
between parentheses in the figure is the AOC value for
each REC curve. Note that the REC curve for Model Tree
covers completely the REC curve for NBR, becoming
clear the superiority of the former algorithm when applied
to this specific data set.

Figure 2. REC graph used to compare the performances of
NBR and Model Tree when applied to data set pwLinear.

4.2  Comparing SPKFs by means of REC Curves

First, we have compared UKF and CDKF with their
square-root forms, SR-UKF and SR-CDKF respectively.
As expected, the REC curves for UKF and for SR-UKF
are very similar. This means that the difference between
the performances of the models provided by UKF and
SR-UKF was negligible. The same fact could be verified
with the REC curves for CDKF and SR-CDKF.
Therefore, because of these results and the other
advantages mentioned before in Section 3, we have
continued our experiments only with the square-root
forms of the SPKF.

By analyzing the generated REC graphs, we could verify
that, for most time series, the model provided by SR-UKF
dominates the models provided by SR-CDKF and EKF,
that is, the REC curve for the SR-UKF model is always
above the REC curves for SR-CDKF and EKF. Therefore,

the model provided by SR-UKF would be preferable. An
example is shown in Figure 3.

Figure 3. EKF and SPKFs applied to Burstin time series.

SR-UKF was outperformed by SR-CDKF only for the
Mackey-Glass time series (Figure 4). Note that the curves
cross each other at error tolerance of 0.7. SR-CDKF and
EKF achieved similar performances for almost all time
series, as can be seen, for instance, in Figure 5. However,
the analysis of the AOC’s gives a small advantage to SR-
CDKF. The lower performance of EKF when compared
to the others is probably caused by the non-linearity of the
series. Therefore, SR-UKF consistently showed to be the
best alternative to use with these series, followed by SR-
CDKF and EKF, in this order. The Model Tree predictor
and NBR were also tested for the prediction of the time
series, but both provided poor models.

Figure 4. EKF and SPKFs applied to Mackey-Glass time
series.
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Figure 5. EKF and SPKFs applied to Earthquake time series.

4.3  Stacking of Sigma-Point Kalman Filters

Stacking (Wolpert, 1992) is an ensemble method
(Dietterich, 1998) used to combine different learning
algorithms. It works as follows. Suppose we have a set of
different learning algorithms and a set of training
examples. Each of these algorithms, called base learners,
is applied to the training data in order to produce a set of
hypotheses. The results computed by this set of
hypotheses are combined into new instances, called meta-
instances. Each "attribute" in the meta-instance is the
output of one of the base learners and the class value is
the same of the original instance. Another learning
algorithm, called meta-regressor (or meta-classifier, for
classification), is trained and tested with the meta-
instances and provides the final result of the stacking.

We have used stacking to build ensembles of SPKFs and
EKF. A Model Tree predictor was chosen as a meta-
regressor not only because it achieved good results in the
initial experiments, but also because it is a state-of-the-art
regression method and it has already been successfully
used as a meta-classifier for stacking (Dzeroski & Zenko,
2004), outperforming all the other combining methods
tested.

Table 2. Stackings built.

Stackings Base learners
Stacking 1 EKF, SR-CDKF
Stacking 2 EKF, SR-UKF
Stacking 3 SR-CDKF, SR-UKF
Stacking 4 EKF, SR-CDKF, SR-UKF

In order to determine which subset of algorithms can
provide the best ensemble, we built four models by
stacking: one containing the square-root SPKFs and EKF,
and the others leaving one of them out. If we were testing
several algorithms we could use a method to build the

ensembles (Caruana & Niculescu-Mizil, 2004). Table 2
shows the stackings built: Stacking 1 is composed by
EKF and SR-CDKF, Stacking 2 is composed by EKF and
SR-UKF, Stacking 3 is composed by SR-CDKF and SR-
UKF, and Stacking 4 is composed by EKF, SR-CDKF
and SR-UKF. The REC curves show that all stackings
that have the SR-UKF as a base learner achieve similar
high performances. This can be seen, for example, in
Figure 6.

Figure 6. Stackings applied to Series 2 time series.

Table 3 shows the AOC values of the REC curves
provided for the stackings with SR-UKF as a base learner.
By analyzing the values we can see that among the three
stackings that contain the SR-UKF, those who have SR-
CDKF as a base learner achieve a slightly better
performance. Since the number of time series for which
Stacking 3 achieved the best performance is almost the
same number of time series for which Stacking 4 was the
best, we have considered that the inclusion of EKF as a
base learner does not compensate the overhead in terms of
computational cost. Thus, the model chosen as the best is
that provided by Stacking 3 (SR-CDKF and SR-UKF as
base learners).

Table 3. AOC’s of the REC curves provided for the stackings
with SR-UKF as a base learner.

Time series Stacking 2 Stacking 3 Stacking 4
A 0.001366 0.001497 0.001310
Burstin 0.001740 0.001613 0.001740
Darwin 0.013934 0.014069 0.014052
Earthquake 0.000946 0.000943 0.000946
Leuven 0.005172 0.005190 0.005142
Mackey-Glass 0.228064 0.133420 0.128672
Series 1 0.001167 0.001306 0.001111
Series 2 0.013139 0.012294 0.012639
Series 3 0.000800 0.000717 0.000767
Soiltemp 0.000884 0.000780 0.000782
Speech 0.000714 0.000713 0.000706
Ts1 0.005010 0.005044 0.004881
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By comparing the best stacking model (SR-CDKF and
SR-UKF as base learners and Model Tree predictor as
meta-regressor) to the best individual algorithm (SR-
UKF) we could verify that the stacking achieved a
significantly higher performance for all time series tested.
This can be clearly noted in Figure 7.

Figure 7. SR-UKF and Stacking 3 applied to Darwin time
series.

5.  Conclusions and Future Works

We have used REC curves in order to compare the SPKF
family of filters (state-of-the-art time series predictors)
and ensembles of them, applied to real-world time series.

The results of the experiments pointed SR-UKF as the
best SPKF to use for forecasting with the series tested.
Further experiments showed that a stacking composed by
SR-CDKF and SR-UKF as base learners and a Model
Tree predictor as meta-regressor can provide a
performance statistically significantly better than that
provided by the SR-UKF algorithm working individually.
The REC curves showed to be very efficient in the
comparison and choice of time series predictors and base
learners for ensembles of them.

Currently, we are conducing tests with REC curves in
order to compare Particle Filters (Doucet, de Freitas &
Gordon, 2001), sequential Monte Carlo based methods
that allows for a complete representation of the state
distribution using sequential importance sampling and
resampling. Since Particle Filters approximate the
posterior without making any explicit assumption about
its form, they can be used in general nonlinear, non-
Gaussian systems. As a future work we intend to
investigate further the use of ensembles with SPKFs, as
well as with Particle Filters.
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Abstract

Reliable classifiers abstain from uncertain in-
stance classifications. In this paper we ex-
tend our previous approach to construct re-
liable classifiers which is based on isometrics
in Receiver Operator Characteristic (ROC)
space. We analyze the conditions to obtain
a reliable classifier with higher performance
than previously possible. Our results show
that the approach is generally applicable to
boost performance on each class simultane-
ously. Moreover, the approach is able to con-
struct a classifier with at least a desired per-
formance per class.

1. Introduction

Machine learning classifiers were applied to various
classification problems. Nevertheless, only few classi-
fiers were employed in domains with high misclassifica-
tion costs, e.g., medical diagnosis and legal practice. In
these domains it is desired to have classifiers that ab-
stain from uncertain instance classifications such that
a desired level of reliability is obtained. These classi-
fiers are called reliable classifiers.

Recently, we proposed an easy-to-visualize approach
to reliable instance classification (Vanderlooy et al.,
2006). Classification performance is visualized as an
ROC curve and a reliable classifier is constructed by
skipping the part of the curve that represents instances
difficult to classify. The transformation to the ROC
curve of the reliable classifier was provided. An anal-
ysis showed when and where this new curve dom-
inates the original one. If the underlying data of
both curves have approximately equal class distribu-
tions, then dominance immediately results in perfor-

Appearing in Proceedings of the ICML 2006 workshop on
ROC Analysis in Machine Learning, Pittsburgh, USA,
2006. Copyright 2006 by the author(s)/owner(s).

mance increase. However, in case of different class
distributions and a performance measure that is class-
distribution dependent, dominance of an ROC curve
does not always guarantee an increase in performance.

In this paper we analyze for which performance metrics
the approach boosts performance on each class simul-
taneously. We restrict to widely used metrics char-
acterized by rotating linear isometrics (Fürnkranz &
Flach, 2005). Furthermore, skew sensitive metrics are
used to generalize the approach to each possible sce-
nario of error costs and class distributions.

This paper is organized as follows. Section 2 provides
terminology and notation. Section 3 gives a brief back-
ground on ROC curves. Sections 4 and 5 introduce
skew sensitive evaluation and isometrics, respectively.
Section 7 defines reliable classifiers and their visualiza-
tion in ROC space. In Section 8 we provide our main
contribution. Section 9 concludes the paper.

2. Terminology and Notation

We consider classification problems with two classes:
positive (p) and negative (n). A discrete classifier is a
mapping from instances to classes. Counts of true pos-
itives, false positives, true negatives and false negatives
are denoted by TP , FP , TN , and FN , respectively.
The number of positive instances is P = TP + FN .
Similarly, N = TN + FP is the number of negative
instances.

From these counts the following statistics are derived:

tpr =
TP

TP + FN
tnr =

TN
TN + FP

fpr =
FP

FP + TN
fnr =

FN
TP + FN

True positive rate is denoted by tpr and true negative
rate by tnr . False positive rate and false negative rate
are denoted by fpr and fnr , respectively. Note that
tnr = 1− fpr and fnr = 1− tpr .

Most classifiers are rankers or scoring classifiers. They



output two positive values l(x|p) and l(x|n) that indi-
cate the likelihood that an instance x is positive and
negative, respectively. The score of an instance com-
bines these values as follows:

l(x) =
l(x|p)
l(x|n)

(1)

and can be used to rank instances from most likely pos-
itive to most likely negative (Lachiche & Flach, 2003).

3. ROC Curves

The performance of a discrete classifier can be rep-
resented by a point (fpr , tpr) in ROC space. Opti-
mal performance is obtained in (0, 1). Points (0, 0)
and (1, 1) represent classifiers that always predict the
negative and positive class, respectively. The ascend-
ing diagonal connects these points and represents the
strategy of random classification.

A threshold on the score l(x) transforms a scoring clas-
sifier into a discrete one. Instances with a score higher
than or equal to this threshold are classified as posi-
tive. The remaining instances are classified as nega-
tive. An ROC curve shows what happens with the cor-
responding confusion matrix for each possible thresh-
old (Fawcett, 2003). The convex hull of the ROC curve
(ROCCH) removes concavities.

Theorem 1 For any point (fpr , tpr) on an ROCCH a
classifier can be constructed that has the performance
represented by that point.

Provost and Fawcett (2001) prove this theorem. For
simplicity of presentation, in the following we will as-
sume that ROC curves are convex and all points can
be obtained by a threshold.

4. Skew Sensitive Evaluation

The metrics tpr , fpr , tnr , and fnr evaluate perfor-
mance on a single class. This follows from the confu-
sion matrix since values are used from a single column.
In most cases a metric is desired that indicates perfor-
mance on both classes simultaneously. Unfortunately,
such metric assumes that the class distribution of the
application domain is known and used in the test set.

Accuracy is a well-known example. Provost et al.
(1998) showed that classifier selection with this metric
has two severe shortcomings with regard to class and
error costs distributions.

To overcome these problems, Flach (2003) considers
class and error costs distributions as a parameter of
performance metrics. Evaluation with these metrics

is called skew sensitive evaluation. The parameter is
called the skew ratio and expresses the relative impor-
tance of negative versus positive class:

c =
c(p, n)
c(n, p)

P (n)
P (p)

(2)

Here, c(p, n) and c(n, p) denote the costs of a false
positive and false negative, respectively1. The proba-
bilities of a positive and negative instance are denoted
by P (p) = P

P+N and P (n) = N
P+N , respectively. The

class ratio is then P (n)
P (p) = N

P .

From Eq. 2 it is clear that we can cover all possible
scenarios of class and cost distributions by a single
value of c used as parameter in the performance metric.
If c < 1 (c > 1), then the positive (negative) class is
most important.

In the following we assume without restriction that c
is the ratio of negative to positive instances in the test
set, i.e., c = N

P . The reader should keep in mind that
our results are also valid for c = c(p,n)

c(n,p)
N
P .

5. ROC Isometrics

Classifier performance is evaluated on both classes.
We define a positive (negative) performance metric as
a metric that measures performance on the positive
(negative) classifications. The skew sensitive metrics
used in this paper are summarized in Table 1. An
explanation of these metrics follows.

ROC isometrics are collections of points in ROC space
with the same value for a performance metric. Flach
(2003) and Fürnkranz and Flach (2005) investigate iso-
metrics to understand metrics. However, isometrics
can be used for the task of classifier selection and to
construct reliable classifiers (see Section 6).

Table 1 also shows the isometrics for the performance
metrics. They are obtained by fixing the performance
metric and rewriting its equation to that of a line in
ROC space. Varying the value of the metric results in
linear lines that rotate around a single point in which
the metric is undefined.

5.1. Precision

Positive precision, precc
p, is defined as the proportion

of true positives to the total number of positive clas-
sifications. The isometrics are linear lines that rotate
around the origin (0, 0).

1Benefits of true positives and true negatives are incor-
porated by adding them to the corresponding errors. This
operation normalizes the cost matrix such that the two
values on the main diagonal are zero.



Table 1. Performance metrics and corresponding isometrics defined in terms of fpr , tpr , c = N
P

, α ∈ R+, and m̂ = m
P+N

.

Metric Indicator Formula Isometric

Pos. precision precc
p

tpr
tpr+c fpr tpr = precc

p

1−precc
p

c fpr

Neg. precision precc
n

tnr
tnr+ 1

c fnr
tpr = 1−precc

n

precc
n

c fpr + 1− 1−precc
n

precc
n

c

Pos. F -measure F c,α
p

(1+α2)tpr
α2+tpr+c fpr tpr = F c,α

p

1+α2−F c,α
p

c fpr + α2 F c,α
p

1+α2−F c,α
p

Neg. F -measure F c,α
n

(1+α2)tnr

α2+tnr+ 1
c fnr

tpr = 1+α2−F c,α
n

F c,α
n

c fpr + 1 + (1+α2)(F c,α
n −1)

F c,α
n

c

Pos. gm-estimate gmc,m̂
p

tpr+m̂
tpr+c fpr+m̂(1+c) tpr = gmc,m̂

p

1−gmc,m̂
p

c fpr +
m̂(gmc,m̂

p (1+c)−1)
1−gmc,m̂

p

Neg. gm-estimate gmc,m̂
n

tnr+m̂
tnr+ 1

c fnr+m̂ 1+c
c

tpr = 1−gmc,m̂
n

gmc,m̂
n

c fpr + 1− 1−gmc,m̂
n

gmc,m̂
n

c +
m̂(gmc,m̂

n (1+c)−c)
gmc,m̂

n

Figure 1. Precision isometrics in ROC space: solid lines are
prec1

p-isometrics and dashed lines are prec1
n-isometrics.

The case of negative precision, precc
n, is similar. Cor-

responding isometrics rotate around point (1, 1). Fig-
ure 1 shows precc

p-isometrics and precc
n-isometrics for

c = 1. In this and subsequent figures the value of the
performance metric is varied from 0.1 to 0.9.

5.2. F -measure

Positive precision is maximized when all positive clas-
sifications are correct. To know if precc

p uses enough
positive instances to be considered as reliable, it is
combined with tpr . Note that precc

p and tpr are an-
tagonistic, i.e., if precc

p goes up, then tpr usually goes
down (and vice versa).

Rijsbergen (1979) introduced the positive F -measure
for the trade-off between these metrics:

F c,α
p =

(1 + α2) precc
p tpr

α2 precc
p + tpr

=

(
1 + α2

)
tpr

α2 + tpr + c fpr
(3)

where the parameter α indicates the importance given

Figure 2. F -measure isometrics in ROC space: solid lines
are F 1,1

p -isometrics and dashed lines are F 1,1
n -isometrics.

to precc
p relative to tpr . If α < 1 (α > 1) then tpr is

less (more) important than precc
p. If α = 1, then both

terms are equally important.

The isometrics of F c,α
p are linear lines rotating around

(−α2

c , 0). Therefore, they can be seen as a shifted
version of the positive precision isometrics. The larger
c and/or the smaller α, the smaller the difference with
precc

p-isometrics.

Similar to F c,α
p the negative F -measure is a metric for

the trade-off between precc
n and tnr . Isometrics are

a shifted version of the precc
n-isometrics and rotate

around (1, 1 + α2c). Figure 2 shows F c,α
p -isometrics

and F c,α
n -isometrics for c = 1 and α = 1 in the relevant

region (0, 1)× (0, 1) of ROC space.

5.3. Generalized m-estimate

The m-estimate computes a precision estimate assum-
ing that m instances are a priori classified. One of the



main reasons why it is favored over precision is that it
is less sensitive to noise and more effective in avoiding
overfitting (Fürnkranz & Flach, 2005; Lavrac & Dze-
roski, 1994, Chapters 8-10). This is especially true if
the metric is used for the minority class when the class
distribution is very skewed.

The positive m-estimate assumes that m instances are
a priori classified as positive. These instances are
distributed according to the class distribution in the
training set:

gmc,m
p =

TP + m P
P+N

TP + FP + m
(4)

or equivalently:

gmc,m
p =

tpr + m
P+N

tpr + c fpr + m
P

(5)

To eliminate absolute numbers P and N we define m̂ =
m

P+N and obtain the formula in Table 1. Fürnkranz
and Flach (2005) call this metric the positive gm-
estimate (generalized m-estimate) since m̂ defines the
rotation point of the isometrics (see below)2.

The isometrics of the gmc,m̂
p -estimate rotate around

(−m̂,−m̂). If m̂ = 0, then we obtain precc
p-isometrics.

For m̂ → ∞ the performance metric converges to
1

1+c = P (p) and the corresponding isometric is the
ascending diagonal.

The case of the negative gm-estimate is similar. The
rotation point of the isometrics is (1+ m̂, 1+ m̂). Fig-
ure 3 shows gmc,m̂

p -isometrics and gmc,m̂
n -isometrics for

c = 1 and m̂ = 0.1.

For simplicity of presentation, in the following the iso-
metric of a positive (negative) performance metric is
simply called a positive (negative) isometric.

6. Classifier Design through Isometrics

In Vanderlooy et al. (2006) we used precision isomet-
rics as a tool to design classifiers. We generalize this
approach to include all isometrics defined in Section 5.

For specific skew ratio, a positive isometric is build
with a desired positive performance. By definition,
the intersection point (fpra, tpra) with an ROCCH
represents a classifier with this performance. Simi-
larly, the intersection point (fpr b, tpr b) of a negative
isometric and the ROCCH represents a classifier with
negative performance defined by that isometric. If we

2The gm-estimate of Fürnkranz and Flach (2005) is
more general than ours since they also vary a = 1

P+N
in

Eq. 5.

Figure 3. Generalized m-estimate isometrics in ROC space:
solid lines are gm1,0.1

p -isometrics and dashed lines are
gm1,0.1

n -isometrics.

(a) (b) (c)

Figure 4. Location of intersection between a positive and
negative isometric: (a) Case 1, (b) Case 2, and (c) Case 3.

assume that the positive and negative isometrics inter-
sect each other in the relevant region of ROC space,
then three cases can be distinguished to construct the
desired classifier (see Figure 4).

Case 1: the isometrics intersect on the ROCCH
The discrete classifier corresponding to this point has
the performance defined by both isometrics. Theorem
1 guarantees that we can construct it. Therefore, the
isometrics provide an approach to construct a classifier
with a desired performance per class.

Case 2: the isometrics intersect below the ROCCH
This classifier can also be constructed. However, the
classifiers corresponding to any point on the ROCCH
between (fpr b, tpr b) and (fpra, tpra) have better per-
formance.

Case 3: the isometrics intersect above the ROCCH
There is no classifier with the desired perfor-
mances. To increase performance instances between
(fpra, tpra) and (fpr b, tpr b) are not classified. In case



of more than one intersection point for the positive
(negative) isometric and the ROCCH, the intersection
point with highest tpr (lowest fpr) is chosen such that
fpra < fpr b. Then, the number of unclassified in-
stances is minimized. The resulting classifier is called
a reliable classifier.

7. Reliable Instance Classification

A scoring classifier is almost never optimal: there ex-
ists negative instances with higher score than some
positive instances. A reliable classifier abstains from
these uncertain instance classifications. It simulates
the behavior of a human expert in fields with high er-
ror costs. For example, in medical diagnosis an expert
does not state a possibly incorrect diagnosis but she
says “I do not know” and performs more tests.

Similar to Ferri and Hernández-Orallo (2004), we de-
fine a reliable classifier as a filtering mechanism with
two thresholds a > b. An instance x is classified as pos-
itive if l(x) ≥ a. If l(x) ≤ b, then x is classified as neg-
ative. Otherwise, the instance is left unclassified. Un-
classified instances can be rejected, passed to a human,
or to another classifier (Ferri et al., 2004). Pietraszek
(2005) chooses a and b to minimize expected cost, also
considering the abstention costs. Here, we focus on
performance on the classified instances.

Counts of unclassified positives and unclassified neg-
atives are denoted by UP and UN , respectively. Un-
classified positive rate and unclassified negative rate
are then defined as follows:

upr = UP
TP+FN+UP (6)

unr = UN
FP+TN+UN (7)

We define thresholds a and b to correspond with points
(fpra, tpra) and (fpr b, tpr b), respectively. The ROC
curve of the reliable classifier is obtained by skipping
the part between (fpra, tpra) and (fpr b, tpr b). By def-
inition we have:

upr = tpr b − tpra (8)
unr = fpr b − fpra (9)

The transformation from the original ROC curve to
that of the reliable classifier is given in Theorem 2.

Theorem 2 If the part between points (fpra, tpra)
and (fpr b, tpr b) of an ROC curve is skipped with 0 <
upr < 1 and 0 < unr < 1, then points (fprx, tprx)
on this curve between (0, 0) and (fpra, tpra) are trans-
formed into points (fpr ′x, tpr ′x) such that:

fpr ′x =
fprx

1− unr
, tpr ′x =

tprx

1− upr
(10)

Figure 5. ROCCH 2 is obtained by not covering the part
between (fpra, tpra) and (fprb, tprb) of ROCCH 1. The
length of the horizontal (vertical) line below ROCCH 1
equals unr (upr).

Points (fprx, tprx) between (fpr b, tpr b) and (1, 1) are
transformed into points (fpr ′x, tpr ′x) such that:

fpr ′x = 1− 1− fprx

1− unr
, tpr ′x = 1− 1− tprx

1− upr
(11)

The proof is in Vanderlooy et al. (2006). Note that
the transformations of (fpra, tpra) and (fpr b, tpr b) are
the same point on the new ROC curve. Figure 5
shows an example of a transformation. The intersec-
tion points are obtained with precision isometrics for
c = 1, precc

p = 0.93, and precc
n = 0.87.

Theorem 3 If the original ROC curve is convex, then
the ROC curve obtained by not considering the points
between (fpra, tpra) and (fpr b, tpr b) is also convex.

We proved this theorem in Vanderlooy et al. (2006).
There, we also analyzed when and where the original
ROCCH is dominated by that of the reliable classifier.
Note that the underlying data of both ROCCHs can
have a different class distribution when upr 6= unr .
For skew insensitive metrics or when upr ≈ unr , dom-
inance of a ROCCH will immediately result in perfor-
mance increase. In the next Section 8 we analyze when
the skew sensitive performance metrics in Table 1 can
be boosted by abstention.

8. Effect on Performance

We defined (fpra, tpra) and (fpr b, tpr b) as intersection
points of an ROCCH and positive and negative iso-
metric, respectively. The type of isometrics defines
the effect on the performance of the reliable classifier
corresponding to (fpr ′a, tpr ′a) as defined in Theorem 2.



8.1. Precision

Theorem 4 provides an easy and computationally effi-
cient approach to construct a classifier with a desired
precision per class.

Theorem 4 If points (fpra, tpra) and (fpr b, tpr b) are
defined by an precc

p-isometric and precc
n-isometric re-

spectively, then the point (fpr ′a, tpr ′a) has the precisions
of both isometrics.

The proof of this theorem and also of following the-
orems are included in the appendix. Since isometrics
of skew sensitive performance metrics are used, the
approach does not commit to costs and class distribu-
tions3. Thus, when the application domain changes
a new reliable classifier can be constructed from the
original ROC curve only.

Theorem 4 together with the next Theorem 5 provides
an approach to construct a classifier with desired ac-
curacy. This approach overcomes the problems with
accuracy explained in Section 4. From the proof it
follows that if the precisions are not equal, then the
accuracy is bounded by the smallest and largest pre-
cision.

Theorem 5 If point (fpr ′a, tpr ′a) has precc
p = precc

n,
then the accuracy in this point equals the precisions.

8.2. F -measure

Theorem 6 shows that also the F -measure can be
boosted on both classes if a part of an ROC curve is not
covered. In this case, the resulting classifier has higher
performance than defined by both isometrics. Figure
6 gives an example where positive (negative) perfor-
mance is increased with approximately 5% (10%).

Theorem 6 If points (fpra, tpra) and (fpr b, tpr b) are
defined by an F c,α

p -isometric and F c,α
n -isometric re-

spectively, then the point (fpr ′a, tpr ′a) has higher per-
formance than defined by both isometrics.

8.3. Generalized m-estimate

To analyze the effect of abstention on the gm-estimate,
we can consider the number of a priori classified in-
stances m to be fixed or the parameter m̂ to be fixed.

Consider the case when m is not changed after trans-
formation. In this case upr and unr can change the
distribution of a priori instances over the classes. If
upr < unr , then the distribution of these instances in

3Remember that, although our proofs use the simplest

case c = N
P

, the results are also valid for c = c(p,n)
c(n,p)

N
P

.

Figure 6. Designing with F -measure isometrics: F 2,1
p =

0.72 in (fpra, tpra) and F 2,1
n = 0.75 in (fprb, tprb). The

reliable classifier represented by (fpr ′
a, tpr ′

a) has F 1.84,1
p =

0.7693 and F 1.84,1
n = 0.8597. The abstention is represented

by upr = 0.1541 and unr = 0.2116.

the positive gm-estimate moves to the true positives
resulting in higher performance. For the negative gm-
estimate, the distribution moves to the false negatives
resulting in lower performance. The case of upr > unr
is the other way around. Therefore, an increase in per-
formance in both classes is only possible iff upr = unr .

For the case when m̂ is not changed after transfor-
mation, a similar reasoning results in improvement of
the positive gm-estimate if upr ≤ unr and tpra ≥
fpra. The latter condition holds for all points on the
ROCCH. Similarly, improvement in the negative gm-
estimate occurs if upr ≥ unr and tpr b ≥ fpr b. Thus,
we find the following theorems for the gm-estimate.

Theorem 7 If point (fpra, tpra) is defined by an
gmc,m̂

p -estimate isometric with m > 0 and if upr ≤
unr, then the point (fpr ′a, tpr ′a) has at least the posi-
tive performance defined by that isometric.

Theorem 8 If point (fpr b, tpr b) is defined by an
gmc,m̂

n -estimate isometric with m > 0 and if upr ≥
unr, then the point (fpr ′a, tpr ′a) has at least the nega-
tive performance defined by that isometric.

Corollary 1 If points (fpra, tpra) and (fpr b, tpr b) are
defined by an gmc,m̂

p -estimate isometric and gmc,m̂
n -

estimate isometric respectively with m > 0 and if
upr = unr, then the point (fpr ′a, tpr ′a) has at least the
gm-estimates of both isometrics.

We suggest to use the gm-estimate for the minority
class only and to use a normal precision for the ma-
jority class. From Theorems 7 and 8, if the minority



Figure 7. Designing with precision and gm-estimate iso-
metrics: prec0.3

p = 0.97 in (fpra, tpra) and gm0.3,0.1
n =

0.55 in (fprb, tprb). The reliable classifier represented by
(fpr ′

a, tpr ′
a) has prec0.3

p = 0.97 and gm0.34,0.18
n = 0.5584.

The abstention is represented by upr = 0.4549 and unr =
0.3763.

class is the positive (negative) class, then we need an
abstention characterized by upr ≤ unr (upr ≥ unr).

Figure 7 shows an example with fixed m and the neg-
ative class as minority class. Therefore, we want that
the gmc,m̂

n -estimate isometric covers a large part in
ROC space and consequently the condition upr ≥ unr
is easily satisfied.

9. Conclusions

A reliable classifier abstains from uncertain instance
classifications. Benefits are significant in application
domains with high error costs, e.g., medical diagnosis
and legal practice. A classifier is transformed into a
reliable one by not covering a part of its ROC curve.
This part is defined by two isometrics indicating per-
formance on a different class.

In case of a classifier and corresponding reliable clas-
sifier, dominance of an ROC curve immediately repre-
sents an increase in performance if the underlying data
of both curves have approximately equal class distribu-
tions. Since this assumption is too strong, we analyzed
when performance can be boosted by abstention.

We showed how to construct a (reliable) classifier with
a desired precision per class. We did the same for
accuracy. For the F -measure a classifier is obtained
with at least the desired performance per class. To
prevent a possible performance decrease with the gm-
estimate, we propose to use it for the minority class
and to use a normal precision for the majority class.

We may conclude that the proposed approach is able to
boost performance on each class simultaneously. Ben-
efits of the approach are numerous: it guarantees a
classifier with an acceptable performance in domains
with high error costs, it is efficient in terms of time
and space, classifier independent, and it incorporates
changing error costs and class distributions easily.
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A. Proofs

Proof of Theorem 4
The positive precisions in (fpra, tpra) and (fpr ′a, tpr ′a)
are defined as follows:

precc
p (fpra, tpra) =

tpra

tpra + c fpra

(12)

precc′

p

(
fpr ′a, tpr ′a

)
=

tpr ′a
tpr ′a + c′ fpr ′a

(13)

with c′ = c 1−unr
1−upr . Substitution of Eq. 10 in Eq. 13

results in Eq 12. In a similar way, Eq. 11 is used to
show that the negative precisions in (fpr b, tpr b) and
(fpr ′b, tpr

′
b) are the same. The theorem follows since

(fpr ′b, tpr
′
b) = (fpr ′a, tpr ′a). �

Proof of Theorem 5
Since the positive precision and negative precision in
(fpr ′a, tpr ′a) are equal, we can write:

tpr ′a = a
(
tpr ′a + c′ fpr ′a

)
(14)

tnr ′a = a

(
tnr ′a +

1
c′

fnr ′a

)
(15)

with a = precc′

p = precc′

n . It follows that:

tpr ′a + c′ tnr ′a =

a
(
tpr ′a + c′ fpr ′a + c′ tnr ′a + fnr ′a

)
(16)

or equivalently:

a =
tpr ′a + c′ tnr ′a

tpr ′a + c′ fpr ′a + c′ tnr ′a + fnr ′a
(17)

and this is the accuracy with skew ratio c′. �

Proof of Theorem 6
The positive F -measures in (fpra, tpra) and
(fpr ′a, tpr ′a) are defined as follows:

F c,α
p (fpra, tpra) =

(
1 + α2

)
tpra

α2 + tpra + c fpra

(18)

F c′,α
p

(
fpr ′a, tpr ′a

)
=

(
1 + α2

)
tpr ′a

α2 + tpr ′a + c′ fpr ′a
(19)

Using Eq. 10 and c′ = c 1−unr
1−upr , the right-hand side of

Eq. 19 becomes: (
1 + α2

)
tpra

α2(1− upr) + tpra + c fpra

(20)

It follows that F c′,α
p

(
fpr ′a, tpr ′a

)
> F c,α

p (fpra, tpra)
since 0 < upr < 1. The case of the negative F -measure
is similar. �

Proof of Theorem 7
The positive gm-estimates in (fpra, tpra) and
(fpr ′a, tpr ′a) are defined as follows:

gmc,m̂
p (fpra, tpra) = tpr+m̂

tpr+c fpr+m̂(1+c) (21)

gmc′,m̂′

p

(
fpr ′a, tpr ′a

)
= tpr ′+m̂′

tpr ′+c′ fpr ′+m̂′(1+c′) (22)

with m̂ = m
P+N , and c′ = c 1−unr

1−upr .

Case 1: m is not changed after transformation
In this case we can write m̂′ = m

P (1−upr)+N(1−unr) .
Substitution of Eq. 10 in Eq. 22 results in the follow-
ing right-hand side:

tpr + m 1−upr
P (1−upr)+N(1−unr)

tpr + c fpr + m̂(1 + c)
(23)

Clearly, gmc′,m̂′

p

(
fpr ′a, tpr ′a

)
≥ gmc,m̂

p (fpra, tpra) iff:

1− upr

P (1− upr) + N(1− unr)
≥ 1

P + N
(24)

This holds iff upr ≤ unr .

Case 2: m̂ is not changed after transformation
Substitution of Eq. 10 in Eq. 22 with fixed m̂ results
in the following right-hand side:

tpr + m̂(1− upr)
tpr + c fpr + m̂(1− upr + c(1− unr))

(25)

Straightforward computation results in
gmc′,m̂

p

(
fpr ′a, tpr ′a

)
≥ gmc,m̂

p (fpra, tpra) iff:

m̂(unr − upr) + (tpra unr − fpra upr) ≥ 0 (26)

This holds if upr ≤ unr and tpra ≥ fpra.�

Proof of Theorem 8
The proof is similar to that of Theorem 7. �
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Abstract

Ordinal regression learning has characteris-
tics of both multi-class classification and met-
ric regression because labels take ordered,
discrete values. In applications of ordinal re-
gression, the misclassification cost among the
classes often differs and with different mis-
classification costs the common performance
measures are not appropriate. Therefore we
extend ROC analysis principles to ordinal re-
gression. We derive an exact expression for
the volume under the ROC surface (VUS)
spanned by the true positive rates for each
class and show its interpretation as the prob-
ability that a randomly drawn sequence with
one object of each class is correctly ranked.
Because the computation of V US has a huge
time complexity, we also propose three ap-
proximations to this measure. Furthermore,
the properties of VUS and its relationship
with the approximations are analyzed by sim-
ulation. The results demonstrate that opti-
mizing various measures will lead to different
models.

1. Introduction

In multi-class classification labels are picked from a
set of unordered categories. In metric regression labels
might take continuous values. Ordinal regression can

Appearing in Proceedings of the ICML 2006 workshop on
ROC Analysis in Machine Learning, Pittsburgh, USA,
2006. Copyright 2006 by the author(s)/owner(s).

be located in between these learning problems because
here labels are chosen from a set of ordered categories.
Applications of ordinal regression frequently arise in
domains where humans are part of the data gener-
ation process. When humans assess objects for their
beauty, quality, suitability or any other characteristic,
they really prefer to qualify them with ordinal labels
instead of continuous scores. This kind of datasets is
obtained in information retrieval and quality control,
where the user or the human expert frequently evalu-
ates objects with linguistic terms, varying from “very
bad” to “very good” for example. Also in medicine and
social sciences, where many datasets originate by in-
teraction with humans, ordinal regression models can
be used.

In these applications of ordinal regression one is often
the most interested in a subset of the classes. In many
cases these classes of interest are the “extreme” cat-
egories, such as the documents with the highest rel-
evance to the query or the products with the lowest
quality. Moreover, there is often an unequal number
of training objects for the different categories in real-
world ordinal regression problems. The overall classi-
fication rate or mean absolute error are in these cases
not the most pertinent performance measures. Crite-
ria such as the area under the receiver operating char-
acteristics (ROC) curve — which is related to defining
an optimal ranking of the objects — are more appro-
priate. This article aims to discuss possible extensions
of ROC analysis for ordinal regression.

Nowadays the area under the ROC curve is used as a
standard performance measure in many fields where a
binary classification system is needed. A ROC curve is
created by plotting the true positive rate (TPR) versus



ŷ = −1 ŷ = 1
y = −1 TN FP n−
y = 1 FN TP n+

NP PP n

Table 1: Confusion matrix for a two class classification
problem of size n

the false positive rate (FPR). The TPR (or sensitiv-
ity) and the FPR (also known as 1 - specificity) are
computed from the confusion matrix or contingency
table (shown in Table 1). Sensitivity is defined as
the number of positive predicted examples from the
positive class TP divided by the number of positive
examples n+ and specificity is defined as the number
of negative predicted examples TN from the negative
class divided by the number of negative examples n−:

Sens = TPR =
TP

TP + FN
(1)

Spec = TNR = 1− FPR =
TN

TN + FP
(2)

With a classifier that estimates a continuous function
f , the class prediction ŷ for an object x is obtained by
the following rule:

ŷ = sgn(f(x) + b) (3)

The points defining the ROC curve can then be com-
puted by varying the threshold b from the most nega-
tive to the most positive function value and the area
under the ROC curve (AUC) gives an impression of
quality of the classifier. It has been shown [Cortes &
Mohri, 2003,Yan et al., 2003] that the AUC is equiv-
alent to the Wilcoxon-Mann-Whitney statistic:

WMW = AUC(f) =
1

n−n+

n−∑
i=1

n+∑
j=1

If(xi)<f(xj) (4)

The value of the indicator function I will be one when
its argument is true and zero otherwise. The mea-
sure AUC(f) can be seen as a nonparametric estimate
for the probability that the function value of an ob-
ject randomly drawn from the negative class is strictly
smaller than the function value of an object randomly
drawn from the positive class:

AUC(f) = P (f(xi) < f(xj) | yi = −1 ∧ yj = 1)) (5)

2. ROC Measures for Ordinal
Regression

Recently, different approaches have been proposed to
extend ROC analysis for multi-class classification. In

the most general case, the volume under the ROC sur-
face (V US) has to be minimized in multi-class clas-
sification. The ROC surface can be seen as a Pareto
front, where each objective corresponds to one dimen-
sion. In case there are more then two classes (let’s
say r), then the number of objectives depends on the
multi-class method that is used:

• For a one-versus-all method, r functions fk are
estimated that try to separate objects of class k
from the other classes. As a consequence mis-
classification costs for each class are fixed and the
corresponding ROC surface will have r dimensions
representing the true positive rates TPRk for each
class [Flach, 2004]. ROC points are here obtained
by varying the thresholds bk in the prediction rule
ŷ = argmaxkfk(x) + bk.

• For a one-versus-one method, a function fkl is es-
timated for each pair of classes, which allows to
specify the cost for a misclassification of an object
of class k predicted as class l. The corresponding
ROC space is in this case spanned by r(r−1)

2 objec-
tives [Ferri et al., 2003]. A prediction for new in-
stances is done by majority voting over all r(r−1)

2
classifiers based on the outcomes sgn(fkl + bkl).

In ordinal regression the picture is slightly differ-
ent. The vast majority of existing methods for or-
dinal regression — including traditional statistical
methods like cumulative logit models and their vari-
ants [Agresti, 2002], kernel methods [Chu & Keerthi,
2005,Shashua & Levin, 2003] and bayesian approaches
[Chu & Gharhamani, 2005] — fit in general one func-
tion f to the data together with r − 1 thresholds bk

for r ordered classes. New observations can then be
classified by predicting them into the class k for which
it holds that

bk−1 < f(x) ≤ bk with b0 = −∞ and br = +∞. (6)

The simplicity of this kind of models has as disadvan-
tage that one can not control the cost of misclassifying
an object of a given class into another specified class.
In other words, like in one-versus-all multi-class clas-
sification only r objectives can be simultaneously min-
imized. Therefore one could wonder whether a one-
versus-one approach could be useful for ordinal regres-
sion. However, the answer is negative because it would
lead to a more complex model with more variables to
be estimated. Fortunately, Misclassification costs are
always proportional to the absolute difference between
the real and the predicted class, so defining a loss func-
tion with this property will solve the problem [Rennie
& Srebro, 2005].



We will further assume that the misclassification costs
are fixed for each class (they are always to proportional
to the absolute difference between the real and the pre-
dicted label). Like in binary classification, we want a
model f that imposes an optimal ranking of the data
objects. There are several ways to define an optimal
ranking. By analogy with (5) an optimal ranking could
here be defined as a ranking that maximizes the joint
probability that an r-tuple (x1, ..., xr) is correctly or-
dered where each element xk is randomly drawn from
class k. This probability is given by

P (
r−1∧
k=1

(f(xk) < f(xk+1) | yk = k) (7)

and it can be estimated for a given model by count-
ing the number of ordered r-tuples occurring in the
training dataset, i.e.

OrdTuples(f) =
1Qr

k=1 nk

X

yj1<...<yjr

If(xj1 )<...<f(xjr ) (8)

Here nk stands for the number of objects with label k.
It is straightforward to see that OrdTuples(f) reduces
to (4) in case of two classes. Furthermore, we can show
the following.

Theorem 2.1 Given a continuous function f that im-
poses a ranking over a dataset with r ordered classes,
OrdTuples(f) is the volume under the ROC surface
(V USord(f)) spanned by the true positive rates for
each class.

In statistics there has some related work on this topic.
[Dreisetl et al., 2000] derive formulas for the variance
of V USord and the covariance between two volumes
in the three class case. This work is extended to the
general r-class case in [Nakas & Yiannoutsos, 2004].
They conclude that bootstrapping is preferred over U-
statistics for large values of n and r. In this article we
focus more on the use of V USord(f) as performance
measure for ordinal regression problems.

For three ordered classes the ROC surface can be vi-
sualized. We have constructed this ROC surface for a
synthetic dataset. We sampled 3 ∗ 100 instances from
3 bivariate Gaussian clusters with consecutive ranks.
The mean of the clusters was set to (10,10), (20,10)
and (20,20) respectively, σ1 and σ2 were set to 5 for
the first two clusters and were set to 7 for the last
cluster. ρ was fixed to 0. This dataset is visualized in
Figure 1. We used the support vector ordinal regres-
sion algorithm of [Chu & Keerthi, 2005] to estimate

Figure 1: Synthetic dataset

Figure 2: 3D ROC surface for the synthetic dataset

the function f , without looking at the thresholds. The
ROC surface is shown in Figure 2.

Optimizing the AUC instead of accuracy has been
suggested for binary classification, for example with
gradient descent or a quadratic solver. However, the
computation of V USord(f) has a large time complex-
ity. The function I is evaluated

∏r
k=1 nk times, which

is exponential in the number of classes r. As a con-
sequence, minimizing V USord(f) will lead to a hard
optimization problem.

We will look at approximations of V USord(f) which
can be more easily transformed into a suitable loss
function. The biggest problem is that all r − tuples
need to be verified. Much would be gained if only
pairs of function values have to be correctly ranked in
each evaluation of I. This is another way of evaluating
the imposed ranking. We discuss here three approx-
imations of V USord that all reduce to I-evaluations



(a) First ROC-curve

(b) Second ROC-curve

Figure 3: The three dimensional ROC surface approx-
imated by a set of two ROC-curves for the synthetic
dataset.

with only one condition.

The first approximation Cons(f) is directly deduced
from the way the majority of existing ordinal regres-
sion models are constructed. With a function f and
r− 1 thresholds one could look at threshold bk as pro-
viding the separation between the consecutive ranks k
and k + 1. Varying this threshold will change the pro-
portion between objects predicted lower than or equal
to class k and objects predicted higher than class k.
This corresponds to measuring the non-weighted sum
of r− 1 two-dimensional ROC curves representing the
trade-off between consecutive classes:

Cons(f) =
1

r − 1

r−1X

l=1

AUCl(f) (9)

AUCl(f) =
1

Pl
i=1 ni

Pn
j=l+1 nj

X

i:yi≤l

X

j:yj>l

If(xi)<f(xj)

The two ROC curves belonging to the synthetic
dataset are shown in figure 3.

For a second approximation of V USord(f) we looked
at the statistical literature. In nonparametric statis-

tics the Jonckheere-Terpstra test is known as a more
powerful alternative for a Kruskal-Wallis test for test-
ing

H0 : µ1 ≤ µ2 ≤ ... ≤ µr (10)

versus the one side alternative

Ha : µ1 ≥ µ2 ≥ ... ≥ µr (11)

if there is a cdf F for which Fk(x) = F (x− µk)). It is
composed of a set of one sided WMW-tests:

JT =
∑
i<j

WMWij (12)

JT computes the WMW statistic for all possible pairs
of classes, which is the same as computing the AUC for
each pair of classes. This has been done for one-versus-
one multi-class classification [Hand & Till, 2001],
which gives rise to the following approximation:

Ovo(f) =
2

r(r − 1)

∑
l<k

AUClk(f) (13)

AUClk(f) =
1

nlnk

∑
i:yi=l

∑
j:yj=k

If(xi)<f(xj)

A third measure could exist of counting the number
pairs that are correctly ranked among all possible pairs
of data objects:

Pairs(f) =
1∑

k<l nknl

n∑
i=1

n∑
j=1;yi<yj

If(xi)<f(xj)(14)

A loss function based on (14) is used in the ordinal
regression method of [Herbrich et al., 2000]. The dif-
ference with Ovo(f) is that here a weighted average of
the ROC areas for each of pair of classes is taken. The
weights are the prior πk probabilities of observing an
object of class k, i.e.

Pairs(f) =
2

r(r − 1)

∑
l<k

πkπlAUClk(f) (15)

3. Simulation experiments

To see the characteristics of the different measures, we
conducted some simulation experiments. In the first
experiment we wanted to find out which values are ob-
tained for different levels of separability and for an in-
creasing number of classes. Therefore we assume that
the function values of the model f can be represented
by a distribution with cdf F (x), in which the function
values for the objects of class k are distributed with cdf
Fk(x) = F (x − kd). Furthermore we chose to sample



Figure 4: Relation between V USord(f) and Cons(f)
for r = 1, ..., 5 and d = 0, ..., 5 with step size 0.25. The
values are averaged over 20 runs.

Figure 5: Relation between V USord(f) and Ovo(f)
for r = 1, ..., 5 and d = 0, ..., 5 with step size 0.25. The
values are averaged over 20 runs.

from a Gaussian distribution with standard deviation
σ = 1. So the function values conditioned on the la-
bels are normally distributed with equidistant ordered
means. Repeatedly 100 data points were sampled from
each class while we increased the distance d between
the means of consecutive clusters. We started at d = 0
(random classifier) and stopped at d = 5 (as good as
perfect separation) with step size 0.25.

The results obtained for V USord(f), Cons(f) and
Ovo(f) are graphically compared. In this simulation
all classes have the same prior of occurring, so Ovo(f)
and Pairs(f) will always have the same value. Conse-
quently the results for Pairs(f) are omitted. The rela-
tionship between V USord(f) and Cons(f) on the one
side and between V USord(f) and Ovo(f) on the other
side are shown in Figures 4 and 5. One can see that,
as expected, the relation between V USord(f) and the
other two measures is without doubt nonlinear. The
expected value for V USord(f) heavily depends on the
number of classes, while this is not the case for the
approximations. The approximations all take an aver-
age over a set of two dimensional ROC-curves, so their
expected value is never lower than a half, irrespective

Figure 6: Relation between Cons(f) and Pairs(f) for
r = 1, ..., 5 and d = 0, ..., 5 with step size 0.25. The
values are averaged over 20 runs.

of the number of classes. Nevertheless, one can also
see that V USord(f) converges rapidly to one when the
distance between the subsequent means increases. In
addition, Cons(f) and Ovo(f) behave quite similar
in this simulation. This is also shown in Figure 6.
Their observed values become more dissimilar when
the number of classes increases.

In a second experiment we wanted to investigate
whether optimizing the various performance measures
would lead to the same model. For two measures M1

and M2 this implies that

∀f, f∗ ∈ H : M1(f) < M1(f∗) ⇔ M2(f) < M2(f∗)(16)
∀f, f∗ ∈ H : M1(f) = M1(f∗) ⇔ M2(f) = M2(f∗).(17)

The following experiment was set up to test whether
this property holds for the four measures. All measures
only quantify the quality of the ordering of a dataset
for a function f . For a dataset of size n there are n!
possible rankings of the objects, so evaluating them all
is computationally intractable. Therefore we sampled
randomly 1000 rankings from all possible orderings of
the dataset. We assumed we had 50 samples per class
with four ordered classes, resulting in a sample size of
200 objects and 200! possible rankings. The results
are given in Figure 7, which shows the distributions
of all measures together with pairwise scatter plots.
All classes again have the same prior of occurring,
so Ovo(f) and Pairs(f) have a perfect correlation.
This is however not true for the other measures. One
can clearly see that for no pair of measures conditions
(16) or (17) hold. In general, V USord(f), Cons(f) and
Ovo(f) will have different maxima over a hypothesis
space H and a given dataset. So, optimizing one of the
proposed approximations of V USord(f) will give rise
to different classifiers.



Figure 7: Histograms and pairwise scatter plots for all the measures.

4. Discussion and further research

In this article we argued that accuracy or mean ab-
solute error are not the most powerful performance
measures to evaluate ordinal regression models when
misclassification costs are not equal for each class or
when the data is unbalanced. Therefore we proposed
some new measures, which extend binary and multi-
class ROC analysis to ordinal regression. They all
measure the quality of the ranking imposed by an or-
dinal regression model. First of all we showed that
counting the number of ordered r-tuples in the rank-
ing is equivalent to the area under the r-dimensional
ROC curve spanned by the true positive rates of all
classes. However, V USord(f) can’t be transformed
easily into a suitable loss function for learning algo-
rithms, so three approximations were also analyzed.
By simulation we showed that these four measures in
general have a different distribution and that none of
them is a monotone function of another. Further re-
search will be devoted to converting measures like the
area under the ROC curve into a loss function for a
learning algorithm and to further analyse the charac-
teristics of the presented measures.
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Abstract

Area under an ROC curve plays an impor-
tant role in estimating discrimination per-
formance – a well-known theorem by Green
(1964) states that ROC area equals the per-
centage of correct in two-alternative forced-
choice setting. When only single data point is
available, the upper and lower bound of dis-
crimination performance can be constructed
based on the maximum and minimum area
of legitimate ROC curves constrained to pass
through that data point. This position paper,
after reviewing a property of ROC curves pa-
rameterized by the likelihood-ratio, presents
our recently derived formula of estimating
such bounds (Zhang & Mueller, 2005).

1. Introduction

Signal detection theory (Green & Swets, 1966) is com-
monly used to interpret data from tasks in which stim-
uli (e.g., tones, medical images, emails) are presented
to an operator (experimenter, medical examiner, clas-
sification algorithm), who must determine which one
of two categories (high or low, malignant or benign,
junk or real) the stimulus belongs in. These tasks
yield a pair of measures of behavioral performance:
the Hit Rate (H), also called “true positive” rate, and
the False Alarm Rate (F ), also called “false positive”
rate. (The other two rates, those of Miss or “false
negative” and of Correct Rejection or “true negative”,
are simply one minus H and F , respectively.) H and
F are typically transformed into indices of sensitivity

Appearing in Proceedings of the ICML 2006 workshop on
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and bias based on assumptions about an underlying
statistical model. A curve c 7→ (F (c),H(c)) in the
ROC (Receiver-Operating Characteristic) space is a
collection of hit and false-alarm rates while the opera-
tor/receiver modifies the cutoff criterion c of accepting
the input stimulus as belonging to one category versus
another; often c is the likelihood ratio of the evidence
favoring the two corresponding hypotheses, or a mono-
tonic transformation thereof. In the machine learning
context, we map the “operator/receiver” in the SDT
sense to a “classification algorithm” or simply an “al-
gorithm”, the “stimulus” as an “input instance” or
simply “instance” which carries one of the two class
labels, and view c as a parameter of the algorithm
which biases the output of the algorithm to favor one
category or the other; the optimal setting of c is related
to the cost structure, i.e., individual payoffs related to
correct and incorrect classifications.

A well-known result in SDT is Green’s Theorem, which
relates the discrimination accuracy performance of an
operator to the area under the operator’s (i.e., the clas-
sification algorithm’s) ROC curve. This so-called ROC
area is thus a compact measure of how discriminable a
classification algorithm is between binary-class inputs.
Consequently, the performance of different algorithms
can be compared by comparing their respective ROC
areas.

Often, algorithms reported in the literature may not
contain a tradeoff analysis of the Hit and False Alarm
rates produced by varying parameters corresponding
to the algorithm’s bias. In these cases, the entire ROC
curve of an algorithm may not be available — in some
cases, only a few or even a single point (called “data
point”) in the ROC space is available. In this case, per-
formance comparison across different algorithms be-
comes a question of comparing areas of possible ROC
curves constrained to pass through these limited data



points.

In the mathematical psychology community, the prob-
lem of estimating area of ROC curves constrained to
pass through a single data point is particularly well
studied (Norman, 1964; Pollack & Norman, 1964; Pol-
lack & Hsieh, 1969; Grier, 1971; Smith, 1995; Zhang
& Mueller, 2005). These estimates of the ROC area
do not assume the ROC curves to arise from any spe-
cific class of parametric models, and so these estimates
are often referred to as a “non-parametric” indices
of an operator’s discriminability (sensitivity).1 Typ-
ically, the upper and lower bounds of discriminabil-
ity were obtained by considering the maximal and
minimum ROC areas among the class of “admissible”
ROC curves satisfying the data constraint. Interest-
ingly, though the basic idea was very simple and ad-
vanced over 40 years ago (Pollack & Norman, 1964),
the popular formula to calculate this index (Grier,
1971), dubbed A′ in psychometrics and cognitive psy-
chology literature, turned out to be erroneous, at least
insofar as its commonly understood meaning is con-
cerned; moreover, its purported correction (Smith,
1995), dubbed A′′, also contained an error. These for-
mulae incorrectly calculated the upper bound of ad-
missible ROC curves, using either an ROC curve that
was not admissible (Pollack & Norman, 1964), or one
that was not the maximum for some points (Smith,
1995). Zhang and Mueller (2005) rectified the error
and gave the definite answer to the question of non-
parametric index of discriminability based on ROC ar-
eas.

In this note, we first review the notion of
“proper” (or “admissible”) ROC curves and prove
a lemma basically stating that all ROC curves are
proper/admissible when the likelihood functions (for
the two hypotheses) used to construct the ROC curve
are parameterized by the likelihood ratio (of those hy-
potheses). We then review Green’s Theorem, which
related area under an ROC curve to percentage cor-
rect in a two-alternative discrimination task. Finally,
we present the upper and lower bounds on a 1-point
constrained ROC area and reproduce some of the basic
arguments underlying their derivation. All technical
contents were taken from Zhang and Mueller (2005).

1Though no parametric assumption is invoked in the
derivation of these indices, the solution itself may cor-
respond to certain models of underlying likelihood pro-
cess, see MacMillan and Creelman, 1996. In other words,
parameter-free here does not imply model-free.

2. Slope of ROC curve and likelihood
ratio

Recall that, in the traditional signal detection frame-
work, an ROC curve uc 7→ (F (uc),H(uc)) is parame-
terized by the cutoff criteria value uc along the mea-
surement (evidence) axis based on which categoriza-
tion decision is made. Given underlying signal distri-
bution fs(u) and noise distribution fn(u) of measure-
ment value u2, a criterion-based decision rule, which
dictates a “Yes” decision if u > uc and a “No” decision
if u < uc, will give rise to

H(uc) = Pr(Yes|s) = Pr(u > uc|s) =
∫ ∞

uc

fs(u)du,

F (uc) = Pr(No|s) = Pr(u > uc|n) =
∫ ∞

uc

fn(u)du.

(1)

As uc varies, so do H and F ; they trace out the ROC
curve. Its slope is

dH

dF

∣∣∣∣
F=F (uc),H=H(uc)

=
H ′(uc)
F ′(uc)

=
fs(uc)
fn(uc)

≡ l(uc) .

With an abuse of notation, we simply write

dH(u)
dF (u)

= l(u) . (2)

Note that in the basic setup, the likelihood ratio l(u)
as a function of decision criterion u (whose optimal
setting depends on the prior odds and the payoff struc-
ture) need not be monotonic. Hence, the ROC curve
u 7→ (F (u),H(u)) need not be concave. We now in-
troduce the notion of “proper (or admissible) ROC
curves”.

Definition 2.1. A proper (or admissible) ROC curve
is a piece-wise continuous curve defined on the unit
square [0, 1] × [0, 1] connecting the end points (0,0)
and (1,1) with non-increasing slope.

The shape of a proper ROC curve is necessarily con-
cave (downward-bending) connecting (0,0) and (1,1).
It necessarily lies above the line H = F . Next we pro-
vide a sufficient and necessary condition for an ROC
curve to be proper/admissible, that is, a concave func-
tion bending downward.

Lemma 2.2. An ROC curve is proper if and only if
the likelihood ratio l(u) is a non-decreasing function
of decision criterion u.

2In machine learning applications, “signal” and “noise”
simply refer the two category classes of inputs, and “signal
distribution” and “noise distribution” are likelihood func-
tions of the two classes.



Proof. Differentiate both sides of (2) with respect to u

dF

du
· d

dF

(
dH

dF

)
=

dl

du
.

Since, according to (1)

dF

du
= −fn(u) < 0,

therefore

dl

du
≥ 0 ⇐⇒ d

dF

(
dH

dF

)
≤ 0

indicating that the slope of ROC curve is non-
increasing, i.e., the ROC curve is proper. �

Now it is well known (see Green & Swets, 1966) that
a monotone transformation of measurement axis u 7→
v = g(u) does not change the shape of the ROC curve
(since it is just a re-parameterization of the curve),
so a proper ROC curve will remain proper after any
monotone transformation. On the other hand, when
l(u) is not monotonic, one wonders whether there al-
ways exists a parameterization of any ROC curve to
turn it into a proper one. Proposition 1 below shows
that the answer is positive — the parameterization of
the two likelihood functions is to use the likelihood
ratio itself!

Proposition 2.3. (Slope monotonicity of ROC
curves parameterized by likelihood-ratio). The slope
of an ROC curve generated from a pair of likelihood
functions (F (lc),H(lc)), when parameterized by the
likelihood-ratio lc as the decision criterion, equals the
likelihood-ratio value at each criterion point lc

dH(lc)
dF (lc)

= lc. (3)

Proof. When likelihood-ratio lc is used the decision
cutoff criterion, the corresponding hit rate (H) and
false-alarm rate (F ) are

H(lc) =
∫
{u:l(u)>lc}

fs(u)du,

F (lc) =
∫
{u:l(u)>lc}

fn(u)du.

Note that here u is to be understood as (in general)
a multi-dimensional vector, and du should be under-
stood accordingly. Writing out H(lc + δl) − H(lc) ≡
δH(lc) explicitly,

δH(lc) =
∫
{u:l(u)>lc+δl}

fs(u)du−
∫
{u:l(u)>lc}

fs(u)du

= −
∫
{u:lc<l(u)<lc+δl}

fs(u)du ' −
∫
{u:l(u)=lc}

fs(u) δu

where the last integral
∫

δu is carried out on the set
∂ ≡ {u : l(u) = lc}, i.e., across all u’s that satisfy
l(u) = lc with given lc. Similarly,

δF (lc) ' −
∫
{u:l(u)=lc}

fn(u) δu .

Now, for all u ∈ ∂

fs(u)
fn(u)

= l(u) = lc

is constant, from an elementary theorem on ra-
tios, which says that if ai/bi = c for i ∈ I
(where c is a constant and I is an index set), then
(
∑

i∈I ai)/(
∑

i∈I bi) = c,

δH(lc)
δF (lc)

=

∫
∂

fs(u) δu∫
∂

fn(u) δu
=

fs(u) δu

fn(u) δu

∣∣∣∣
u∈∂

= lc .

Taking the limit δl → 0 yields (3). �.

Proposition 2.3 shows that the slope of ROC curve is
always equal the likelihood-ratio value regardless how
it is parameterized, i.e., whether the likelihood-ratio
is monotonically or non-monotonically related to the
evidence u and whether u is uni- or multi-dimensional.
The ROC curve is a signature of a criterion-based de-
cision rule, as captured succinctly by the expression

dH(l)
dF (l)

= l .

Since H(l) and F (l) give the proportion of hits and
false alarms when a decision-maker says “Yes” when-
ever the likelihood-ratio (of the data) exceeds l, then
δH = H(l + δl) − H(l), δF = F (l + δl) − F (l) are
the amount of hits and false-alarms if he says “Yes”
only when the likelihood-ratio falls within the interval
(l, l+δl). Their ratio is of course simply the likelihood-
ratio.

Under the likelihood-ratio parameterization, the signal
distribution fs(l) = −dH/dl and the noise distribution
fn(l) = −dF/dl can be shown to satisfy

Es{l} =
∫ l=∞

l=0

lfs(l)dl ≥ 1 =
∫ l=∞

l=0

lfn(l)dl = En{l}.

The shape of the ROC curve is determined by H(l) or
F (l). In fact, its curvature is

κ =
d

dl

(
dH

dF

)
/

(
1 +

(
dH

dF

)2
)

=
1

1 + l2
.



3. Green’s Theorem and area under
ROC curves

The above sections studies the likelihood-ratio classi-
fier in a single-instance paradigm — upon receiving an
input instance, the likelihood functions in favor of each
hypothesis are evaluated and compared with a pre-set
criterion to yield a decision of class label. Both prior
odds and payoff structure can affect the optimal set-
ting of likelihood ratio criterion lc by which class la-
bel is assigned. On the other hand, in two-alternative
force choice paradigms with two two instances, each
instance is drawn from one category, and the opera-
tor must match them to their proper categories. For
example, an auditory signal may be present in one
of two temporal intervals, and the operator must de-
termine which interval contains the signal and which
contains noise. In this case, the likelihood-ratio clas-
sifier, after computing the likelihood-ratios for each of
the instances, simply compares the two likelihood-ratio
values la and lb, and matches them to the two class la-
bels based on whether la < lb or la > lb. It turns
out that the performance of the likelihood-ratio clas-
sifier under the single-instance paradigm (“detection
paradigm”) and under the two-instance forced-choice
paradigm (“identification paradigm”) are related by a
theorem first proven by Green (1964).

Proposition 3.1. (Green, 1964). Under the
likelihood-ratio classifier, the area under an ROC curve
in a single-observation classification paradigm is equal
to the overall probability correct in the two-alternative
force choice paradigm.

Proof. Following the decision rule of the likelihood-
ratio classifier, the percentage of correctly (“PC”)
matching the two input instances to the two categories
is

PC =
∫ ∫

0≤lb≤la≤∞
fs(la) fn(lb) dla dlb

=
∫ ∞

0

(∫ ∞

lb

fs(la) dla

)
fn(lb) dlb

=
∫ lb=∞

lb=0

H(lb) dF (lb) =
∫ F=1

F=0

HdF,

which is the area under the ROC curve lc 7→
(F (lc),H(lc)). �

Green’s Theorem (Proposition 3.1) motivates one to
use the area under an ROC curve to as a mea-
sure of discriminability performance of the operator.
When multiple pairs of hit and false alarm rates
(Fi,Hi)i=1,2,··· (with F1 < F2 < · · · ,H1 < H2 < · · ·)
are available, all from the same operator but under ma-
nipulation of prior odds and/or payoff structure and

Figure 1. Proper ROC curves through point p must lie
within or on the boundaries of the light shaded regions A1

and A2. The minimum-area proper ROC curve through p
lies on the boundary of region I.
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with the constraints

0 ≤ · · · ≤ H3 −H2

F3 − F2
≤ H2 −H1

F2 − F1
≤ ∞,

then it is possible to construct proper ROC curves
passing through these points, and the bounds for their
area can be constructed. The question of finding the
areal bounds of ROC curves passing through a single
data point has received special attention in the past
(since Norman, 1964), because as more data points
are added, the uncertain in ROC area (difference be-
tween the upper and lower bounds of area measure) de-
creases. We discuss the bounds of 1-point constrained
ROC area in the next sections.

4. ROC curves constrained to pass
through a data point

When the data point p = (F,H) is fixed, the non-
increasing property of the slope (Corollary 1) imme-
diately leads to the conclusion that all proper ROC
curves must fall within or on the bounds of light
shaded regions A1 and A2 (shown in Figure 1). This
observation was first made in Norman (1964). The
proper ROC curve with the smallest area lies on the
boundary between I and A1 (to the right of p) and A2

(to the left of p), whereas the proper ROC curve with
the largest area lies within or on the boundaries of A1

and A2.

Pollack and Norman (1964) proposed to use the aver-
age of the areas A1 + I and A2 + I as an index of dis-
criminability (so-called A′), which turns out to equal



Figure 2. Example of a proper ROC curve through p. The
ROC curve C, a piecewise linear curve denoted by the dark
outline, is formed by following a path from (0, 0) to (0, 1−y)
to (x, 1) (along a straight line that passes through p =
(F, H)) and on to (1, 1).
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p = (F, H)

x

y F
1 − H

t1

t2

(0, 1 − y)

(x, 1)

1/2+ (H −F )(1+H −F )/(4H(1−F )) (Grier, 1971).
However, the A′ index was later mistakenly believed to
represent the average of the maximal and minimum ar-
eas of proper ROC curves constrained to pass through
p = (F,H). Rewriting

1
2
((A1 + I) + (A2 + I)) =

1
2
(I + (A1 + A2 + I)),

the mis-conceptualization probably arose from (incor-
rectly) taking the area A1 + A2 + I to be the maximal
area of 1-point constrained proper ROC curves while
(correcting) taking the are I to be the minimal area of
such ROC curves, see Figure 1. It was Smith (1995)
who first pointed out this long, but mistakenly-held
belief, and proceeded to derive the true upper bound
(maximal area) of proper ROC curves, to be denoted
A+. Smith claimed that, depending on whether p is to
the left or right of the negative diagonal H + F = 1,
A+ is the larger of I + A1 and I + A2. This conclu-
sion, unfortunately, is still erroneous when p is in the
upper left quadrant of ROC space (i.e., F < .5 and
H > .5) — in this region, neither I + A1 nor I + A2

represents the upper bound of all proper ROC curves
passing through p.

5. Lower and upper bound of area of
1-point constrained proper ROC
curves

The lower bound A− of the area of all proper ROC
curves constrained to pass through a given point p =

(F,H) can be derived easily (the area labelled as I in
Figure 1):

A− =
1
2
(1 + H − F ).

In Zhang and Mueller (2005), the expression was de-
rived for the upper bound A+ of such ROC area.

Proposition 5.1. (Upper Bound of ROC Area). The
areal upper bound A+ of proper ROC curves con-
strained to pass through one data point p = (F,H)
is

A+ =


1− 2H(1− F ) if F < 0.5 < H ,

1−F
2H if F < H < 0.5 ,

1− 1−H
2(1−F ) if 0.5 < F < H .

Proof. See Zhang and Mueller (2005). �

The ROC curve achieving the maximal area generally
consists of three segments (as depicted in Figure 2),
with the data point p bisecting the middle segment –
in other words, t1 = t2 in Figure 2. When p falls in
the F < H < 0.5 (0.5 < F < H, resp) region, then the
vertical (horizontal, resp) segment of the maximal-area
ROC curve degenerates to the end point (0, 0) ((1, 1),
resp), corresponding to y = 1 (x = 1, resp) in Figure 2.

With the upper and lower bounds on ROC area de-
rived, Figure 3 plots the difference between these
bounds — that is, the uncertainty in the area of proper
ROC curves that can pass through each point. The fig-
ure shows that the smallest differences occur along the
positive and negative diagonals of ROC space, espe-
cially for points close to (0, 1) and (.5, .5). The points
where there is the greatest difference between the lower
and upper bounds of ROC area are near the lines
H = 0 and F = 1. Thus, data observed near these
edges of ROC space can be passed through by proper
ROC curves with a large variability of underlying ar-
eas. Consequently, care should be taken when trying
to infer the ROC curve of the observer/algorithm when
the only known data point regarding its performance
(under a single parameter setting) falls within this re-
gion.

By averaging the upper and lower bound A = (A+ +
A−)/2, we can derive the (non-parametric) index of
discriminability performance

A =


3
4 + H−F

4 − F (1−H) if F ≤ 0.5 ≤ H ;

3
4 + H−F

4 − F
4H if F < H < 0.5 ;

3
4 + H−F

4 − 1−H
4(1−F ) if 0.5 < F < H .

One way to examine A is to plot the “iso-
discriminability” curve, i.e, the combinations of F and



Figure 3. Difference between the lower and upper bounds
of area of proper ROC curves through every point in ROC
space. Lighter regions indicate smaller differences.
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Figure 4. Iso-discriminability contours in ROC space.
Each line corresponds to combinations of F and H that
produce equal values of A, in increments of 0.05.
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H will produce a given value of A. The topography of
A in ROC space can be mapped by drawing isopleths
for its different constant values. Figure 4 shows these
topographic maps for A.

Finally, since the slope of any proper ROC curve is
related to the likelihood ratio of the underlying dis-
tributions, we can construct an index of decision bias
(Zhang & Mueller, 2005), denoted b, as being orthog-
onal to the slope of the constant-A curve (called b):

b =


5−4H
1+4F if F ≤ 0.5 ≤ H ;

H2+H
H2+F if F < H < 0.5 ;

(1−F )2+1−H
(1−F )2+1−F if 0.5 < F < H .

6. Conclusion

We showed that the relationship of ROC slope to
likelihood-ratio is a fundamental relation in ROC anal-
ysis, as it is invariant with respect to any contin-
uous reparameterization of the stimulus, including
non-monotonic mapping of uni-dimensional and multi-
dimensional evidence in general. We provided an up-
per bound for the area of proper ROC curves passing
through a data point and, together with the known
lower bound, a non-parametric estimate of discrim-
inability as defined by the average of maximal and
minimum ROC areas.
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