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Abstract

Swarm robots collaborating in groups offer various
benefits and can execute a few undertakings that
could be troublesome for a single robot. Regard-
less of headway in Particle Swarm Optimization
(PSO) and Bacterial Foraging Optimization Algo-
rithm (BFOA) for ideal way arranging and for-
mation control separately, their blend on swarm
direction is unexplored. In this paper, we have
proposed a novel transformative based calculation
called, ”PSO assisted Bacterial Foraging” for the
rushing of an automated swarm to a predefined
focus with briefest way while sidestepping snags.
Our calculation utilizes a blend of PSO for profi-
cient and fast path selection and BFOA for keep-
ing up the formation all through the direction. Ex-
perimental results show that intelligent switching
of these two competing algorithms produce robust
solution for dynamic path planning as well as for-
mation preserving between the robots in presence
of static obstacles keeping the trajectory path con-
sistent.

1 Introduction

Over decades the regular wonders of swarming have sum-
moned serious research interests in scientific and engineering
fields. Such marvels can be seen in numerous distinctive an-
imals [Derr and Manic, 2009], for example, herds of relocate
feathered creatures,schools of reef fish. The aggregate gath-
ering practices of these species are accepted to have certain
focal points over individual ones, for instance, expanding the
survival chances for the entirety amass under the risk from
predators.

In a stationary circumstance (where obstacles are static),
utilization of a group of robots to complete an errand has a
few essential angles, for example, path planning, proficient
robot correspondence, impediment evasion and so on [Arai et
al., 2002],[Sheng et al., 2006]. Every robot is outfitted with
sensors that can recognize neighboring agents and impedi-
ments inside a specific breaking point yet with some error
[Liu et al., 2003]. Proportionately, it can have a few meth-
ods for correspondence which can be utilized to discover the

places of different robots inside this restrain so that appropri-
ate formation with efficient path planning among the robots
is conceivable to assemble. It is normal that position can be
evaluated accurately. Every robot has the information about
the position of all other agents in the group. As a general rule
the robots, with inbuilt sensors can assess the route work with
regard to every one of the impediments. Afterward if a robot
detects more snags, this can be suited in the guide and the
route capacity is recalculated.

Thusly, with a particular objective to fabricate the produc-
tivity of multi-robot systems, and to maintain a strategic dis-
tance between agent crashes amid mission, it is fundamen-
tal to develop a coordination technique among the robot in
the swarm [Panigrahi et al., 2014]. Coordination procedures
for multi-robot systems describe how a gathering of homoge-
neous robots experience a domain without colliding with im-
pediments or other robots along their ways [Roy, 2013],[Roy
and Maitra, 2013]. Self-organizing [Balch and Arkin, 1998]

structures are rash, they are not composed or controlled by
any specialist or subsystem, and are directed by the individual
exercises of the operators. The resulting association is totally
decentralized and conveyed over all operators of the system.
Gathering of self-sorting out robots look like swarms as they
go over the earth, where each robot upgrade its position with
the end goal that it could keep up a shielded partition from
neighboring robots [Balch and Hybinette, 2000]. The swarms
similarly change their pattern to suit the requirement for vari-
eties in the working environment. This rule would permit the
swarm fit into slender sections and to circumvent irritating
hindrances. Moreover, with a specific objective it might be
impossible for the swarm to overcome certain complex envi-
ronment. There must be some reserve objective which needs
to follow in unavoidable situation so that overall situation is
overcome [10].

The rest of the paper is organized as follows: in section 2,
we have discussed about the literature survey. The swarm
robotic mathematical model as well as the self-organizing
(neighboring based)formation control strategy are described
in section 3. The problem is formulated in section 4. The
overview of PSO assisted BFOA is defined in section 5. Sec-
tion 6 includes the performace comparison along with some
selective yet significant simulation results. Section 7 has con-
cluded the present work.



2 Literature Survey

Organically enlivened arrangements mimic productive group-
ings of animals in nature, for instance, rushing winged ani-
mals, scavenging bugs, tutoring fish, and swarming bumble
bees. These sorts of developments regularly apply in self-
arranging standards [Gazi, 2005]. In a self-association cal-
culation, the judgments of fragments are left hazy, and these
parts are required to mastermind themselves until they shape
a system that has the pined for helpfulness. In [Yoshioka
and Namerikawa, 2008], the paper portrays arrangement con-
trol procedures with Virtual Structure (VS) for multi-vehicle
frameworks. A few control laws are presented for organized
multi vehicle framework keeping in mind the end goal to ac-
complish VS accord, VS running and VS rushing with impact
shirking. The asymptotic soundness of the controller is like-
wise demonstrated. In [Su et al., 2009], the creators demon-
strate that the Olfati-Saber [Olfati-Saber, 2006] rushing cal-
culation still enables all the educated operators to move with
the pined for relentless speed, and a clueless specialist to in
like manner move with the same looked for speed if the ed-
ucated operators can affect it now and then in the midst of
the progression. Numerical reproduction demonstrates that
a little no of educated operators can realize most of the spe-
cialists to move with the looked for speed and the greater the
educated gathering is the more noteworthy piece of operators
will move with the fancied speed. In the situation where the
virtual pioneer goes with a differing speed, a proposed ac-
climation to the Olfati-Saber calculation [Olfati-Saber, 2006]

shows that the consequent count engages the asymptotic after
of the virtual pioneer. That is, the position and speed of the
focal point of mass of all operators will focalize exponentially
to those of the virtual pioneer. The united rate is also given.
In [Tanner et al., 2003], control law for crash evasion and
union of a swarm is determined. In [Lei et al., 2008], creators
utilize swarm rushing control technique to execute Reynolds
biods demonstrate among the multi-robots. A stable running
con trol law with the assistance of chart theoretic approach
is ascertained to build up a craved shape, while every one of
operators’ speeds and positions merge to the same. Reenact-
ment in Player/Stage shows that proposed procedure can be
productively connected to multi-robot arrangement control is-
sue.

Contribution: In the paper [Roy et al., 2016], formation
control strategy is built in view of ’attraction-repulsion’ tech-
nique. The proposed controller is droved by two understood
transformative systems, to be specific, Bacterial Foraging Op-
timization Algorithm (BFOA) and Particle Swarm Optimiza-
tion (PSO). We observe some intriguing outcomes; mechan-
ical swarm when left by BFOA accomplishes strict forma-
tion all through the adventure, however with expanding mul-
tifaceted nature of the earth, the effectiveness of the frame-
work diminishes. While the framework delivers least path
length with no arrangement when left by PSO. The above
perceptions propel us to develope a fusion methodology for
repaying the above issues.

The success rate of BFOA (56%) to reach to the desired lo-
cation is very less when compared with PSO (100%). But
BFOA promises strict formation throughout the trajectory

while PSO declares shortest path. The fusion of BFOA and
PSO produce higher success rate than BFOA but formation in
most of the journey is not maintained. To develop all require-
ment, we switch PSO and BFOA intelligently, namely PSO
assisted BFOA for increasing the accuracy and efficiency. It
guarantees higher success rate than BFOA, lower path length,
and maintains formation (most of the journey). We also
present an extensive statistical analysis and simulation results
to differentiate the performance of PSO and BFOA.

3 Swarm Mathematical Model

Let there be total N identical swarm in a 2D plane, then
dynamics of each agent(considering point-mass) can be de-
scribed by [Liu and Passino, 2004];
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of ith agent. The relative position vector between ith and jth

agent can be expressed as xij = xi − xj .
Consider the interaction between agent-to-agent and

agent-to-obstacle are ”attraction-repulsion” type. Attrac-
tion function [Gazi and Passino, 2002] depicts that each
agent wants to maintain a constant distance to every other
neighbors for achieving grouping and cohesion whereas
repulsion function is for avoiding inter-agent and agent-
obstacle collision. Attraction function can be represented as
−kipxij (kip > 0 is the strength of attraction) and repulsion

function [Gazi and Passino, 2002] can be represented by kir

exp(
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ris > 0 is the repulsion region). Then the control input for
each agent can be defined by;
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where kip, kiv are position and velocity attraction gains, epi(=
xi − x̄) and evi(= vi − v̄) are the position and velocity error
of the ith agent from the average position and velocity of the
swarm respectively.

3.1 Neighbors Based Formation Control

Formation control is a coordinated control for a fleet of robots
so that they maintain a desired spatial pattern throughout
entire journey [Roy and Maitra, 2013]. The robots can move
together without collision and form certain pattern/formation
to perform the task better. Control of dynamics of individual
members of the formation so that the formation shows
the desired motion characteristics as a whole. The control
input for maintaining a certain formation is well known
neighbor-based law [Roy, 2013], decribed by

ui = −
∑

j∈Ni

N−1
∑

m=0

km(x
(m+1)
i − x

(m+1)
j ) (4)



where k0, ..., k(n−1) are the nonzero feedback gains. Com-
baining the euqations (3) and (4) constitute the control law
for the overall system.

4 Problem Formulation

To evaluate the next positions of each member of the swarm
from their current positions in a given environment with static
obstacles, the following approximations is made to validate
the path planning problem.

• Robots are of the same model and satisfy non-slipping
and pure-rolling constraints.

• The present location of each agent is known with respect
to the given frame of reference.

• Each agent can exchange necessary information via
communication equipment.

Let fg(x
t
i) is the fitness function that determines the distance

of ith agent from target zone (xg) at t instances which can be
expressed as for N agents;

fg(x
t) =

√

√

√

√

N
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Let fo(x
t
i) is the fitness function corrosponds to the hin-

drance’s location and neighbor’s-agent position. Consider
di′j′ is the distance between ith and jth agent’s next posi-
tion. Then the constrants that the agent will not hit its kin is
given by [Chakraborty et al., 2008]; di′j′ − 2rs > 0. Then
fo(x
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N
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(
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where di,obs is the distance of the nearest obstacle from the

ith agent and fob(= 6200) is the scale factor in our experi-
ment.

For successful formation control, F (xt
i) should be mini-

mized for various values of gains (equation 4). Therefore, the
overall fitness function can be written as;

f = fg(x
t) + fo(x

t) + F (xt) (7)

which needs to be minimized based on the current positions
of the robots with respect to their target zone, constrained
by neighbor-agents/obstacles in their trajectory and formation
breaking to avoid such obstacles and inter-agent collision.

5 PSO assisted Bacterial Foraging

Optimization Algorithm

BFOA [Roy, 2013] is a meta-heuristic inspired from the for-
aging behavior of E. coli bacteria; in the nature once a bacte-
ria reaches to the desired location, it should attract the others
so that the whole swarm converge to the same. The main ad-
vantage of this technique is formation control i.e. throughout
the trajectory they maintain a specific formation. On the other
hand, PSO [Roy and Maitra, 2013] is another search method
which is able to enhance the performance of the system with

optimum result. The key idea of PSO assisted BFOA consists
of combining these two approaches together in which PSO
ensures a fast convergence towards optimal path solution and
BFOA is acting to maintain the formation throughout the tra-
jectory.

PSO assisted BFOA Algorithm

Figure 1 represents the flowchart of our proposed algo-
rithm. The deatils is written below;

Step 1: Parameter Initialization: Initialize the no of agent
in the swarm, initial position of each agent, goal position, no
of particles in PSO and no of bacteria in BFOA.

Step 2: Path Selection: The bacteria search for the shortest
path in the environment from the start point to goal position
with formation control strategy. This step is divided into two
parts; first part is responsible to minimize/maximize the fit-
ness function and second part is responsible for evaluating
the optimum value of the gains.

1st part: BFOA is started to minimize the goal function
and to maximize the obstacle function.

2nd part: Attraction gain, formation gain, velocity damp-
ing gain, repulsion gain are evaluated based on the current
fitness value.

Step 3: Path Updating: Next position and velocity of every
agent is updated depending on the previous step. But often
the swarm is unable to cross obstacles with maintaining for-
mation. In such situation the system has to break the forma-
tion to evade the obstacle (which is the demerit of BFOA).

Step 3.1: Obstacle Avoidance using PSO: If goal is not
reached and previous position of the each agent is same as the
next position, then it can be concluded that BFOA has failed.
In such condition, PSO is started for some random duration
to avoid the obstacle. This algorithm is divided in three part:

1st part: PSO is used to minimize the goal function and to
maximize the obstacle function.

2nd part: Attraction gain, velocity damping gain, repulsion
gain are evaluated.

3rd part: According to the value of the previous step, the
next position and velocity is updated for each agent in the
swarm.

Step 3.2: If obstacle is avoided: If the obstacle is avoided
using PSO then the algorithm is shifted to step 2 and continue
until goal point is reached.



Figure 1: PSO assisted BFOA flowchart.

6 Results and Discussions

In this section, the simulation results are presented to evaluate
performance of the proposed algorithm with different envi-
ronment and complexities. Each simulation is repeated for 30
times to record the length of generated path that corresponds
to best or optimal solution.

6.1 Simulation Results of the Proposed Method

Swarm agent position trajectories

x
-5 0 5 10 15 20 25 30 35

y

-5

0

5

10

15

20

25

30

35

Figure 2: Swarm Trajectory of PSO assisted BG.

Figure 2 represents the simulation result of PSO assisted
BFOA. Initially the trajectory of each agent is estimated by
BFOA to ensure strong formation. At t = 2.23 sec the swarm

is forwarding with a ”square” formation. With this specific
pattern they are able to avoid obstacle until t = 9.46 sec. Then
a typical situation arrive, where strict formation is unable to
evade hindrances. In such case, PSO starts automatically. At
t = 11.17 sec the strict formation breaks and the swarm eas-
ily avoid the snags. After avoiding it, BFOA will start again.
The whole system is converged to the previous formation and
reached to the desired location at t = 15.15 sec. Here the main
advantage is that with the effectiveness of PSO, the success
rate is increased to 100%. Moreover, the whole system is able
to move to the desired location with proper formation in most
of the time.

6.2 Path Length Comparison

No of Agents
1 2 3 4

L
e

n
g

th
 o

f 
P

a
th

0

10

20

30

40

50

60

70
Path Length Comparison

BFOA assisted PSO PSO BFOA BFOA combined PSO

Figure 3: Path Length Comparison of Different Algorithms.

Table 1: Path Length Comparison
Environments PSO BFOA Fusion Proposed Method

Free Space 48.27 49.07 48.72 48.24
Low Complex 51 54.29 53.55 52.40

High Complex 56.6 60.75 59.32 57.05

To evalute the effcetiveness of our proposed controller, we
compare the performance with other controller stated in [Roy
et al., 2016] as well as the fusion of these two techniques.
Figure 3 and Table 1 represent the comparison study in term
of path length. In the obstacle-less environment, our pro-
posed controller produces optimal result than others in ev-
ery situation. However, PSO guarantees shotest path length
in all other situation (low obstacle zone and high obstacle
zone), whereas BFOA guarantees strict formation but large
path length throughout the journey.

6.3 Formation Comparison

In this work, our main objective is higher effciency in terms of
formation control and goal-reached accuracy. Goal-reached
accuracy is already accumulated in the previous section. This
section includes the formation comparison with different tec-
niques. Agents to be in strict formation, should always main-
tain a strategic distance from its neighbors. So at tth in-
stances the formation (FE) between all agent can be repre-
sented by;



FE =

N
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i=1

N
∑

j=1,j 6=i

||xt
i − xt

j ||2 (8)

On the off chance that strict formation is kept up, then stan-
dard deviation (STD) of FE will create most reduced score
comparatively most astounding score acquired when no ar-
rangement is kept up. If there should arise an occurrence of
BFOA, as strict arrangement is keep up all through the ad-
venture, the STD of FE deliver a score of 1.98. For PSO, the
score is about 20.67. For fusion case, nearness of hindrances
will break the formation. So in that situation, the score is
about 10.33. In any case, for PSO assisted BFOA, arrange-
ment is kept up until their is an unavoidable tangles. Here,
the score is 3.12 which depicts the formation accuracy for
proposed controller.

To ensure formation, BFOA is better choice whereas op-
timal path length is guaranteed by PSO. Switching between
this two techniques is proposed to ensure optimal path length
as well as formation. From the table itself it has been seen
that everything is ensured with our proposed method. Path
length is slightly greater than PSO but less than BFOA and
fusion, similarly formation is also ensured most of the time.

6.4 Performance Evalution

The formation coefficients of all agents for PSO and BFOA
are compared for analysis. Initially a statistical similarity for
each agent is compared using analysis of variance (ANOVA)
[Hines et al., 2008]. BFOA formation coefficient and PSO
formation coefficients for each agent are tested for null hy-
pothesis H0 : coefficient does not vary across agents. It is
observed that all agent behaviors are same for both cases.

Table 2: ANOVA Results for formation Coefficient
Degree

of
Free-
dom
(DF)

Sum
of

Square
(SS)

Mean
Squ-
are

(MS)

F0

PSO
Formation

Agent 9 0.0025 2.7e-4 1.12
Resi-
duals

9990 2.48 2.5e-4 NA

BFOA
Formation

Agent 9 0.08 9.3e-3 1.3
Resi-
duals

9990 71.38 7.1e-3 NA

The variation between the agents is less which is confirmed
by ANOVA results (Table 2). Hines et al. [Hines et al., 2008]

offers detailed insight of ANOVA in chapter 12. Table 2
uses standard notation as in [Chowdhury et al., 2015], gives
ANOVA results for the tests that includes relevant data, i.e.
degree of freedom (DF), Sum of Squares (SS), Mean Square(
MS) and F statistic (F0). F0 is the ratio of two MS. It is
well known that both MS values follow chi-square distribu-
tion [Chowdhury et al., 2015]. F0 is the ratio of two chi-
square variable, so it follows F-distribution. Hence if H0 is
true, F0 should follow F distribution with degree of freedom
(9, 9990). Then the calculated value of F0 is used to reject H0

at significance level α, if F0 > Fα,9,9990. Now for our case
we choose α = 0.01. Since F0.01,9,9990 = 2.41; this gives
F0 < F0.01,9,9990. So we cannot reject H0 and conclude that
BFOA formation coefficients do not vary significantly across
agents. Tukey HSD test also shows that no significant differ-
ence in mean across agents.

Figure 4: Comparison of PSO and BFOA Formation.

Figure 5: Comparison of PSO and BFOA attraction.

Figure 6: Comparison of PSO and BFOA repulsion.

Figure. 4, 5, 6 show the comparative difference of PSO



and BFOA. Most of the formation coefficients of PSO agents
are in the range 0.1 to 0.2 where as for BFOA, it is in the
range of 1.0 to 1.5. This is responsible for lack of forma-
tion in PSO compared to BFOA. Similarly for attraction and
repulsion coefficient for PSO and BFOA (Table 2) ANOVA
shows that agents (in respective case) are similar in behavior.
Hence these coefficients can be compared using their mean
for each case. Figure. 5 shows less variation for attraction
coefficient for PSO and BFOA. In few instances, the value of
attraction coefficients for PSO are below 1. Agents in either
case have attraction coefficient values in the range 1.0 to 1.5.
So it can be concluded that nature of attraction is similar for
either case.

Now to compare repulsion, Figure. 6 represents the coeffi-
cient variation for PSO and BFOA. Significant difference can
be observed in the coefficient values. Most of the repulsion
coefficients of PSO are in the range 10 to 15 where as for
BFOA it is in the range of 4 to 9. Thus, we can conclude that
PSO can handle repulsion more seriously whereas BFOA is
responsible for formation.

Based on the above results BFOA maintains formation
where as PSO sacrifices formation to avoid obstacle. The
main idea of PSO-assisted BFOA is come to ensure forma-
tion maintaining as well as capable of avoiding obstacles.

6.5 Convergence Analysis of the Proposed
Controller
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Figure 7: Convergence Plot of Different Algorithms.

Authors tried different algorithms in similar condition for
comparative analysis. Figure 7 displays convergence time
(iteration count) for each algorithms. BFOA demonstrates
highest convergence timing because of the strict formation
all throughout the trip, for PSO, the fitness value converges
firstly due to shortest path with no formation while fusion
produce higher convergence than PSO and lower convergence
than BFOA. Whenever swarm stalls out, the convergence plot
will keep up a steady esteem (which is represented by the dark
horizental bit of Fig. 7). In such condition, BFOA can’t drive
the swarm to the objective area. Right then and there, PSO
will begin to drive the group to the coveted zone by break-
ing the formation which decrease the convergence timing for
ensureing higher achievement rate than BFOA.

7 Conclusions

In this paper, we introduce PSO assisted BFOA, a new hybrid
evolutionary approach to solve global path planning prob-
lem with obstacle avoidance in static environment. In our
case, lowest path length and formation maintaining are the
primary objectives. BFOA alone is unable to fulill it. Using
PSO we sacrifice formation only when obstacles cannot be
avoided while maintaining formation. This leads to a new hy-
bridize evolutionary method called PSO assisted BFOA. Our
extensive simulation results conclude that integration these
two methods is helpful to fulfill the above criterion. The im-
plementation of PSO assisted BFOA on a real-world robotic
platform can be done to demonstrate and effectiveness of our
proposed method. Future work can include to study the per-
formance of the same technique in dynamic obstacles contid-
ion.
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