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Abstract
There are two major ways in which intelligence can
emerge in distributed artificial systems: by design
or, alternatively, due to simple ad-hoc interactions
between the agents without prior coordination. At
present, there is no clear measure of intelligence for
state-of-the-art artificial agent behaviours operating
in realistic multiagent scenarios. Therefore, possi-
ble emergent intelligence in such systems (and its
potential benefits and risks) cannot be anticipated.
This paper gives insights into some general prop-
erties that make a testing environment feasible for
measuring intelligence in multiagent systems and
monitoring their (collective) behaviour. We discuss
some evaluation guidelines and present a prelimi-
nary methodology for evaluating coordination be-
tween interactive agents, and assessing risks that
can potentially arise from multiagent interactions.

1 Artificial Intelligence and Potential Risks:
A Brief Overview

It is known that interaction between agents (whether human,
animal or artificial) can improve their overall performance
and create intelligent collectives. However, phenomena like
the tragedy of the commons [Hardin, 1968] and the prisoners’
dilemma [Rapoport and Chammah, 1965] can arise in sys-
tems or societies of rational agents, where each individual be-
having by doing its best can have undesirable - and sometimes
seriously adverse - implications on safety and resource man-
agement. These problematic scenarios occur between differ-
ent types of agents, whether human or artificial. Examples
include the 2008 US housing crisis [Kotz, 2009] and climate
change, which are cases of the tragedy of the commons.

Distributed artificial agents, like human agents, also (usu-
ally) hold a common pool of resources and have their own
policies that determine how to use these resources, which
can subsequently lead to similar adverse scenarios such as
the ones described earlier [Turner, 1993]. Other important
multi-agent environment settings that are ubiquitous in many
online and web applications must be rapidly investigated, es-
pecially those settings in which artificial agents share and del-
egate rewards which are basically two fundamental models of

how agents are motivated to collaborate. For instance, ma-
chine learning algorithms are extensively used nowadays in
many business and management operations. Given that such
algorithms can share or delegate rewards, it is becoming in-
creasingly complex for human agents to directly control, or
even predict, what is going to happen in an environment in
which nearly all productive work, including management, in-
vestment, and the design of new machines, is being handled
by artificial agents. In fact, nowadays coordination is inher-
ent in an enormous range of research disciplines and applica-
tions from robotics to complex adaptive systems to human-
computer interaction and every-day human interactions. The
Internet of Things (IoT) is a good example of the rapid spread
of coordination between agents (via machine-to-machine and
machine-to-human communication) in the aim of building
smart grids, homes, cities, etc.

Bostrom outlined in his book on Superintelligence
[Bostrom, 2014] many future risks that can arise from intelli-
gent AI agents that can potentially present dire challenges to
humans. Examples of such include artificial agents misiden-
tifying their objectives, resistance to change goals, instru-
mentality (e.g., humans as resources and the paperclip AI
problem) and, more importantly, unpredictability where in-
telligent AI agents cannot be certified for unseen situations.
Solomonoff [Solomonoff, 1967; Dowe, 2013] also warned of
the dangers of a very intelligent machine and discussed in
[Solomonoff, 1985] six future milestones in AI, ranging from
“the development of a very general theory of problem solving
to the creation of machines with capacities well beyond those
of a single human”.

AI risks are not confined to the future. Financial disas-
ters have already occurred due to disruptive and deceitful
artificial agent behaviours (purposely designed by humans)
such as, for example, “the 2010 Crash of 2:45” [Kirilenko
et al., 2017] which was described as one of the most turbu-
lent periods in the history of financial markets. Moreover,
prominent intellectuals such as Stephen Hawking and those
affiliated with the likes of the Future of Humanity and the
Future of Life institutes have repeatedly warned about con-
crete and prominent problems (e.g., see [Dowd, 2017]) of
AI such as machine learning-based systems controlling in-
dustrial processes, health-related systems, and other mission-
critical technology [Amodei et al., 2016]. At the moment, it
is still unclear whether many of these issues originate from



too little or too much machine/artificial intelligence, or alter-
natively as a result of some emergent phenomena from the
interaction of more than one agent.

In this paper, we give insight into some general features
that we believe to be important to make an environment mean-
ingful or feasible for measuring intelligence in a coordinated
multiagent systems. The next section gives a brief back-
ground on some of the intelligence test platforms that have
been recently used to evaluate AI agents. We then present a
few guidelines for evaluating coordination between interac-
tive agents and disclosing some of the potential risks arising
from such interactions. We touch upon some of the argued
ideas relating to AI and safety which might become more and
more relevant along the path to the technological singularity.
Finally, we conclude with a short summary and give direc-
tions for future work.

2 Assessment Tasks and Environments
There are two major ways in which intelligence can emerge
in multiagent systems. The first one is by design, where
agents are put together in predefined settings in such a
way to increase their performance or world utility func-
tion. The second way is when intelligence emerges in the
system due to simple ad-hoc interactions between the dis-
tributed agents, and thus without prior coordination. De-
spite the latest research milestones in artificial intelligence,
there is no clear measure of intelligence for state-of-the-art
AI agent behaviours operating in realistic multiagent scenar-
ios, especially with respect to problems involving hierarchical
tasks requiring some sort of coordination between the agents.
Therefore, possible emergent intelligence in such systems,
and its potential benefits and risks, cannot be anticipated. The
focus on multiagent systems and coordinated agents in partic-
ular is mainly due to their unpredictability. For instance, it is
usually much harder to understand what is going on in sys-
tems of agents (e.g., distributed artificial agents, systems of
neurons making up a human brain, swarms, etc.) than with
one agent. Moreover, it is natural that, under certain circum-
stances, systems with more and more parts to them might be-
come increasingly unstable. Given the very sophisticated and
unpredictable behaviour that can emerge from multiagent co-
ordination, we argue that a methodology for assessing coor-
dination abilities in these systems is inevitable if one wants to
anticipate or gain insight into their potential impact - whether
it is positive or negative.

Many intelligence tests are designed to evaluate individual
agents, and thus (unless they can be extended to multiagent
scenarios, they) can be excluded as appropriate for achieving
the objectives outlined in this paper. Those tests that do al-
low for the evaluation of multiagent systems have limitations.
For instance, many of these tests usually do not take into con-
sideration agent coordination as part of the assessment but
rather simply return an average performance of a group of
evaluated agents over a set of general evaluation tasks (e.g.,
regarding compression [Dowe and Hajek, 1997a; Dowe and
Hajek, 1997b; Dowe and Hajek, 1998; Hernández-Orallo and
Minaya-Collado, 1998; Mahoney, 1999; Hernández-Orallo,
2000], and others [Sanghi and Dowe, 2003]). Recently,

[Hernández-Orallo et al., 2017] reported on a series of new
platforms and events dealing with AI evaluation, in particular
those that may change the way in which AI systems are com-
pared and how their progress is measured. One such platform
is Microsoft’s Project Malmo [Johnson et al., 2016], which
has been looking into the evaluation of collaborative tasks for
AI agents. The project presents a wide range of experimen-
tation scenarios for evaluating reinforcement learning agents
and general AI research over a tasks ranging from naviga-
tion and survival to collaboration and problem solving. Other
interesting evaluation platforms like OpenAI Gym [Brock-
man et al., 2016] and Facebook’s TorchCraft [Synnaeve et
al., 2016] provide environments in which once can evalu-
ate machine learning learning agents over diverse collections
of (reinforcement learning) tasks including some that require
coordination. We have also discussed in our earlier work
on collective (artificial) intelligence [Chmait et al., 2016a;
Chmait et al., 2016b; Chmait et al., 2015], a simple dynamic
interactive setting for measuring the performance of cooper-
ative artificial agents interacting under various cooperation
strategies and group organisational (or network) structures,
and touched upon how studies of intelligence might connect
to different research areas such as business decision-making
[Chmait, 2017]. For a thorough historical background on the
evaluation of intelligence of various cognitive systems (in-
cluding machines) refer to [Hernández-Orallo, 2017], which
provides an integrated view of the evaluation of natural and
artificial intelligence.

The above-described environments are feasible for assess-
ing state-of-the-art (machine learning) agent performances
and perhaps evaluating their social abilities, but little do they
tell us about how well these agents can (specifically) coordi-
nate and the risks that might (or might not) occur as a result
of their (collective) behaviour/operation. Thus, one key ob-
jective is to try to identify multiagent coordination scenarios
that might result in (realistic) undesirable consequences, and
understand how to measure their impact (among other things)
on real world applications.

3 Desired Features For Evaluation of
Distributed Agents and Risks

In order to address the objective just mentioned in the previ-
ous paragraph, the first step is to create a set of testing envi-
ronments with some underlying desired features that make it
possible to:

1. Evaluate when and how coordination can arise from (ad-
hoc) agent interactions.

2. Monitor the performance of groups of interactive
agents over problems specifically requiring coordina-
tion. These problems could range from very simplis-
tic tasks, such as (two or more) robots lifting and mov-
ing a table, to more sophisticated multiagent settings in
which the agents are engaged in N − person prisoners’
dilemma [Colman, 2014, Sec. 8].

3. Identify the factors that influence coordination in agent
collectives.



4. Identify potential risks arising from (rational) agent co-
ordination and the situations that might have led to such
risks (e.g., multiagent configuration settings or unex-
pected changes in the environment). This includes risks
arising from human-machine interaction or any type of
undesirable circumstances from resource depletion, to
safety and denial of service, etc. Risks can further be
classified into different categories corresponding to their
emergency, and urgency of their consequences (e.g.,
their timeliness, urgency of being addressed in the near
future, short term vs. long term consequences).

We define a risk to be any circumstance of non-zero proba-
bility which can adversely affect utility. This includes (e.g.)
a decrease in a quantified utility function or even simply an
inferior location in a (possibly unquantified) partial order of
utilities. As a comparatively simple case in point, we con-
sider the prisoners’ dilemma [Rapoport and Chammah, 1965]
where (e.g.) the prisoners get joint utility (−9,−9) by tak-
ing actions leading to a Nash equilibrium [Maskin, 1999]
whereas the curiously individually sub-optimal (or less se-
cure) strategy of cooperation leads to the outcome (−1,−1)
with all parties better off.

Thus, by developing a proper intelligence test framework
over which interactive agents can be assessed collectively, on
well-defined tasks that specifically require coordination to be
solved, not only can we benefit from measuring the coordi-
nation skills of the agents, but also we can detect some of
the adverse risks that might arise from such types of coor-
dination. In other words, a measurement technique for the
quantitative assessment of coordination between intelligent
distributed agents can be employed to get insights into the
risks that can arise from the interactions of such agents. We
develop these ideas in the next section.

4 Evaluating Coordination and Disclosing
Risks: A Preliminary Methodology

We present a few ideas on how to evaluate the diffi-
culty of problems requiring multiagent coordination over
a collection of subtasks. Based on (algorithmic) infor-
mation theory (AIT) and (Solomonoff-)Kolmogorov com-
plexity [Solomonoff, 1964a; Solomonoff, 1964b; Li and
Vitányi, 2008], LNPPP [Dowe, 2008, Sec. 0.2.7, 1st bul-
let point][Dowe, 2011, Sec. 5.3, p. 936][Dowe, 2013, Sec.
4.7, p. 24] is a method proposed to give universal distribu-
tions over (environments of) statistical and machine learning
problems to compare the efficacy of rival estimators (e.g.,
AIC vs BIC). In essence, LNPPP compares - and ranks - a
weighted sum of the respective penalties (e.g., squared error).
In similar vein, AIT and Kolmogorov complexity have been
used to measure environment complexity [Legg and Hutter,
2007; Hernández-Orallo and Dowe, 2010] and task difficulty
[Hernández-Orallo, 2017]. For more realistic evaluation over
real-world agents in real-world environments and the relevant
spatio-temporal considerations, it appears appropriate to con-
sider issues of (redundant TMs and) resolution [Dowe, 2008,
Sec. 0.2.7, p. 544, col. 2][Hernández-Orallo and Dowe,
2010, p. 1514, footnote 6][Dowe, 2013, sec. 4.4][Dowe and
Hernández-Orallo, 2014, Sec. 5 and elsewhere].

Earlier work on the performance of multiagent system
[Chmait et al., 2016a; Chmait et al., 2015] showed that
groups do not always outperform the same selection of agents
working in isolation as commonly presumed. Coordination
was found to be a major factor among others controlling the
performance of these groups. Many tasks and problems that
require coordination can be used to evaluate a group of sub-
jects. Nevertheless, quantitatively measuring coordination
between interactive agents can be a very difficult task for sev-
eral reasons. For instance, formalising the assessment tasks
or problems that require coordination is not trivial. While hu-
mans and some non-human animals (e.g., apes and elephants)
possess mirror self-recognition (MSR) abilities [Plotnik et al.,
2006] which are partially responsible for their complex so-
ciality and cooperation skills, in many cases, artificial agents
need to be fed information about their environment in ad-
vance using advanced knowledge representation techniques.

In order to design and implement a practical new intelli-
gence test framework that will particularly allow for the mea-
surement of coordination between various types of agents,
important problems in AI that require coordination must be
identified and presented to interactive artificial agents in the
form of intelligence tests, in such a way that payoff only oc-
curs if two or more agents perform a particular sequence of
actions adhering to some coordination scheme that is neces-
sary to solve the task. To further assess the risks resulting
from agents actions, the environment in which they operate
should also be designed to respond to their behaviour and ac-
tions (e.g., resources might diminish, parameters of the en-
vironment could vary according to the sequence of actions
of the agents). In addition, testing can be performed in an
even more heterogeneous setting where the agents don’t have
a common reward function and/or actions and observations of
their environments.

We propose a preliminary methodology to achieve the
above objectives. The first step is to outline the set of impor-
tant multiagent problems requiring coordination that can re-
alistically or theoretically be performed by a group of interac-
tive AI agents. We denote this set by Pall. Assuming that we
have identified this set of meaningful problems, we randomly
sample a subset P⊂ Pall, and proceed by analysing the hy-
pothetical difficulties of the problems in P , where a problem
p ∈ P is a collections of n > 1 subtasks {t1, t2, . . . , tn} to
be solved via multiagent coordination. An example is given
in Figure 1. The problem difficulty, which is categorised into
four difficulty levels: very low, low, high and very high, is a
function of the complexity of the tasks incorporated in that
problem1. The number of such tasks is depicted on the y-axis

1Each data point appearing in Figure 1 (top) corresponds to a
problem, which in turn is a collection of tasks that are to be solved
via multiagent coordination. There are 10000 synthetic data points
randomly generated using the Normal distribution with mean µ
equal to 14 and a standard deviation σ of 3. For simplicity, the
problem difficulty was calculated as the product of the total number
of tasks in the problem and their maximum task complexity. How-
ever, for real data, the problem difficulty should rather be a func-
tion of its underlying tasks and their individual complexities. The
difficulties were further categorised into four groups using different
thresholds. For instance, very low, low, high and very high difficulty
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Figure 1: The top plot shows the hypothetical difficulties of (a
sample drawn from the set of) synthetic important problems
in AI measured as a function of the number of tasks incor-
porated in the problems (y-axis), and their theoretical com-
plexities (x-axis) [Refer to footnote 1]. The Kernel Density
Estimation (KDE) (or the probability density function esti-
mate) of such problems is also illustrated in the bottom plot,
showing higher concentration for problems consisting of 16
to 18 tasks with complexities within the range [13, 15].

of Figure 1 (top), while the bound on the tasks’ individual
theoretical complexities is represented on the x-axis of the
same plot. For example, the problem X that is depicted in
Figure 1 (top) corresponds to a collection of n = 20 tasks
(requiring multiagent coordination to be solved) of complex-
ities less than or equal to (a hypothetical value of) 13, assum-
ing that we have a flexible complexity scale with which we
can formally assign complexity values to different types of
tasks. It is reasonable to presume that the problem difficulty
correlates with its underlying number of tasks and their com-
plexity. One could further analyse the densities (or the proba-
bility density function estimate) of such problems in order to
identify the most frequent ones, and perhaps categorise them

problems are respectively those with difficulties that are (i) within
the 1st quantile of the (difficulty) distribution, (ii) between the 1st
quantile and the median, (iii) between the median and the 3rd quan-
tile and (iv) beyond the 3rd quantile.

according to their timeliness and the type of tasks they re-
quire to be solved, etc. Subsequently, intelligence tests would
be developed to assess different types of interactive artificial
(and hybrid human-machine) agent groups over a similar set
and number of tasks requiring coordination. The behaviour
and performance of the evaluated agents is monitored along
with other relevant factors such as: the consumed resources
within a period of time, the disclosure of conflicts in decision-
making (especially between human and AI agents) and coali-
tion formation based on different opinions, along with many
other safety-related factors (e.g., blocking rewards from, and
taking adverse actions against, other agents sharing the envi-
ronment).

Moreover, considering the two different ways that can lead
to multiagent coordination, the same groups of agents are
tested in two different settings where, in the first one, they
are designed to coordinate in order to solve the problem tasks
whereas, in the second one, they are monitored across various
group organisational structures to detect the presence of ad-
hoc coordination and unexpected collaborative interactions.
Finally, all undesirable scenarios recorded from the previous
simulations are analysed and linked to real-world applica-
tions/scenarios in which they might occur. Further efforts are
required to devise new methodologies to overcome and avert
such scenarios.

In fact, some multiagent approaches to avoid undesirable
effects (e.g., make sure a human is not blocked by an agent
from shutting the agent down) were discussed in [Amodei
et al., 2016, Secs. 3 and 4] such as the Cooperative In-
verse Reinforcement Learning [Hadfield-Menell et al., 2016],
and avoiding reward hacking. These can be thought of as
some of the example problems illustrated in Figure 1 (top), in
which case the tasks presented to the agents are well-known
and properly defined in the purpose of monitoring a partic-
ular aspect of their behaviour (e.g., hacking or blocking re-
wards). Identifying and averting the underlying risks in these
scenarios is relatively easier than in the case where agents
might have developed ad-hoc coordination strategies, which
can lead to unexpected outcomes.

5 Along the Path to the Technological
Singularity

Not all speculations concerning superintelligent machines are
pessimistic [Good, 1965]. In the last decade, research on
AI safety has become popular among academic researchers
and professionals and within various industries investing in
state-of-the-art technologies and computer applications such
as Google, Facebook and the Future of Life Institute. Con-
sequently, debates on the ethical and societal implications of
artificial intelligence have taken place inside these communi-
ties, and have also been of interest to the media [Dowd, 2017;
Dowe, 2014].

However, these ideas are not new. They have been around
for a long time from computer science research [Solomonoff,
1967; Solomonoff, 1985] to fiction novels [Asimov, 1950;
Lem, 1964]. The rapid advance in technological innovations,
and the increase in responsibility delegation to more adept
machines, will likely lead to mainstream societal implica-



tions in the near future and hence must be seriously inves-
tigated a priori. In fact, even if one is not particularly a fan
of the idea of singularity, and the existential threat that AI
might pose one day to humanity2, it is irrational to deny risks
that might result from the delegation of responsibility. While
some of these responsibilities are routine mathematical or au-
tomated operations (e.g., calculators, small-scale automated
manufacturing), others like driver-less cars, air traffic control
systems and guided missiles [Dowe, 2014] are a lot more se-
rious and there is much more at stake if such systems fail or
malfunction. Moreover, if they do fail leading to (human) ca-
sualties, financial disasters and so on, an ensuing challenge
is how to determine who takes the responsibility. Likewise,
other problems resulting from the delegation of responsibil-
ity include unemployment, which directly relates to human
social status [Graetz, 2015], and raises many questions re-
garding the future of employment [Frey and Osborne, 2017;
Levy and Murnane, 2012]. For instance, AI might well push
forward the idea of implementing a Universal Basic Income
(UBI) [De Wispelaere and Stirton, 2004]. This has already
triggered some science-fiction-like questions such as “should
robots pay tax?” [Abbott and Bogenschneider, 2017], or have
rights [McNally and Inayatullah, 1988]. Finally, even fault-
less AI systems can result in undesirable outcomes. For ex-
ample, in the medical field, self-taught AI and machine learn-
ing techniques are being used for diagnostics and help in
identifying adequate types of treatments for different patients,
in many cases outperforming doctors [Weng et al., 2017].
However, if physicians increasingly adopt and delegate re-
sponsibility to such machine-learning methods, AI systems
might make expert decisions and take actions on our behalf
that are only locally beneficial but which have unpleasant
consequences on human well-being.

6 Conclusion and Future Work
We have discussed a preliminary methodology for the mea-
surement of coordination in multiagent systems and its use
for disclosing risks that might arise from their interactions.
In brief terms, this can be done by first identifying a set
of coordination problems that are particularly relevant to AI
(and hybrid, human-artificial) agents, and then monitoring the
agents’ behaviours over these problems using an intelligence
test framework. Two main scenarios were taken into con-
sideration, where agents are designed to cooperate to solve
problems and, alternatively, where coordination arises from
the simple ad-hoc interactions between these agents. We gave
insights into some general features that make testing envi-
ronments feasible for evaluating multiagent systems and dis-
cussed some ideas that might be useful for assigning difficulty
measures over coordination problems.

The risks described in this paper belong to a very broad
scope. An important part of our future work is to provide

2One of the main attempts to provide an explanation to the Fermi
paradox (the lack of evidence of other civilisations despite their high
probability estimate of existence) is the theory that advanced civili-
sations are likely to have annihilated themselves as a result of wars,
depletion of resources or malevolent artificial intelligence [Webb,
2002], such as killer robots.

a formal definition of what risk is, which could be in terms
of the environment resources, the priority of decision-making
and conflict resolution, partial ordering of utilities, etc. More-
over, a natural extension of this work is to devise a rigorous
methodology for assessing the seriousness of these risks and
provide (design and implementation) potential solutions in re-
sponse.
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