General Al Challenge
Round One: Gradual Learning

Jan Feyereisl, Matej Nikl, Martin Poliak, Martin Stransky, Michal Vlasak
GoodAl, Prague, Czech Republic*

Abstract

The General AI Challenge is an initiative to encour-
age the wider artificial intelligence community to
focus on important problems in building intelligent
machines with more general scope than is currently
possible. The challenge comprises of multiple
rounds, with the first round focusing on gradual
learning, i.e. the ability to re-use already learned
knowledge for efficiently learning to solve sub-
sequent problems. In this article, we will present
details of the first round of the challenge, its in-
spiration and aims. We also outline a more formal
description of the challenge and present a prelim-
inary analysis of its curriculum, based on ideas
from computational mechanics. We believe, that
such formalism will allow for a more principled ap-
proach towards investigating tasks in the challenge,
building new curricula and for potentially improv-
ing consequent challenge rounds.

1 Introduction

Existing artificial intelligence (Al) algorithms available today
constitute the so-called narrow Al landscape, meaning that
they have been designed, trained, and optimized by human
engineers to solve a single, specific task or a very narrow
collection of closely related problems. Although such al-
gorithms sometimes outperform humans in their established
skill-set, they are not able to extend their capabilities to new
domains. This limits their re-usability, potentially increases
the amount of data required to train them, and leaves them
lacking generality and extensibility to higher order reasoning.

In contrast, algorithms capable of overcoming these limita-
tions could eventually converge towards a repertoire of func-
tionalities akin to a human-level skill-set. Such algorithms
might be able to learn to come up with creative solutions
for a wide range of multi-domain tasks. Systems employ-
ing aforementioned algorithms, oftentimes termed under the
umbrella of general Al systems, are viewed by many as the
ultimate leverage in solving many of humanity’s direst prob-
lems [Bostrom, 2014; Domingos, ; Stone et al., 2016].

*Correspondence: {jan.feyereisl, matej.nikl, martin.poliak, mar-
tin.stransky, martin.vlasak } @ goodai.com

hello world hello world hi
A: abzykvvrrrrbavccccccrrrdcrr
R: ——————- At

Figure 1: Overview of the first round of the General AI Challenge.
The structure of the challenge is hierarchical and multi-objective,
and requires learning at multiple levels to solve a curriculum C.
From fast learning (A.) at individual instance level of each task,
where a ‘good enough’ policy 7; for a stochastic decision process
(SDP) must be found, through shared sub-goal discovery (I3.) across
instances 7y, . . . , T;, leading to one-shot or few-shot learning, all the
way to lower level knowledge and policy transfer (C.) across differ-
ent tasks T; for speeding up convergence towards solutions on yet
unseen tasks. What agent sees is shown at the bottom, i.e. con-
tinual streams of data with no instance or task separation inform-
ation, where I denotes the environment stream, A the agent’s re-
sponse and R the reward.

Gradual learning is an ability of learning systems to learn
in a gradual manner. This is likely a necessary pre-condition
for acquiring such a broad set of skills, striving to solve a
wide range of disparate problems [Rosa et al., 2016; Ku-
maran et al., 2016; Tommasino et al., 2016; Rusu et al., 2016;
Balcan et al., 2015; Pentina and Lampert, 2015; Ruvolo and
Eaton, 2013; Hamker, 2001]. Unfortunately, most existing al-
gorithms struggle to deal with many tasks with different dis-
tributions at the same time and tasks that drift in distribution
from one another [Ditzler et al., 2015] and frequently exhibit
catastrophic forgetting, once applied to new problems, espe-
cially under realistic computational constraints [Rusu et al.,
2016; Fernando et al., 2017; Hamker, 2001; Kirkpatrick et al.,
2016; French, 1999; Gershman et al., 2015]. Gradual learn-
ing is therefore a difficult and unsolved problem that requires
a focused investigation by the community. The General Al
Challenge provides a platform for such directed focus.

2 Round One: Gradual Learning

The aim of the first round of the challenge is to build an
agent that exhibits gradual learning [Rosa er al., 2016] as
evidenced by solving a curriculum of increasingly complex
and disparate sets of tasks. Despite the similarity in name
to gradual learning in [Kumaran et al., 2016] and other re-
lated concepts such as cumulative [Tommasino et al., 2016],
incremental [Rusu et al., 2016], life-long [Balcan et al.,
2015; Pentina and Lampert, 2015; Ruvolo and Eaton, 2013;
Hamker, 2001] or continual learning [Kirkpatrick et al.,
20161, in our setting, the concept encompasses a broader class
of requirements that an agent needs to satisfy. These include:

1. Exploiting previously learned knowledge
2. Fast adaptation to unseen problems
3. Avoiding catastrophic forgetting

The above requirements are expressed in two primary ob-
jectives of the first round, each with its own set of evaluation
criteria:

Objective 1 (Quantitative) Agent capable of passing an eval-
uation curriculum in the shortest number of simulation steps.
Passing requires the ability to exploit previously learned
knowledge and avoid catastrophic forgetting, all within a pre-
defined time limit.

Alternatively, a description of a conceptual method for
achieving gradual learning is also sought:

Objective 2 (Qualitative) An idea, concept, or design that
shows the best promise for scalable gradual learning. A work-
ing Al agent is desirable but not necessary.

The fundamental focus of the challenge is on gradual learn-
ing, i.e. on the efficient re-use of already gained knowledge.
Competitors are required to develop solutions with the fol-
lowing properties:

Property 1 (Gradual Learning) An ability to re-use previ-
ously gained knowledge for the acquisition of subsequent
knowledge to more efficiently solve hitherto new and yet un-
seen problems, while avoiding catastrophic forgetting.

It is important to note here not only the re-use of ex-
isting knowledge, but also the focus on efficiency of solv-
ing new and unseen problems. Unlike compositionality or
other concepts similar to gradual learning, our definition tran-
scends the boundaries of meta-learning [Duan et al., 2017b;
Wang et al., 2016; Duan et al., 2017a; Santoro et al., 2016;
Chen et al., 2016b; 2016al. We seek agents that are able to
learn to quickly adapt to new and unseen tasks, while exploit-
ing the gradual structure of the underlying problems they are
solving. One can think of the above as that the agents need
to possess the ability to search for more efficient strategies to
solve new problems.

Naturally, when solving new problems, agents must be able
to retain the ability to solve old tasks. In many systems, the
lack of such ability causes catastrophic forgetting [French,
19991, which must be avoided:

Property 2 (Avoiding Catastrophic Forgetting) Avoiding the
loss of information, relevant for one task, due to the incorpor-
ation of knowledge necessary for a new task.

In summary, the aim is not optimizing for agent’s perform-
ance of existing skills, i.e. how good an agent is at delivering
solutions to problems it has already encountered. Instead, we
desire optimizing for agent’s performance on solving new and
unseen problems, i.e. maximizing the speed of convergence
to ‘acceptable solutions’ on new problems, while exploiting
existing knowledge and ensuring its survival during the ac-
quisition of new information.

3 Background

To fully appreciate our setting, below we provide background
on why graduality can be beneficial and how it can be en-
couraged. This is followed by a more formal description of
the challenge requirements, environment and evaluation pro-
cedures.

3.1 Benefits of Graduality

Given a complex task that needs to be solved, frequently
a good strategy for finding a solution is to break the prob-
lem down into smaller problems which are easier to deal
with. The same applies to learning [Bengio er al., 2009;
Salakhutdinov et al., 2013]. It can be much faster to learn
things gradually than to try to learn a complex skill from
scratch [Alexander and Brown, 2015; Zaremba and Sut-
skever, 2015; Gulcehre et al., 2016; Oquab et al., 2014].
One example of this is the hierarchical decomposition of a
task into subtasks and the gradual learning of skills neces-
sary for solving each of them [Krueger and Dayan, 2009;
Vezhnevets et al., 2017; Lee et al., 2017; Andreas et al.,
2017], progressing from the bottom of the hierarchy to
the top [Mhaskar er al., 2016; Mhaskar and Poggio, 2016;
Poggio et al., 2015; Polya, 2004]. A prime example in the
natural world is the gradual acquisition of motor skills by in-
fants during their first years of life [Adolph and Franchak,
20171

3.2 Guidance through Curricula

Exploiting graduality during learning is clearly beneficial.
Building systems that learn in a gradual manner should then

be encouraged and its benefits and limitations explored fur-
ther. To enable such type of learning, one can control and
guide the learning process. Guided learning, also called cur-
riculum learning, [Giilgehre and Bengio, 2016; Bengio er al.,
2009; Vapnik, 2015] provides control by means of presenting
the learner with parts of the problem in the order and extent
that is likely to be most beneficial at that point in time. One
method of providing such order is in the form of a learning
curriculum [Bengio et al., 2009], akin to a curriculum used in
schools. In this scenario, easier topics are taught before more
complex ones, in order to exploit the gradual nature of taught
knowledge.

Gradual and guided learning has a number of other be-
nefits over other types of learning [Gulcehre er al., 2016;
Giilcehre and Bengio, 2016; Bengio et al., 2009; Pan and
Yang, 2010]. For example, optimizing a model that has
few parameters and gradually building up to a model with
many parameters could be more efficient than starting with a
model that has many parameters from the beginning [Stanley
and Miikkulainen, 2002]. In this case, a smaller number of
new parameters is learned at each step [Chen er al., 2015;
Kirkpatrick et al., 2016; Andreas et al., 2016b; Rusu et
al., 2016]. This might also result in reducing the necessity
for exploration. Furthermore, apriori knowledge of the sys-
tem’s architecture might not be necessary [Zhou et al., 2012;
Rusu er al., 2016; Ganegedara et al., 2016], and architec-
ture size can be dynamically derived during training to cor-
respond to the complexity of given problems [Fahlman and
Lebiere, 1990]. Last but not least, reuse of already learned
skills is feasible and encouraged [Andreas et al., 2016b;
2016al. Once a skill is acquired, it is no longer relevant how
long the skill took to discover. The cost of using an existing
skill is notably smaller than searching for a skill from scratch.

4 Learning to Gradually Learn

Having described the objectives of the challenge and estab-
lished the benefits of gradual learning through a curriculum,
we will now focus on formal definitions and descriptions of
the requirements of the first round of the challenge.

4.1 Instances, Tasks & Curricula

The gradual learning ability of an agent is evaluated by sub-
jecting an agent to a sequence of n tasks T{,Ty,...,T,, of
increasing complexity. Such sequence is called a curriculum:

Definition 1 (Curriculum) A curriculum C = (Tq,...,T,,)
is an n-tuple of tasks of increasing complexity. Tasks are en-
dowed with an arbitrary measure of complexity.

In section 8.3, we present one possible way of measuring
task complexity in a principled manner and to ensure proper
ordering of curricula. It can be performed with the help of a
measure from the field of computational mechanics, namely
statistical complexity C,, [Crutchfield, 1994].

Each task is observed by an agent through task instances
7 ~ T. The publicly available curriculum provided as part of
the challenge [Poliak ef al., 2017] can be seen as a curriculum
of distributions over stochastic decision problems (SDPs). In
particular, a variant of partially observable Markov decision

processes (POMDPs), or more generally partially observable
stochastic games (POSGs).

Definition 2 (Task and Instance) A task T is a distribution
over a set of Partially Observable Markov Decision Pro-
cesses. An instance of a task T ~ T is a sample from said
distribution.

In other words, a single instance 7 of a task T is a POMDP.
A POMDRP is an 8-tuple (S, A,Q,P,O,r,~v,T) where S is
a set of states, A a set of actions, {2 a set of observations,
P:SxAxS — [0,1] a transition probability distribu-
tion, O : S Xx A x Q — [0,1] is an observation probab-
ility distribution, » : & X A — R a reward function, ~ a
discount factor and 7" a horizon. In the standard POMDP
formulation, the goal of an agent is to maximize its future
discounted reward [E,, [Zio vtr(st, at)], where the expect-
ation is over the sequence of agent’s belief state/action pairs
o= ((bg,ag),...,(bp,ar)), where by(s) = P(S = s) is an
initial belief state, a; ~ Wg(atlbt), bt+1 = P(bt+1 |bt7 Ay, Ot)
and 7y denotes a policy parameterized by 6.

Unlike in the standard setting however, the goal in the chal-
lenge round is different and distributed across multiple levels
of hierarchy. We are not interested in maximizing the agent’s
future discounted reward, but rather a more complex set of
objectives at different scales. For example at the instance
level, it is sufficient to find an acceptable solution to each
instance 7;, as described in Algorithm 1. Figure 1 shows the
three levels of hierarchy present in the challenge:

1. Fast learning (A): Policy Search — At the individual
instance level, the agent is required to find a solution
(e.g. a policy) to a single POMDP/task instance 7.

2. Slow learning (13): Meta-Policy Discovery — The agent

needs to discover a meta-strategy (e.g. a meta-policy
meta . .

T) that quickly converges to a solution across all

instances ;.

3. Fast Adaptation (C): Policy Transfer — The agent is
required to exploit existing acquired knowledge and
policies in order to adapt to each new task in a cur-
riculum, to solve it faster.

Whether it is possible to find a correspondence between the
challenge objectives and the standard reward formulation re-
mains to be seen and up to competitors to determine.

In addition to the above hierarchy, a number of objectives
and constraints need to be satisfied by competing agents. The
primary goal of an agent is the completion of the entire cur-
ricula C in as short a time as possible.

Definition 3 (Quantitative Objective) Successful completion
of an evaluation curriculum C, in the shortest number of
time-steps possible among all competitors and within 24
hours from the start of the evaluation process on predefined
evaluation H/W. Given a set of competing agents A, the fast-
est agent is determined according to:

arg min o(a, C,)
a€A
where o : A X C - N, corresponds to RunCurriculum()

in Algorithm 2 which returns the number of simulation steps
it took an agent « to successfully complete a curriculum C.

Satisfying the condition set forth in Definition 3, the agent
also has to show that two additional conditions are met,
namely gradual learning and avoiding catastrophic forgetting.

Definition 4 (Gradual Learning) A manifestation of Prop-
erty 1, exhibited through a reduced number of computational
steps required when solving a task T ensuing the solving of
previous tasks, i.e. o(or, 1,),(T3)) < o(a,(T3)), where
o(r, T,) denotes agent o that has already learned to solve
tasks T, and Ts.

The above condition does not ensure that gradual learning
truly occurs, nevertheless it provides sufficient evidence that
an agent improves its performance on subsequent tasks, hav-
ing already solved other tasks before.

Definition 5 (Avoiding Catastrophic Forgetting) A manifest-
ation of Property 2 through the maintenance of fast conver-
gence to an acceptable solution for already solved tasks, i.e.
oar, 1,m): (T2)) = colage,m,), (T2)) where c is some
constant of the agent.

This condition ensures that learning to solve a new task
does not impair the ability to solve previously encountered
tasks.

4.2 Validation Curricula

To test generalization of gradual learning, an agent trained
on a single curriculum C cannot be effectively evaluated on
tasks from the same curriculum. A different curriculum is ne-
cessary. Curricula appropriate for a gradually learning agent
also form a distribution € from which a training and an evalu-
ation curriculum should be drawn. The mini and micro tasks
used in the challenge (described in section 6) form together
one sample from this distribution. Using a single sample cur-
riculum C ~ € to estimate the distribution € might be too
difficult. It is possible that competitors might need to create
their own curricula. Examples of a number of possible final
tasks from alternative curricula were shown in [Rosa, 2017].

5 Evaluation

As mentioned previously, simply maximizing reward R is
neither sufficient, nor desired. Immediately after the agent
reaches an acceptable performance R* on an instance, the en-
vironment presents it with the next sample 7. Upon the suc-
cessful completion of a number of instances from the same
task, determined according to Algorithm 1, the environment
presents the agent with the next task in the curriculum. This
can be seen in Algorithm 2.

The EnvStep and Agent Step functions in Algorithm
1 update the environment and the agent respectively, while
exchanging reward, input and output. Together, they form the
core of the environment-agent communication loop, depicted
in Figure 2.

The helper functions SoftLimit and HardLimit are
used to compute the respective time step limits for a given in-
stance. As the naming suggests, there are two types of limits
considered when running an instance: a soft limit, and a hard
limit. Both limits are represented in terms of a number of
environment steps. They are dynamically computed as they

Algorithm 1: Progression through one task instance 7

input : An agent o, a task instance 7;, the minimum
number of positive rewards R, uninterrupted by
a negative one, required to solve current instance

output: The number of steps ¢ taken to solve ;.

function Solve (a, 7, R*)

t < 0;
Ry < 0;
R, 04, T; « EnvStep (T;, @) ;

Agent-environment loop until reward/time-limit reached
repeat
a, a; <« AgentStep (a, R, 0;) ;
R, 04, T; <« EnvStep (7;, a¢) ;
te—t+1;
If correct, increment reward counter, else re-set it
if R = 1 then
| R, « R, +1;
else if R = —1 then
| Ry <0
end
until R, = R*ort=HardLimit (1)
return t;

end

depend on the current instance — in fact, they can even evolve
as the agent progresses through the instance.

The soft limit can be thought of as a success limit. The
agent is required to solve the instance within this limit in or-
der for this attempt to count as successful. If it fails to do so,
the prospective solution will no longer be considered as suc-
cessful. The instance, however, does not end yet. This allows
the agent to continue exploring and gather some additional
useful knowledge about the unsolved problem.

A forceful instance termination comes only when the hard
limit is reached. This behavior is beneficial in situations
where an agent gets stuck in a particular instance.

The reasoning behind such limits is as follows: the agent
has no way of communicating its needs, for example the need
to change the instance to a different one, or switching to the
previous task. Therefore, those limits can be thought of as
supplement to such cases.

6 Learning Environment

Participants are provided with an environment and a public
curriculum of tasks of increasing complexity [Poliak et al.,
2017]. Both, the environment and the associated tasks are
specifically constructed to minimize distraction from unre-
lated research problems and to primarily focus on gradual
learning and associated obstacles. The environment and tasks
are built on top of the CommAI-env [Mikolov et al., 2015;
Baroni et al., 2017].

Participants are asked to develop and train their agents
on the public curriculum and possibly any other additional
knowledge or data sources that they have at their disposal.
The public set of tasks provides a reference example of how
the evaluation curriculum might be structured and the type of

Algorithm 2: Progression through a curriculum C

input : An agent «, a curriculum C and the number of
successfully solved consecutive instances N,
required

output: The total number of steps 7' the agent needed to
solve curriculum C

function RunCurriculum (o, C, Ny)
T « 0;

Solve each task T in a curriculum C
foreach T in C do

R; < ReqReward (T);

Successfully solve IV, instances of task T
repeat

T ~ T,

t; « Solve (o, Ty, RRj);
T<T+ t;s

ts & SoftLimit (7;);

If solved sufficiently quickly
if t; < ¢, then
else
| Nj <0
end
until N; = N,;

end
return 7';

end

tasks that will be required to be solved by an agent. Tasks
come in two groups, as simple micro-tasks and as more ad-
vanced mini-tasks. It is important to note, that natural lan-
guage processing is not necessary to solve the tasks.

6.1 Mini-tasks

Mini-tasks are based directly on the CommAlI-mini task
set [Baroni et al., 2017], with focus on simple grammar
processing and deciding language membership problems for
strings. The mini-tasks are simple for an educated and biased
human, but they are tremendously complex for an unbiased
agent that receives only sparse reward. For this reason, we
believe that simpler tasks are necessary. We refer to those as
micro-tasks.

6.2 Micro-tasks

The purpose of micro-tasks is to allow the agent to acquire
a sufficient repertoire of prior knowledge, necessary for dis-
covering the solutions to the more complex mini-tasks in a
reasonable time, under the assumption that the agent is cap-
able of gradual learning.

Decomposing mini-tasks into simpler problems yields a
number of skills that the agent should learn first. For each
such skill, there is a separate micro-task. The micro-tasks
build on top of each other in a gradual and compositional way,
relying on the assumption that the agent can make use of them
efficiently.

RANGE:

a)
Action in

-1.0.1)
Environment Data 0; {0’ o 255}
l Reward out] l Data out] Action @ {0,...,255}

R Or

simulation steps

b)

Reward in Data in

Figure 2: a) Interface between the agent and the environment.
b) Depiction of environment output with overlaid simulation
order.

One could argue that the micro-tasks (and even the mini-
tasks) are too simple and can be solved by hard-coding the ne-
cessary knowledge into the agent. This is indeed true. How-
ever, such a solution is not desirable and goes against the
spirit of the challenge - to learn new skills from data. The
challenge will prevent any hard-coded solution by using hid-
den evaluation tasks which are different from the public cur-
riculum. A hard-coded solution that does not exhibit gradual
learning should fail on such evaluation tasks.

6.3 Environment-Agent Interface

The interface between the agent and the environment is de-
picted in Figure 2. The environment sends reward {—1,0, 1}
and data (one byte) to the agent and receives the agent’s ac-
tion (one byte) in response. This happens in a continuous
cycle. During a single simulation step, the environment pro-
cesses the received action from the agent and sends reward
with new data to the agent; the agent processes this input and
sends an action back to the environment.

Specifically, the environment sends 8 bits of data to the
agent at every simulation step and receives 8 bits of data back
from the agent. This is different from the original CommAI-
env [Mikolov et al., 2015], which sends only a single bit in-
stead of a full byte every time. Although this makes the inter-
face slightly less flexible, the agent’s communication should
be more interpretable and it should reduce the complexity of
the presented problems.

Note that the environment is not sending any special in-
formation about what task the agent is in at any point in time.
The environment appears as a continuous stream of bytes (and
rewards) to the agent.

7 Discussion

Looking back at Figure 1, it is apparent that there is a signi-
ficant gap between the structure of the curriculum, the object-
ives to be learned within, and what kind of information the
agent receives. Most notably, there is no explicit information
about a successful completion of an instance or a task. Simil-
arly, no indication of an instance or a task switch is provided.
The lack of information and limited amount of feedback that

an agent has at its disposal makes this round challenging and
different from most other learning problems.

Moreover, unlike standard POMDPs, for many of the tasks
in the public curriculum, the reward is adaptive. This can
be very challenging due to the drifting nature of the reward
function. Another challenging aspect of the first round is
the inability to request previous tasks from the environment.
Hence, competing agents need to be sample efficient as well
as ‘epoch’ efficient.

8 Task Complexity via Computational
Mechanics

Computational mechanics [Crutchfield, 2011], a subfield of
physics, is concerned with exploring the ways in which nature
performs computations. How to identify structure in natural
processes and how to measure it, as well as how information
processing is embedded in dynamical behavior. The field of-
fers a number of useful tools for thinking about and quanti-
fying complex systems, some of which are relevant for build-
ing intelligent machines. Namely, we are interested in the
concept of e-machines [Crutchfield and Young, 1989] and the
associated measure of statistical complexity C|,.

In our scenario, these concepts and tools can be useful for
exploring curricula of the challenge, from the point of view
of the complexity of each individual task and the ability to
begin investigating the possibility of automating the creation
of more principled curricula for both training and evaluation.

8.1 ¢-Machines as Minimal Optimal Models

The concept of e-machines as a class of minimal optimal pre-
dictors was developed for quantifying structure in a stochastic
process via the reconstruction of underlying causal states in a
natural process [Crutchfield, 1994]. In their most common
form, they can be thought of as a type of hidden Markov
model (HMM), whose states have a unique, causal definition.
e-machines are, however, not limited to only a HMM repres-
entation and can in fact be used at various levels of represent-
ation hierarchy, depending on whether current representation
hits the limits of the agent’s computational resources [Crutch-
field, 1994].

An e-machine can be constructed with the help of an equi-
valence relation

T~ T =PIV =7)=P(YIV=7) o

where Y denotes a discrete random variable, }(7 and }_} ablock

of past (e.g. 52 = ...Y,_0Y,_;) and future random vari-
ables, respectively, with % and 7/ denoting a particular his-
tory or a future (a sequence of symbols from alphabet) of
a generating process, respectively. The equivalence relation

(1) states that any two histories % and (ﬂ' are equivalent if
the probability distribution over their futures is the same, i.e.

by At «— .5 «—I . .
]P’(YIY = y) =]P’(YlY =7) Given the above equival-
ence relation, one can then define a mapping from the space

—
of histories Y to ‘causal’ states of the underlying process.

Such mapping € : ()_J — & is called an e-map that takes a

given past to its corresponding causal state o;:
«— —l | I
E(y)=‘7i={y:y~ey}
Intuitively, one can think of € as a function that partitions the

set of pasts (i according to the equivalence relation (1), into
clusters that lead to the same distribution over futures.

We can then define the e-machine as a tuple (Y, S,7T)
where Y denotes the process’ alphabet, S its causal state set,
and 7 a set of symbol-valued transition matrices:

7= {1,

where T comprises the following elements:
Ti(_]y) =P(S1 = 0;,Yy = y|So = 03),

where Sy and S; denote two temporally consecutive random
variables of a random variable chain defining the causal state
process that underlies the stochastic process we are model-
ing. Each S; takes on some value s; = 0; € 8. The set
T thus defines the dynamics over causal states of the under-
lying system. An e-machine is then a unique, minimal-size,
maximally predictive unifilar representation of the observed
process [Crutchfield and Young, 1989].

Despite their desirable minimality and optimality proper-
ties, e-machines are inherently able to model generative pro-
cesses only. In order to exploit the useful properties that
e-machine’s formulation offers for the analysis of our cur-
riculum, we need to go beyond output processes and exploit
a slightly more complex representation, that of input-output
processes, namely e-transducers.

8.2 e-Transducer

In our scenario, we are interested in observing the structure of
not only one process, but a coupling between two stochastic
processes, which can also be viewed as the analysis of a com-
munications channel between an agent and its environment.
The concept of an equivalence relation can be extended, for
this type of scenario, over joint (input-output) pasts:

(2.9) ~ (2.9) =
P(VIX.(X7) = (5.0)
-p(YIX,(Xx V) =(zp)) @

, defining a basis for a channel’s unique, maximally pre-
dictive, minimal statistical complexity unifilar presentation,
called e-transducer. Similarly to e-machines, a map from

Pl
pasts to states can be created € : (X,Y) — S that maps
pulitig

given joint input-output past (x, y) to its corresponding chan-
nel causal state

() =oi = {lmn) s) ~)}

The e-transducer is then defined as the tuple (X,Y,S,T),
where, in contrast to e-machines, X additionally defines the

set of inputs and 7 the set of conditional transition probabil-

ities: i)
T = {T ! }mGX,yEy

where T!®) has elements:
ngylx) =P(S = 0;,Yy = y|So = 04, Xo = 7)

The ability of e-transducers to model input-output mappings,
enables the incorporation of actions and makes modeling of
tasks in a curriculum C feasible.

8.3 Statistical and Structural Complexity

Having defined both e-machines and e-transducers, we can
now define a distribution 7 over causal states for e-machines
as

(i) = P(So = 0;)

-#(c(7)=)

and an input-dependent state distribution 7y for e-
transducers:

7ix (i) = Px (S = ;)
o (7))

In both cases, this defines the asymptotic probability of a pro-
cess being in any one of its causal states. This information
can then be used for quantifying the complexity of the under-
lying generating or input-output process, respectively. This
measure, also called statistical complexity in the case of e-
machines, is defined as C,, = H[7], where y points to the
fact that it is a measure over an asymptotic distribution, and
H denotes the Shannon entropy [Shannon and Weaver, 1948].
On the other hand, e-transducer’s input-dependent statistical
complexity is defined as

CX = H[ﬁ'X:]

The upper bound on e-transducer complexity is then the chan-
nel complexity, calculated as the supremum of statistical
complexity over input processes:

C, =supCx
X

with topological state complexity being Cy = log, |S| and
due to the fact that uniform distributions maximize Shannon
entropy, in general C, < C;, [Barnett and Crutchfield, 2015].

Statistical complexity C,, is a widely used measure of com-
plexity in physics and complexity science. It has a number
of benefits over other measures and intuitive interpretations.
For example, it measures the amount of information a pro-
cess needs to store in order to be able to reconstruct a given
signal, or in the case of structural complexity, it defines the
capacity of a communication channel. In the case of tasks in
our challenge, it could provide a principled way of measuring
an upper bound on task complexity that can be beneficial in
the construction of structured curricula and subsequent auto-
matic generation of tasks of increasing complexity.

9 Agent-agnostic Task and Curriculum
Representation

Modeling tasks T of the challenge curriculum C with the help
of e-transducers allow for an agent-agnostic representation of
the complexity of the problem each task tackles. It not only
provides a way to measure complexity of each task, but also
to compare and contrast entire task curricula and reason about
the inherent compositionality and graduality of an entire cur-
riculum (see Figure (3b)). Preliminary results for a number
of tasks from the challenge curriculum can be seen in the ap-
pendix.

9.1 Task and Curriculum Complexity

Using statistical and structural complexity we are able to start
reasoning about the correctness of the curriculum order. This
allows for more well defined curricula and subsequent pos-
sibility of automating the curriculum generating process with
guaranteed characteristics.

9.2 Task and Curriculum Graduality

The minimal representation of tasks also allows us to start
thinking about comparison of how much structure is shared
among tasks within a curriculum. This can be beneficial in
designing and measuring the intrinsic graduality of a cur-
riculum. As e-machines and transducers are inherently graph-
ical models, graph theoretic tools and algorithms, such as
subgraph-matching, can be used to start comparing tasks and
measure their level of shared structure that can be eventually
exploited by an agent with gradual learning capabilities.

10 Conclusions

In this work, we have outlined the structure and goals of the
first round of the General Al Challenge, focused on building
agents that can learn gradually. We have argued that build-
ing such agents requires solving problems at three different
levels of hierarchy. From fast learning, akin to a search for a
policy at a level of an instance of a task, through slow learning
that requires the discovery of a meta-policy that generalizes
across instance, all the way to fast adaptation to new tasks,
akin to policy transfer between disparate problems. Further-
more, we have proposed the use of a method from computa-
tional mechanics, namely e-transducers for modeling of tasks
in a curriculum that allow for quantifying task complexity and
potentially graduality of entire curricula. Explicit calculation
of the complexity of tasks and its subsequent use for building
better curricula is left for future work.

Acknowledgements

We would like to thank the entire GoodAl team, in particular
Olga Afanasjeva and Marek Rosa.

References

[Adolph and Franchak, 2017] Karen E Adolph and John M
Franchak. The development of motor behavior. Wiley
Interdisciplinary Reviews: Cognitive Science, 8(1-
2):e1430—-n/a, 2017.

[Alexander and Brown, 2015] William H. Alexander and
Joshua W. Brown. Hierarchical Error Representation: A
Computational Model of Anterior Cingulate and Dorsolat-
eral Prefrontal Cortex. Neural computation, 27(11):2354—
2410, nov 2015.

[Andreas et al., 2016a] Jacob Andreas, Marcus Rohrbach,
Trevor Darrell, and Dan Klein. Learning to Compose
Neural Networks for Question Answering. 2016.

[Andreas et al., 2016b] Jacob Andreas, Marcus Rohrbach,
Trevor Darrell, and Dan Klein. Neural Module Networks.
Cvpr, pages 39-48, 2016.

[Andreas et al., 2017] Jacob Andreas, Dan Klein, and
Sergey Levine. Modular Multitask Reinforcement Learn-
ing with Policy Sketches. In ICLR, 2017.

[Balcan et al., 2015] Maria-Florina Balcan, Avrim Blum,
Santosh Vempala, and Georgia Tech. Efficient Represent-
ations for Lifelong Learning and Autoencoding. 40:1-20,
2015.

[Barnett and Crutchfield, 2015] Nix Barnett and James P.
Crutchfield. Computational Mechanics of Input-Output
Processes: ~ Structured Transformations and the eps-
Transducer. Journal of Statistical Physics, 161(2):404—
451, 2015.

[Baroni ef al., 2017] Marco Baroni, Armand Joulin, Allan
Jabri, German Kruszewski, Angeliki Lazaridou, Klemen
Simonic, and Tomas Mikolov. CommAlI: Evaluating the
first steps towards a useful general Al. arXiv:1701.08954,
jan 2017.

[Bengio et al., 2009] Yoshua Bengio, Jerome Louradour,
Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th annual international confer-
ence on machine learning, pages 41-48, New York, New
York, USA, 2009. ACM Press.

[Bostrom, 2014] Nick Bostrom. Superintelligence : paths,
dangers, strategies. Oxford University Press, 2014.

[Chen ef al., 2015] Tiangi Chen, Ian Goodfellow, and Jona-
thon Shlens. Net2Net: Accelerating Learning via Know-
ledge Transfer. arXiv Preprint, pages 1-10, 2015.

[Chen et al., 2016a] Yutian Chen, Matthew W. Hoffman,
Sergio Gomez Colmenarejo, Misha Denil, Timothy P. Lil-
licrap, Matt Botvinick, and Nando de Freitas. Learning to

learn without gradient descent by gradient descent. nov
2016.

[Chen et al., 2016b] Yutian Chen, Matthew W. Hoffman,
Sergio Gomez Colmenarejo, Misha Denil, Timothy P. Lil-
licrap, and Nando de Freitas. Learning to Learn for Global
Optimization of Black Box Functions. NIPS, nov 2016.

[Crutchfield and Young, 1989] James P. Crutchfield and Karl
Young. Inferring statistical complexity. Physical Review
Letters, 63(2):105-108, jul 1989.

[Crutchfield, 1994] James P. Crutchfield. The calculi of
emergence: computation, dynamics and induction. Phys-
ica D: Nonlinear Phenomena, 75(1-3):11-54, aug 1994.

[Crutchfield, 2011] James P. Crutchfield. Between order and
chaos. Nat Phys, 8(February):17-24, 2011.

[Ditzler et al., 2015] Gregory Ditzler, Manuel Roveri,
Cesare Alippi, and Robi Polikar. Learning in Non-
stationary Environments: A Survey. IEEE Computational
Intelligence Magazine, 10(4):12-25, nov 2015.

[Domingos, | Pedro. Domingos. The master algorithm : how
the quest for the ultimate learning machine will remake
our world.

[Duan er al., 2017a] Yan Duan, Marcin Andrychowicz,
Bradly C. Stadie, Jonathan Ho, Jonas Schneider, Ilya Sut-
skever, Pieter Abbeel, and Wojciech Zaremba. One-Shot
Imitation Learning. 2017.

[Duan et al., 2017b] Yan Duan, John Schulman, Xi Chen,
Peter L Bartlett, Ilya Sutskever, Pieter Abbeel, and Com-
puter Science. RL2: Fast Reinforcement Learning via
Slow Reinforcement Learning. In ICLR, pages 1-14,
2017.

[Fahlman and Lebiere, 1990] Scott E Fahlman and Christian
Lebiere. The {Cascade-Correlation} Learning Architec-
ture. In D S Touretzky, editor, Advances in Neural In-
formation Processing Systems 2, pages 524-532. Morgan-
Kaufmann, 1990.

[Fernando et al., 2017] Chrisantha Fernando, Dylan
Banarse, Charles Blundell, Yori Zwols, David Ha,
Andrei A. Rusu, Alexander Pritzel, and Daan Wierstra.
PathNet: Evolution Channels Gradient Descent in Super
Neural Networks. jan 2017.

[French, 1999] Robert M. French. Catastrophic forgetting
in connectionist networks. Trends in Cognitive Sciences,
3(4):128-135, 1999.

[Ganegedara et al., 2016] Thushan Ganegedara, Lionel Ott,
and Fabio Ramos. Online Adaptation of Deep Architec-
tures with Reinforcement Learning. 2016.

[Gershman ez al., 2015] Samuel J Gershman, Eric J Horvitz,
and Joshua B Tenenbaum. Computational rationality: A
converging paradigm for intelligence in brains, minds, and
machines. Science, 349(6245):273-278, 2015.

[Giilgehre and Bengio, 2016] Ca\uglar Caglar Giilgehre and
Yoshua Bengio. Knowledge Matters: Importance of Prior
Information for Optimization. J. Mach. Learn. Res.,
17(8):1-32, 2016.

[Gulcehre et al., 2016] Caglar Gulcehre, Marcin Moczulski,
Francesco Visin, and Yoshua Bengio. Mollifying Net-
works. Arixv, pages 1-11, 2016.

[Hamker, 2001] Fred H Hamker. Life-long learning Cell
Structures - Continuously learning without catastrophic in-
terference. Neural Networks, 14(4-5):551-573, 2001.

[Kirkpatrick ef al., 2016] James Kirkpatrick, Razvan Pas-
canu, Neil Rabinowitz, Joel Veness, Guillaume Des-
jardins, Andrei A. Rusu, Kieran Milan, John Quan,
Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia
Hadsell. Overcoming catastrophic forgetting in neural net-
works. dec 2016.

[Krueger and Dayan, 2009] Kai A. Krueger and Peter
Dayan. Flexible shaping: How learning in small steps
helps. Cognition, 110(3):380-394, mar 2009.

[Kumaran et al., 2016] Dharshan Kumaran, Demis
Hassabis, and James L. McClelland. @What Learning
Systems do Intelligent Agents Need? Complementary
Learning Systems Theory Updated. Trends in Cognitive
Sciences, 20(7):512-534, 2016.

[Lee et al., 2017] Sungtae Lee, Sang-Woo Lee, Jinyoung
Choi, Dong-Hyun Kwak, and Byoung-Tak Zhang. Micro-
Objective Learning : Accelerating Deep Reinforcement
Learning through the Discovery of Continuous Subgoals.
mar 2017.

[Mhaskar and Poggio, 2016] Hrushikesh Mhaskar and To-
maso Poggio. Deep vs. shallow networks : An approx-
imation theory perspective. (054):1-16, 2016.

[Mhaskar et al., 2016] Hrushikesh Mhaskar, Qianli Liao,
and Tomaso Poggio. Learning Functions: When Is Deep
Better Than Shallow. arXiv, (45):1-12, 2016.

[Mikolov et al., 2015] Tomas Mikolov, Armand Joulin, and
Marco Baroni. A Roadmap towards Machine Intelligence.
2015.

[Oquab et al.,2014] M Oquab, L Bottou, I Laptev, and
J Sivic. Learning and transferring mid-level image rep-
resentations using convolutional neural networks. Proc.
IEEE, 2014.

[Pan and Yang, 2010] S J Pan and Q Yang. A Survey
on Transfer Learning. IEEE Trans. Knowl. Data Eng.,
22(10):1345-1359, oct 2010.

[Pentina and Lampert, 2015] Anastasia Pentina and Chris-
toph H Lampert. Lifelong Learning with Non-i . i . d .
Tasks. In NIPS, pages 1-9, 2015.

[Poggio er al., 2015] Tomaso Poggio, Fabio Anselmi, and
Lorenzo Rosasco. I-theory on depth vs width: hierarch-
ical function composition. (041), 2015.

[Poliak et al., 2017] Martin Poliak, Martin Stransky, Michal
Vlasak, Jan Sinkora, and Premek Paska. General AI Chal-
lenge - Roundl. https://github.com/general-ai-challenge,
2017.

[Polya, 2004] G Polya. How to solve it: a new aspect of
mathematical method. Princeton University Press, 2004.

[Rosa eral., 2016] Marek Rosa, Jan Feyereisl, and
The GoodAl Collective. A Framework for Search-
ing for General Artificial Intelligence. arXiv:1611.00685,
nov 2016.

[Rosa, 2017] Marek Rosa. General Al Challenge Specifica-
tions of the First (Warm-Up) Round: Gradual Learning -
Learning Like a Human. GoodAl, 2017.

[Rusu et al., 2016] Andrei A. Rusu, Neil C. Rabinowitz,
Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.
Progressive Neural Networks. arXiv, 2016.

[Ruvolo and Eaton, 2013] Paul Ruvolo and Eric Eaton.
ELLA: An efficient lifelong learning algorithm. Pro-
ceedings of the 30th International Conference on Machine
Learning, 28(1):507-515, 2013.

[Salakhutdinov et al., 2013] R Salakhutdinov, J B Tenen-
baum, and A Torralba. Learning with {Hierarchical-
Deep} Models. [EEE Trans. Pattern Anal. Mach. Intell.,
(8):1958-1971, 2013.

[Santoro et al., 2016] Adam Santoro, Sergey Bartunov, Mat-
thew Botvinick, Daan Wierstra, and Timothy Lillicrap.
Meta-Learning with Memory-Augmented Neural Net-
works, 2016.

[Shannon and Weaver, 1948] C. E. Shannon and W. Weaver.
A mathematical theory of communication. Bell Syst. Tech.
J, 27:379-423, 1948.

[Stanley and Miikkulainen, 2002] Kenneth O Stanley and
Risto Miikkulainen. Evolving neural networks through
augmenting topologies. Evol. Comput., 10(2):99-127,
2002.

[Stone er al., 2016] Peter Stone, Rodney Brooks, Erik Bryn-
jolfsson, Ryan Calo, Oren Etzioni, Greg Hager, Julia
Hirschberg, Shivaram Kalyanakrishnan, Ece Kamar, Sarit
Kraus, Kevin Leyton-Brown, David Parkes, William Press,
Annalee Saxenian, Julie Shah, Milind Tambe, and Astro
Teller. ”Artificial Intelligence and Life in 2030.” One Hun-
dred Year Study on Artificial Intelligence: Report of the
2015-2016 Study Panel. Technical report, Stanford Uni-
versity, Stanford, CA, 2016.

[Tommasino et al., 2016] Paolo Tommasino, Daniele Cali-
giore, Marco Mirolli, and Gianluca Baldassarre. A Re-
inforcement Learning Architecture that Transfers Know-
ledge between Skills when Solving Multiple Tasks. IEEE
Transactions on Cognitive and Developmental Systems,
X(X):1-1, 2016.

[Vapnik, 2015] Vladimir Vapnik. Learning Using Privileged
Information : Similarity Control and Knowledge Transfer.
Journal of Machine Learning Research, 16:2023-2049,
2015.

[Vezhnevets et al., 2017] Alexander Sasha Vezhnevets, Si-
mon Osindero, Tom Schaul, Nicolas Heess, Max Jader-
berg, David Silver, and Koray Kavukcuoglu. FeUdal
Networks for Hierarchical Reinforcement Learning. mar
2017.

[Wang et al., 2016] Jane X Wang, Zeb Kurth-Nelson,
Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi
Munos, Charles Blundell, Dharshan Kumaran, and Matt
Botvinick. Learning to reinforcement learn. nov 2016.

[Zaremba and Sutskever, 2015] Wojciech Zaremba and Ilya
Sutskever. Reinforcement Learning Neural Turing Ma-
chines. Arxiv, pages 1-14, 2015.

[Zhou et al., 2012] Guanyu Zhou, Kihyuk Sohn, and
Honglak Lee. Online Incremental Feature Learning with
Denoising Autoencoders. Journal of Machine Learning
Research - Proceedings Track, 22:1453-1461, 2012.

A Appendix

All figures in this section are simplified visualizations of e-transducers, each for a particular task. These simplifications come
in four flavors:

1. Only two instances, out of a numerous possible, are shown, as others would only be repetitions of an already presented
pattern (black rectangles delineate instances).

2. For the sake of clarity not all transitions (arrows) are always visualized (e.g. error or instance switch transitions).

3. All transition probabilities from a state are uniformly distributed among visualized transitions. Only instance decision
transition probabilities are shown for illustration.

4. In Figure 4, states are merged together, to avoid repetition when the environment is providing the current instance de-
scription. This way the visualization is still readable and focuses more on the important part — the part where the agent
replies.

General notation for transitions (arrows) between causal states is as follows: (o041, 7 |a;), where o, is an observation/state that
is the output of the environment, r; the reward for the last performed action a;_; by the agent. Note that the action a; at current
time-step determines the reward r; at current time-step, but the observation/state for the subsequent step.

stat | _(A,@)|D : 1/2

\-. (AS)b! ,. (A ,. (AA)D! ,. (A ,.

W‘,‘ (A2 . (A2 . (A2 . (A2 ‘

()

)

(Aat)la'
(Ab,+)a'

(Aa,t)a'

»{ Aa2 >
(Ab,H)la’

(Ab, 1)’

(Aa,2)|D : 1/4

T

(Aa,)[b! (Aa,H)'b! (Aa,+)'b! (Aa,+)[b!

Abl Ab2 Ab3 Ab4
(Ab,)b’ (Ab,)b’ (Ab,+)['b' (AD,H)['b'

(Ab,2)|@ : 1/4 L AbO

start (Ba,®)|0 : 1/4

(Ba,)¢’
(Bb, D¢’

)

Bae g) (Babc _@ Bae f pa

(Bb,+)['c' (Bb,+)['c' o (Bb,+)['¢'

(Bb,2)|@ : 1/4

T

N ppo | BN (Ba)d (Ba)ld (Ba,)i
Bbl Bb2 Bb3 Bb4
(Bb,+)[d' (Bb,+)['d" (Bb,+)['d" (Bb,+)['d"
(b)

Figure 3: A simplified visualization of e-transducers for two consecutive tasks A.2.1 (a) and A.2.2 (b). No error or instance
switch transitions are shown. One can see the apparent possible sub-structures that the two tasks share, that could be exploited
by a gradual learner. The sfate naming convention is as follows:

* First (capital) letter denotes an instance
* The number at the end of the state descriptor represents the number of consecutive positive rewards the agent has received

* The middle letter (only in the Subfigure b) defines from which group a letter was provided by the environment for the next
step

For these visualizations, five consecutive positive rewards are required to complete an instance (fully shown in Figure 5).

“WNOLLIND 93UI[[BYD 9Y) WOI) [7"V S} J0J Joonpsuen-3 Jo uonezijensia payrduwis vy 4 o3y

£ qiqof poos,

L \WVICTq gl poos) I A e
L q _So,a poos,) //\

Sl
LAVICS)
s

LAV

ANVIC)
st

- q jBuoim,)
* q jSuoim,)

WIS e jqof poo3,

st

iqof poos,)
® jqof poos,)

LAV
st

e jSuoim,

LAVIC) LG
EAVICT)

Jepads,

(Aa,)Ava

Aa+)a's 1/4

(Aa,+)[b": 1/4

(Aa,-) AVb'

Aa)AVa'

(Ab+)a’
(Ra,2)|@ : 1/4

(Aa,)AVD'

AbyjAva (b

(AaH)[b’

(Ab,-)AVa' N -
Abl : (b, -

(Ab,-)JAVb'

(Ab,+)['b"

(Ab,-) AV (Ab AV (Ab,H)a’: 1/4 '

(Ab,-)AVa'

(Ab,-)AVD' /
(Ab,-) AV /

(Ab+)b': 1/4 /

(Ba,+)a': 1/4 /

(Ba)b 1/4

(Aa,+)c: 1/4

(Ab+)c: 1/4
(Aa,+)[d': 1/4

Ba,2)|@ : 1/4 /

/ (Ab)d" 1/4

(Ba,-)JATC

(Ba,)['c': 1/4
(Ba,-)JAVd'

(BaH)d": 1/4

(Ba,-)JAVe" ™\ (Ba,-)AVd"

(Ba,-)AVd'

(BbA)C
T~
(Ba,)[d'

\‘2 ’ N ™~ — 7
(‘Bpo | BoIAYE [SBL*E",‘?L//'\"/ /
1 \ /\ L //(:Szizii' (Bb,-)AVC'

(Bb,-)|AVc' ~

Bb) 14—

(Bb,-)AVd"

Figure 5: Full visualization of e-transducer for task A.2.2 from the challenge curriculum. Same state naming convention applies
as in Figure 3.

