
Jornada de Seguimiento de Proyectos en Tecnolog��as Inform~A<ticas, 2003
Programa Nacional de Tecnolog��as de la Informaci�on y las Comunicaciones

STREAM: formal SofTwaRE tools:

A Multi{paradigm approach

TIC2001-2705-C03

Mar��a Alpuente �

T. U. Valencia

Ernesto Pimentel y

U. M�alaga

Gin�es Moreno z

U. Castilla{La Mancha

Abstract

The demand for high{quality, reliable software has grown in recent years far faster than
the technology for producing it. The increasing complexity of such systems and the lack
of adequate science and technology to support robust development typically lead to soft-
ware that is fragile, unreliable, and extremely diÆcult and labor{intensive to develop,
test, and evolve. The STREAM project focuses on developing formal methods, tools and
techniques to support the development and management of high{quality software. We
use multi{paradigm declarative languages as a tangible means to develop these methods.
The formal basis underlying the declarative technology guarantees the correctness and
e�ectiveness of the developed tools and techniques, giving support to automated program
analysis, veri�cation, debugging, learning, optimization and transformation.

Start Date Status Duration

January 1, 2002 2nd year, running 36 months
Keywords Software reliability, formal methods, multi{paradigm (declarative)
programming, components technology, advanced programming environments, program
analysis, speci�cation, veri�cation, debugging, learning, and transformation.

1 Project Overview

1.1 Baseline

The explosive growth of information technology has fuelled an unprecedent demand for new
software that far outweighs the existing technology to produce it. The painful inadequacy
of current technology results in large complex software systems whose behavior is not well
understood and which often fail in unpredicted ways. The STREAM project is committed
to developing methods, techniques and tools that are needed to build high-quality, reliable
systems which are evolvable, maintainable, and cost-e�ective. The thesis of project is that
declarative technologies can play a signi�cant role in these tasks, as they are widely recognized
as a useful means for providing automated support for robust development of software which

�Email: alpuente@dsic.upv.es
yEmail: ernesto@lcc.uma.es
zEmail: Gines.Moreno@uclm.es

TIC2001-2705-C03

is more maintainable and enhanceable over time. In accordance with component-based soft-
ware development blueprint, the technologies that support analysis, speci�cation, validation,
modelling, composition, and optimization of software components are speci�cally pursued.

1.2 Objectives

In order to present an overall view of the project, we briey recall the well-known software
trilogy, which we describe as follows. In addition to programs themselves, software development
involves artifacts such as properties (e.g., speci�cations, partial correctness properties, and
types) and data (e.g., test cases, scenarios, or examples). When we put programs, properties
and data at the vertices of a triangle, the edges represent the various processes used to produce
one element from another (Figure 1). The STREAM project explores the program-property-
data triangle with the aim of automating the corresponding phases of the software process.
Speci�cally, the project investigates:

� theories, languages, methods and tools to support automated analysis, speci�cation, veri-
�cation, debugging, learning, optimization and transformation of software (components.)

� component{based software modelling and analysis techniques; techniques for assembling
provably reliable components into predictably reliable systems.

Static analysis

Type inference

Program
 verification

Perform
ance evaluation

M
odel checking

Program
 derivation

Data Programs
Test data generation

 Program learning

Tes
t d

at
a

ge
ne

ra
tio

n

Properties

Refinement

 Declarative debugging

Program transformation, PCC

P
ro

gr
am

 le
ar

ni
ng

Figure 1: STREAM: Overall view of the project

1.3 Work Themes

To achieve the project objectives, we investigate the four tasks1 which we describe below:

1. Modelling and analysis of software components (UPV,UMA)

2. Veri�cation, model checking and abstract interpretation (UPV,UMA)

1We enclose the partners involved in each task in parenthesis.

TIC2001-2705-C03

3. Performance debugging and optimization (UPV,UMA,UCLM)

4. Declarative debugging and program learning (UPV,UMA)

A number of activities are carried out in cooperation by two of the partners, and thus the
complementary expertise of the three teams plays an important role in the project STREAM.
The group of Valencia has traditionally worked on semantics{based frameworks for declara-
tive debugging, program learning, strategic programming, formal eÆciency measurement, and
eÆciency improvements by program transformation. The group in M�alaga has the necessary
expertise in speci�cation and interaction languages, linear logic, type systems, software archi-
tectures, and abstract model checking. Finally, the UCLM has wide experience in optimizing
compilation and program optimization by partial evaluation and fold/unfold transformation.

Task 1: Modelling and analysis of software components

The high cost and high failure rate of present software projects call for better software de-
velopment and maintenance technologies. In recent years, incremental and component-based
development have been proposed as (separate or combined) remedies to reduce development
time and costs, and to increase software quality, especially usability and reliability. How-
ever, there are few validated technologies in these areas in industrial use today, reecting the
immaturity of these technologies.

The last decade has seen the emergence of a class of CBSD models and languages variously
termed \coordination languages", \con�guration languages", and \architectural description
languages", which provide a clean separation between individual software components and their
interaction within the overall software organization. This separation makes large applications
more tractable, supports global analysis, and enhances reuse of software. A number of other
formalisms (behavioral types, process algebras, . . .) also present good features to model the
interaction exhibited by software components.

Strategic programming (i.e., programming with a programmable strategy-guided evaluation
mechanism) provides a clean and exible interface for the (often) necessary participation of
the programmer for controlling and improving program execution. A number of programming
languages (e.g., CafeOBJ, ELAN, Maude, and Stratego permit (to some extent) the explicit
speci�cation of evaluation strategies. Other programming languages such as Haskell have a
prede�ned computational strategy whose behavior can be modi�ed (to some extent) by means
of program annotations. Programmable strategies can be thought of as as a kind of `non-
declarative' facility, and so extra formal support for the analysis of the program behavior,
as well as for guaranteeing key semantic properties such as termination and conuence, is
dramatically required.

The primary goal of the project in this area is to advance the state-of-the-art for component-
based software development and strategic programming. This includes research in:

� Speci�cation, re�nement, and analysis of software components: composing speci�cations.

� Coordination, architectural, and interface de�nition languages: implementation, inter{
operability, heterogeneity.

� Semantic models and foundations for coordination: component composition, concurrency,
dynamic aspects, formal models for interacting agents.

TIC2001-2705-C03

� Type systems, linear logic and mobility.

� Techniques for analyzing and ensuring program properties under program strategies.

Task 2: Veri�cation, model checking and abstract interpretation

Program veri�cation aims at proving that programs meet their speci�cations, i.e., that the
actual program behavior coincides with the desired one. Model checking is a speci�c approach
to the veri�cation of temporal properties of reactive and concurrent systems, which has proven
to be particularly successful in the area of �nite-state programs. Abstract interpretation is
a method for designing and comparing semantics of programs expressing various types of
programs properties; it has been very successfully used to infer run-time program properties
that can be valuable to optimize programs. Clearly, among these three methods, there are
similarities concerning their goals and their application domains. With the growing need
for formal methods to reason about complex, in�nite-state, and embedded systems, hybrid
methods that combine the three areas are bound to be of great importance. The main goal of
this task is the cross-fertilization and advancement of hybrid methods focusing on:

� program veri�cation

� static analysis techniques

� model checking

� type systems

� security analyses and program certi�cation; website veri�cation

Task 3: Performance debugging and optimization

In this task, our goal is the design of a performance debugging framework to locate and
improve ineÆcient uses of time, space, or non{determinism, e.g., by the use of pro�ling and
transformation techniques. We are particularly interested in trace{based debugging, where we
put the main emphasis on a better representation of program traces w.r.t. the (non{strict)
operational semantics of input programs. We intend to develop a prototypical implementation
of these frameworks and integrate them into one of the existing implementations of Curry, a
modern multi-paradigm language that supports functional, logic, concurrent, and distributed
programming. Curry provides speci�c constructs to support programming-in-the-large, such
as modules, polymorphic types, and higher-order functions. The advantage of these and the
other features of Curry for the development of realistic applications (including distribution,
graphical user interfaces, and web-based interfaces) are well known in the �eld.

With regard to performance debugging, a speci�c problem is posed by the use of automatic
program optimization techniques. In general, it is well-known that automatic optimization
tools (e.g., partial evaluators) often introduce redundancies in the generated code that pro-
grammers usually (or ideally) do not write, and the identi�cation of useless code (such as
redundant arguments or dead rules) deserves great research e�ort in the project. We are also
interested in fold/unfold transformation systems (guided by automatic transformation strate-
gies) for optimizing programs, as well as in di�erent optimizations of the language implemen-
tation. As for the rules+strategies approach, we especially focus on the tupling strategy, which

TIC2001-2705-C03

is able to reduce (in some cases) the algorithmic complexity of a given program from expo-
nential to linear complexity. In the context of linear logic based languages, similar techniques
based on frames and resources tagging have presented very good performances. Concerning
the languages implementation, we are interested not only in improving the basic operational
mechanisms of the languages but also in developing novel transformation techniques which
are able to increase the eÆciency of the compiled code. This points out the lack of formal
frameworks to measure, in a realistic way, the cost of program computations and, thus, the
improvement achieved by the program optimization techniques. Concerning this problem, we
plan to investigate di�erent cost criteria for measuring the speed-ups achieved by program
transformations, which are independent of the speci�c language implementation.

In summary, the di�erent problems that we tackle in this task follow three main guidelines:

� Performance debugging tools and techniques;

� Program transformation, removal of useless code, and optimizations of the compiler;

� Tools and techniques for analyzing the e�ectiveness of program optimization.

Task 4: Declarative debugging and program learning

Finding bugs in programs is an old problem in software construction. It is well known that
simple debuggers based on the analysis of traces of target programs provide only very limited
support. On the other hand, the operational semantics of multi{paradigm languages is more
complex than in other languages due to the combination of advanced features like concur-
rency, \don't know" and \don't care" non-determinism, etc. Hence, there is an urgent need
for appropriate debugging tools to support the eÆcient development of large multi-paradigm
programs.

Some recent approaches for the debugging of logic programs have advocated the use of
inductive techniques in order to correct bugs. In particular, once a bug has been detected in
a program, the inductive techniques allow one to correct it by deriving a new program that is
consistent with its speci�cation. The task of revision involves changing the answer set of the
given theory by adding previously missing answers or by removing incorrect ones. The synergy
between inductive and deductive synthesis techniques is extremely fruitful in this context.

To summarize, while trace{based methods and performance debugging are considered in
Task 3 above, in this task, we want to investigate novel techniques for the declarative debugging
of multi{paradigm declarative programs. The set of techniques considered here includes:

� declarative diagnosis; abstract diagnosis

� error correction by program learning

� inductive and deductive program synthesis

1.4 Project Organization

Here is a short outline of the project structure with the expected contributions from each site.

Subproject 1: UPV

TIC2001-2705-C03

� Module M1.1: Program optimization and pro�ling techniques
Pro�ling techniques (Task T1.1.1), E�ectiveness of optimization tools (T1.1.2), Pro-
�ling tools (T1.1.3), Tools for analyzing the e�ectiveness of program optimization
(T1.1.4), Integration of results (T1.1.5).

� Module M1.2: Modelling and semantic optimization of software components.
Speci�cation frameworks and its application to declarative languages (T1.2.1), Model
checking techniques for declarative languages (T1.2.2), Model declarative debugging
techniques for declarative languages (T1.2.3), Analysis of programmable strategies
(T1.2.4), Analysis and removal of redundant code (T1.2.5).

� Module M1.3: Multi-agent systems: recon�gurable nets and cooperative au-
tomata. Formalization of recon�gurable nets (T1.3.1), Formalization of coopera-
tive automata (T1.3.2), Modelling and validation tools for concurrent, multi{agent
processes (T1.3.3), Experimental evaluation (T1.3.3).

� Module M1.4: Induction in Software Engineering and Databases.
Functional logic programming with types (T1.4.1), Theory evaluation (T1.4.2), In-
crementality and classi�cation problems (T1.4.3), Induction and rational debugging
(T1.4.4), Automated decision systems (T1.4.5), Higher order learning (T1.4.6), In-
tegration in the FLIP system (T1.4.7).

Subproject 2: UMA

� Module M2.1: Composing speci�cations in a multi{paradigm environment.
Composing view points (T2.1.1), Composing speci�cations (T2.1.2), Composition
and consistency of UML view points (T2.1.3), Composition and consistency of RM-
ODP view points (T2.1.4), Extending interface description languages by means of
coordination languages (T2.1.5), Abstract model checking (new task after the in-
corporation of M. Mar Gallardo |T2.1.6).

� M�odulo M2.2: Computational Interpretation of Pure Type Systems (PTSs).
Relationships of Extended PTSs and Linear Logic (T2.2.1), Extended PTSs, Linear
Logic and Mobility (T2.2.2), PTSs as a kernel for functional languages (T2.2.3).

Subproject 3: UCLM

� Module M3.1: Optimization of multi{paradigm declarative languages.
Transformation algorithms for uniformprograms (T3.1.1), Implementation of a com-
piler kernel for functional logic programs (T3.1.2).

� ModuleM3.2: Automatic transformation of multi-paradigmdeclarative programs.
Automatic tupling for multi-paradigm declarative programs (T3.2.1), Integration of
automatic transformation tools (T3.2.2).

2 Project achievements

During 2002{2003, signi�cant progress has been made towards achieving the project objectives.
The activities of the di�erent modules have progressed according to workplan. STREAM re-

TIC2001-2705-C03

sults are published at mainstream technical meetings on programming languages, formal meth-
ods, and declarative programming (e.g. ESOP, AMAST, RTA, PPDP, CADE, ICALP, LOP-
STR, LPAR, FLOPS, ECML, SAS, JELIA, RULE, WRLA, and CSL), international journals
(e.g. Information and Computation, Theoretical Computer Science, Journal of Logic and Com-
putation, IEEE Transactions of Software Engineering, Software Tools for Technology Transfer,
New Generation Computing, and Theory and Practice of Logic Programming), newsletters (AI
Communications), and workshops. This section summarizes these results. We include a se-
lection of publications representative of STREAM for each individual site. The complete
bibliography as well as the software developed in the STREAM project is available via WWW.

In the area of CBSD, signi�cative progress has been made in di�erent contexts. On the
one hand, Maude has been proposed as a meta-language to describe di�erent viewpoints in
RM-ODP. In particular, the enterprize and information views have been successfully described
in Maude. Analysis and veri�cation tools have also been developed for the language, such as a
model checker, a termination tool, and an extension which deals with strategy annotations. On
the other hand, di�erent formalisms have been studied in order to complement the information
provided by interface description languages. In this sense, the expressive power of Linda
and process algebras have been extensively explored. A formal methodology for automated
component adaptation has also been proposed. In the area of programming language design,
some relevant proposals have been made: the Expansion Postponement and Cut Elimination
problems have been analyzed for a family of pure type systems, and the tag-frame system has
been developed to provide a strategy for resource management in linear logic. This strategy
will permit the construction of an abstract machine for some linear logic{based programming
languages.

Concerning the abstract interpretation, veri�cation and optimization areas, work has been
done at many levels. We are implementing di�erent prototypes and tools such as a parallel
strategy for linear computations, a program slicer for Curry and a model checker for tccp

programs. Several e�orts have also been completed in some optimizations based on program
analysis and program transformation. We have �nished the implementation of a fold/unfold
transformation system which is able to perform composition and tupling (semi{)automatically.
We also implemented a tool for removing redundant arguments from functional programs.
Finally, we de�ned several optimizations of demand{driven narrowing and needed narrowing.
As for the areas of debugging and learning, work has proceeded with the investigation of several
of the planned techniques and tools, including an abstract debugger and a program corrector
for OBJ as well as integrated programs, and an experimental for inductive learner.

We �nd it useful to list the project's achievements by following the formal organization of
STREAM into its three di�erent sub-projects, one per partner.

2.1 Contributions of each Site

2.1.1 Technical University of Valencia (UPV)

According to work plan, UPV is currently working in the four tasks of \Modeling and analysis
of software components", \Veri�cation, model checking and abstract interpretation", \Per-
formance debugging and optimization", and \Declarative debugging and program learning
(UPV)". Work has progressed well in all these areas and many of the objectives have already
been achieved.

TIC2001-2705-C03

� Task 1: Modeling and analysis of software components

{ Formalization of a framework for the modeling and analysis of programs that use
strategy annotations.

{ Development of tools and techniques for achieving direct proofs of termination of
context-sensitive rewriting that also apply to Maude and OBJ programs.

{ Development of techniques for the introduction of demanded computations in eager
languages such as Maude and OBJ by using transformations and strategy annota-
tions. A tool is being developed (in cooperation with UMA team) to check the
termination of Maude speci�cations.

{ Development of a software tool for the de�nition of multi-agent concurrent systems
and the validation of the most relevant properties using the model of extended
cooperating automata.

{ Development of an automatic tool for the de�nition and validation of concurrent
systems subject to structural dynamic changes using the model of recon�gurable
nets.

� Task 2: Veri�cation, model checking and Abstract Interpretation

{ Formalization of a model checking algorithm for tccp programs. The advantages
of the cc paradigm are exploited to mitigate the state explosion problem which is
common to model checking algorithms.

{ Development of a symbolic model checking algorithm for the tccp language which
improves the traditional algorithm by using a symbolic data structure based on
Di�erence Decision Diagrams.

{ De�nition of a fully abstract denotational semantics for the tccp paradigm which
allows one to develop di�erent analyses for tccp programs. The original semantics
of tccp is not fully abstract, hence it can only be used to partially approximate
analysis results. In cooperatio with some UMA team members, we are developing
an abstract tccp model checker.

{ Construction of a model for hybrid cc programs which can be used for the formula-
tion of an automatic veri�cation method for hybrid systems.

{ Formal description of a term-rewriting, web speci�cation language, which is helpful
to express properties about the contents and structure of a given web site. Formal-
ization of a simulation-based veri�cation framework which can be used to verify a
given web site w.r.t. a web speci�cation.

� Task 3: Performance debugging and optimization

{ Formalization of a natural semantics for functional logic languages |and its equiva-
lent small-step semantics| as a basis to develop a theoretical framework to estimate
the eÆciency achieved by multi-paradigm program transformations.

{ Development of the �rst partial evaluation system for functional logic programs
enhanced with cost information for assessing the improvement achieved by each
specialized recursive function.

TIC2001-2705-C03

{ Development of a program slicing framework, based on partial evaluation, which is
useful for performing debugging tasks, code reuse, etc.

{ Formalization of a notion of redundant argument in functional programs. Develop-
ment of a tool for analyzing and removing redundant arguments.

� Task 4: Declarative debugging and program learning

{ Formalization of a generic scheme for the declarative debugging of functional logic
programs which is based on a (continuous) immediate consequence operator TR
which models computed answers, and is valid for eager as well as lazy programs. We
also develop an e�ective debugging methodology which is based on abstract inter-
pretation. The debugger does not require the user to either provide error symptoms
in advance or answer any question concerning program correctness.

{ We endow the abstract diagnoser with a new methodology for synthesizing correct
functional logic programs. We propose a hybrid, top-down (unfolding{based) as well
as bottom-up (induction{based), approach for the automatic correction of the wrong
code, which is driven by a set of evidence examples that are automatically produced
as an outcome by the diagnoser. We also provide a prototypical implementation
which we use for an experimental evaluation of the system.

{ Development of an (abstract) declarative diagnosis tool and an inductive learning
methodology for repairing bugs in OBJ programs. The algorithm is not tied to any
particular rewriting strategy, which makes it suitable for correcting errors in OBJ
programs even if they are given lazy strategy annotations, as in OnDemandOBJ.

{ De�nition of a declarative debugging framework based on a cost function that assigns
di�erent cost values to each kind of error and di�erent bene�t values to each kind of
correct outcome. In this approach, the diagnosis problem is rede�ned as assigning
a real-value probability and cost to each rule, by considering each rule more or less
guilty of the overall error and cost of the program.

{ De�nition of a method which allows us to generate a set of decision trees from a
single evidence in functional logic languages. The collection of trees is based on
a shared ensemble such that the trees share their common parts. We generate a
multi-tree, which is an AND/OR tree structure from which it is possible to extract
a set of hypotheses. Implementation of the inductive system for the learning of
decision multi-trees.

{ De�nition of an ensemble method which combines di�erent solutions in a multi-
tree. Development of a technique to extract one single solution from a hypotheses
ensemble without using extra data, based on the use of a random dataset.

{ De�nition of a framework for the cost-sensitive induction of hypotheses and their
aplication to bioinformatic problems. In order to reduce the cost of misclassi�cation,
the multi-tree is constructed by using splitting criteria based on ROC analysis.

References

[1] E. Albert. Partial Evaluation of Multi-Paradigm Declarative Languages. AI Communica-
tions, 14(4):235{237, 2002.

TIC2001-2705-C03

[2] E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. A Deterministic Operational Se-
mantics for Functional Logic Languages. In 2002 Joint Conf. on Declarative Programming
(AGP'02), pages 207{222. U.P. Madrid, 2002.

[3] E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. An Operational Semantics for
Declarative Multi-Paradigm Languages. In Proc. Int'l Workshop on Reduction Strategies
in Rewriting and Programming (WRS 2002), volume 70.6 of ENTCS.

[4] E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. An Operational Semantics for
Declarative Multi-Paradigm Languages. In Proc. of the Int'l Workshop on Functional and
(Constraint) Logic Programming (WFLP'2002), pages 7{20. U. Udine, 2002.

[5] E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational Semantics for Func-
tional Logic Languages. In Proc. of the Int'l Workshop on Functional and (Constraint)
Logic Programming (WFLP'2002), volume 76 of ENTCS. Elsevier Science Publishers,
2002.

[6] E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational Semantics for Lazy
Functional Logic Programs. In 2nd International Workshop on Reduction Strategies in
Rewriting and Programming (WRS'02), pages 97{112. TU Wien, 2002.

[7] E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational Semantics for Declar-
ative Multi-Paradigm Languages. Journal of Symbolic Computation, 2003. Submitted.

[8] E. Albert, M. Hanus, and G. Vidal. A Practical Partial Evaluation Scheme for Multi-
Paradigm Declarative Languages. Journal of Functional and Logic Programming, 2002(1),
2002.

[9] E. Albert, M. Hanus, and G. Vidal. A Residualizing Semantics for the Partial Evaluation
of Functional Logic Programs. Information Processing Letters, 85(1):19{25, 2003.

[10] E. Albert, J. Silva, and G. Vidal. Time Equations for Lazy Functional (Logic) Languages.
In 2003 Joint Conf. on Declarative Programming (AGP'03), 2003.

[11] E. Albert and G. Vidal. The Narrowing-Driven Approach to Functional Logic Program
Specialization. New Generation Computing, 20(1):3{26, 2002.

[12] E. Albert and G. Vidal. Symbolic Pro�ling for Multi-paradigm Declarative Languages. In
Proc. Logic-Based Program Synthesis and Transformation (LOPSTR'01). Springer LNCS
2372:148{167, 2002.

[13] M. Alpuente, D. Ballis, F.J. Correa, and M. Falaschi. A Multi Paradigm Automatic
Correction Scheme. In M. Falaschi, editor, 11th International Workshop on Func-
tional and (Constraint) Logic Programming, WFLP'02, pages 157{170. Research Report
UDMI/18/2992/RR, Dipartimento di Matematica e Informatica, Universit�a di Udine,
2002.

[14] M. Alpuente, D. Ballis, F.J. Correa, and M. Falaschi. Automated Correction of Functional
Logic Programs. In P. Degano, editor, Proc. of 12th European Symp. on Programming
(ESOP 2003), Springer LNCS 2618:54{68, 2003.

TIC2001-2705-C03

[15] M. Alpuente, D. Ballis, S. Escobar, M. Falaschi, and S. Lucas. Abstract Correction
of Functional Programs. In Proc. Int'l Workshop on Functional and (Constraint) Logic
Programming (WFLP'2003), volume 86.3 of ENTCS. Elsevier B.V., Amsterdam, NL,
2003.

[16] M. Alpuente, D. Ballis, S. Escobar, M. Falaschi, and S. Lucas. Abstract Correction of
OBJ-like Programs. In F. Buccafurri, editor, Proc. of the Int'l Joint Conf. on Declarative
Programming, AGP'2003, pages 422{433, 2003.

[17] M. Alpuente, M. Comini, M. Falaschi, S. Escobar, and S. Lucas. Abstract Diagnosis
of Functional Programs. In M. Leuschel, editor, Proc. Int'l Workshop on Logic Based
Program Development and Transformation (LOPSTR'02). Springer LNCS 2664: 1{16,
2003.

[18] M. Alpuente and F. Correa. Un Depurador Abstracto, Inductivo y Param�etrico para
Programas Multiparadigma. Revista Colombiana de Computaci�on, 2003. To apper.

[19] M. Alpuente, F. Correa, and M. Falaschi. A Debugging Scheme for Functional Logic
Programs. In M. Hanus, editor, Selected papers of the 10th Int'l Workshop on Functional
and (Constraint) Logic Programming (WFLP 2001), volume 64 of ENTCS. Elsevier B.V.,
Amsterdam, NL, 2002.

[20] M. Alpuente, R. Echahed, S. Escobar, and S. Lucas. Redundancy of Arguments Reduced
to Induction. In Proc. Int'l Workshop on Functional and (Constraint) Logic Programming
(WFLP'2002), volume 76 of ENTCS. Elsevier B.V., Amsterdam, NL, 2003.

[21] M. Alpuente, S. Escobar, B. Gramlich, and S. Lucas. Improving on-demand strategy
annotations. In Proc. 9th Int'l Conf. on Logic for Programming, Arti�cial Intelligence
and Reasoning (LPAR'02). Springer LNAI 2514: 1{18, 2002.

[22] M. Alpuente, S. Escobar, B. Gramlich, and S. Lucas. On-demand Strategy Annotations
Revisited. Information and Computation, 2003. Submitted.

[23] M. Alpuente, S. Escobar, B. Gramlich, and S. Lucas. On-demand Strategy Annotations
Revisited. Technical Report DSIC-II/18/03, DSIC, Universidad Polit�ecnica de Valencia,
July 2003.

[24] M. Alpuente, S. Escobar, and S. Lucas. A Program Transformation for Implementing on-
Demand Strategy Annotations. In R. Pe na, editor, 14th Int'l Workshop onImplementation
of Functional Languages, IFL'02,, pages 409{424. U.C.M. Tech 127-02, 2002.

[25] M. Alpuente, S. Escobar, and S. Lucas. A Transformation for Implementing on-Demand
Strategy Annotations. In R. Nieuwenhuis, editor, 3rd Int'l Workshop onImplementation
of Logics, WIL'02,, 2002.

[26] M. Alpuente, S. Escobar, and S. Lucas. Removing Redundant Arguments of Functions. In
H. Kirchner, editor, Proc. 9th Int'l Conf. on Algebraic Methodology And Software Tech-
nology (AMAST 2002). Springer LNCS 2422: 117{131, 2002.

TIC2001-2705-C03

[27] M. Alpuente, S. Escobar, and S. Lucas. Analyses of Redundancy in Term Rewriting
Systems. Theory and Practice of Logic Programming, 2003. Submitted.

[28] M. Alpuente, S. Escobar, and S. Lucas. On-demand evaluation by program transformation.
In J.-L. Giavitto and P.-E. Moreau, editors, Proc. RULE'03, volume 86.2 of ENTCS.
Elsevier B.V., Amsterdam, NL, 2003.

[29] M. Alpuente, S. Escobar, and S. Lucas. OnDemandOBJ: A Laboratory for Strategy
Annotations. In J.-L. Giavitto and P.-E. Moreau, editors, Proc. RULE'03, volume 86.2 of
ENTCS. Elsevier B.V., Amsterdam, NL, 2003.

[30] M. Alpuente, S. Escobar, and S. Lucas. OnDemandOBJ: An Optimized OBJ Interpreter.
In Terceras Jornadas sobre Lenguajes de Programaci�on (PROLE'03), 2003.

[31] M. Alpuente, S. Escobar, and S. Lucas. Correct and complete (positive) strategy annota-
tions for OBJ. In F. Gadducci and U. Montanari, editors, Proc. WRLA 2002, volume 71
of ENTCS. Elsevier B.V., Amsterdam, NL, 2003.

[32] M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. Rules + Strategies for Transforming
Lazy Functional Logic Programs. Theoretical Computer Science, 2004. To appear.

[33] M. Alpuente, M. Falaschi, and A. Villanueva. Symbolic Model Checking for Timed Con-
current Constraint Programs. In Terceras Jornadas sobre Lenguajes de Programaci�on
(PROLE'03), 2003.

[34] M. Alpuente, M. Falaschi, and A. Villanueva. Symbolic Model Checking for tccp pro-
grams. Technical Report DSIC-II/19/03, DSIC, Technical University of Valencia, 2003.
Available at http://www.dsic.upv.es/users/elp/villanue/papers/techrep03.ps.

[35] M. Alpuente, M. Hanus, S. Lucas, and G. Vidal. Specialization of Functional Logic
Programs Based on Needed Narrowing. Theory and Practice of Logic Programming, 2003.
Submitted.

[36] M. Alpuente, P. Juli�an, M. Falaschi, and G. Vidal. lazy narrowing and needed nar-
rowing: A comparison. In M. Falaschi, editor, 11th International Workshop on Func-
tional and (Constraint) Logic Programming, WFLP'02, pages 21{34. Research Report
UDMI/18/2992/RR, Dipartimento di Matematica e Informatica, Universit�a di Udine,
2002.

[37] M. Alpuente, P. Juli�an, M. Falaschi, and G. Vidal. Uniform Lazy Narrowing. Journal of
Logic and Computation, 16(2):287{312, 2003.

[38] S. Antoy and S. Lucas. Demandness in rewriting and narrowing. In M. Comini and
M. Falaschi, eds., Proc. WFLP 20002, volume 76 of ENTCS. Elsevier B.V., Amsterdam,
NL, 2002.

[39] E. Badouel, C. Herrero, and J. Oliver. Cooperating Automata: A model to describe
Distributed and Dynamic Systems. In 6eme Seminaire Atelier en Alg�ebre, Logique et ses
Applications (ERAL'02), 2002.

TIC2001-2705-C03

[40] E. Badouel, M. Llorens, and J. Oliver. Modelling Concurrent Systems using Recon�gurable
Nets. In 6eme Seminaire Atelier en Alg�ebre, Logique et ses Applications (ERAL'02),
2002.

[41] E. Badouel, M. Llorens, and J. Oliver. Modelling Concurrent Systems: Recon�gurable
Nets. In Int'l Conf. on Parallel and Distributed Processing Techniques and Applications
(PDPTA'03), pages 1568{1574. CSREA Press, 2003.

[42] D. Ballis, M. Falaschi, C. Ferri, J. Hern�andez-Orallo, and M.J. Ram��rez-Quintana. Cost-
Sensitive Debugging of Declarative Programs. In Proc. of the Int'l Workshop on Functional
and (Constraint) Logic Programming (WFLP'2003), volume 86.3 of ENTCS. Elsevier
B.V., Amsterdam, NL, 2003.

[43] C. Borralleras, S. Lucas, and A. Rubio. Recursive Path Orderings can be Context-
Sensitive. In A. Voronkov, editor, Proc. 18th Inte'l Conf. on Automated Deduction
(CADE'02), Springer LNAI 2393: 314{331, 2002.

[44] F. Correa. Depuraci�on declarativa de programas l�ogico funcionales. PhD thesis, Universi-
dad Polit�ecnica de Valencia, June 2002.

[45] S. Escobar. Improving (Weakly) Outermost-Needed Narrowing: Natural Narrowing. In
G. Vidal, editor, Proc. of the Int'l Workshop on Functional and (Constraint) Logic Pro-
gramming (WFLP'2003), pages 47{60. Technical Report DSIC II/13/03, Universidad
Polit�ecnica de Valencia, 2003.

[46] S. Escobar. Re�ning Weakly Outermost-Needed Rewriting and Narrowing. In Proc. 5th
Int'l Conf. on Principles and Practice of Declarative Programming (PPDP'03), pages
113{123. ACM Press, New York, 2003.

[47] S. Escobar. Strategies and Analysis Techniques for Functional Program Optimization.
PhD thesis, Universidad Polit�ecnica de Valencia, October 2003.

[48] V. Estruch, C. Ferri, J. Hern�andez, and M. J. Ram��rez. Re-designing Cost-sensitive
Decision Tree Learning. In Workshop of Data Mining and Learning, pages 33{42, 2002.

[49] V. Estruch, C. Ferri, J. Hern�andez, and M. J. Ram��rez. Shared ensemble learning using
multi-trees. In Proc. IBERAMIA 2002. Springer LNAI 2527:204{213, 2002.

[50] V. Estruch, C. Ferri, J. Hern�andez, and M. J. Ram��rez. SMILES: A multi-purpose learning
system. In Proc. Logics in Arti�cial Intelligence (JELIA 2002), Springer LNCS 2424:529{
532, 2002.

[51] V. Estruch, C. Ferri, J. Hern�andez, and M. J. Ram��rez. Un Sistema para la Extracci�on de
Conocimiento en Bioinform�atica. InWorkshop of Bioinformatics on Arti�cial Intelligence,
pages 77{87, 2002.

[52] V. Estruch, C. Ferri, J. Hern�andez, and M. J. Ram��rez. Beam search extraction and for-
getting strategies on shared ensembles. In Proc. 4th Int'l Workshop on Multiple Classi�er
Systems (MCS 2003). Springer LNAI 2709:206{216, 2003.

TIC2001-2705-C03

[53] V. Estruch, C. Ferri, J. Hern�andez, and M. J. Ram��rez. Simple mimetic classi�ers. In
Proc. Int'l Conf. on Machine Learning and Data Mining (MLDM 2003). Springer LNCS
2734:156{171, 2003.

[54] M. Falaschi and A. Villanueva. An approach to the model checking problem for tccp.
In Universita degli Studi di Udine, http://www.dimi.uniud.it/alicia/papers/techrep02.ps,
2002.

[55] M. Falaschi and A. Villanueva. Automatic veri�cation of timed concurrent constraint
programs. Theoretical Computer Science, 2003. Submitted.

[56] C. Ferri. Multi-Paradigm Learning of Declarative Models. PhD thesis, Depto. de Sistemas
Inform�aticos y Computaci�on (U. Polit�ecnica de Valencia), 2003.

[57] C. Ferri, P. Flach, and J. Hern�andez. Learning decision trees using the area under the roc
curve. In Proc. Int'l Conference on Machine Learning, pages 139{146. IOS Press, Morgan
Kaufmann Publishers, 2002.

[58] C. Ferri, P. Flach, and J. Hern�andez. Improving the AUC of probabilistic estimation trees.
In Proc. 14th European Conf. on Machine Learning (ECML 2003). Springer LNCS, 2003.
To appear.

[59] C. Ferri, J. Hern�andez, and M. J. Ram��rez. From Ensemble Methods to Comprehensible
Models. In Proc. Int'l Conf. on Discovery Science, Springer LNCS 2534: 165-177, 2002.

[60] C. Ferri, J. Hern�andez, and M. J. Ram��rez. Induction of decision multi-trees using Levin
search. In Proc. Int'l Conf. on Computational Science (ICCS 2002). Springer LNCS
2329:166{175, 2002.

[61] C. Ferri, J. Hern�andez, and M. A. Salido. Volume under the roc surface for multi-class
problems. In Proc. 14th European Conf. on Machine Learning (ECML 2003). Springer
LNCS, 2003. To appear.

[62] B. Gramlich and S. Lucas (editors). Reduction Strategies in Rewriting and Programming.
Int'l Workshop, WRS'02 - Final Proceedings, volume 70.6 of ENTCS. Elsevier B.V.,
Amsterdam, NL, November 2002.

[63] B. Gramlich and S. Lucas (editors). Reduction Strategies in Rewriting and Programming.
Int'l Workshop Workshop, WRS'03 - Final Proceedings, volume 86.4 of ENTCS. Elsevier
B.V., Amsterdam, NL, 2003. to appear.

[64] B. Gramlich and S. Lucas. Modular termination of context-sensitive rewriting. In C. Kirch-
ner, editor, Proc. of 4th ACM Sigplan Conference on Principles and Practice of Declarative
Programming (PPDP'02), pages 50{61, ACM Press, New York, 2002.

[65] B. Gramlich and S. Lucas. Simple termination of context-sensitive rewriting. In B. Fischer
and E. Visser, editors, Proc. of 3rd ACM Sigplan Workshop on Rule-Based Programming
(RULE'02), pages 29{41. ACM Press, New York, 2002.

TIC2001-2705-C03

[66] C. Herrero and J. Oliver. Aut�omatas Cooperativos Extendidos: sistemas Multi-Agente
con dependencia geogr�a�ca. Inteligencia Arti�cial. Revista Iberoamericana de Inteligencia
Arti�cial, 2003. Submitted.

[67] C. Herrero and J. Oliver. Extended Cooperating Automata. In 2003 IEEE International
Conference on Systems, Man and Cybernetics (SMC'03). IEEE Press, 2003.

[68] C. Herrero and J. Oliver. Una extensi�on de los Aut�omatas Cooperativos. In Proc. of XI
Jornadas de Concurrencia (Colecci�on Treballs d'Inform�atica i Tecnologia, n. 16), pages
265{279. U. Jaume I, 2003.

[69] M. Llorens. Redes Recon�gurables. Modelizaci�on y Veri�caci�on. PhD thesis, Depto. de
Sistemas Inform�aticos y Computaci�on (U. Polit�ecnica de Valencia), 2003.

[70] M. Llorens and J. Oliver. Cambios Estructurales en Sistemas Concurrentes: Redes Recon-
�gurables. Inteligencia Arti�cial. Revista Iberoamericana de Inteligencia Arti�cial, 2003.
Submitted.

[71] M. Llorens and J. Oliver. Recon�gurable Nets: A subclass of Net Rewriting systems. In
Proc. of Eighth Asian Computing Science Conference. Springer LNCS, 2003. Submitted.

[72] M. Llorens and J. Oliver. Sistemas de Reescritura de Redes. In Proc. of XI Jornadas de
Concurrencia (Colecci�on Treballs d'Inform�atica i Tecnologia, n. 16), pages 237{250. U.
Jaume I, 2003.

[73] M. Llorens and J. Oliver. Structural Dynamic Changes in Concurrent Systems: Recon�g-
urable Nets. Transactions on Computers, 2003. Submitted.

[74] S. Lucas. Context-Sensitive Rewriting Strategies. Information and Computation,
178(1):294{343, 2002.

[75] S. Lucas. Context-sensitive rewriting techniques for programs with strategy annotations.
In 4th International Workshop on Rewriting Logic and its Applications, WRLA'02, Sep-
tember 2002. tutorial.

[76] S. Lucas. Lazy Rewriting and Context-Sensitive Rewriting. In M. Hanus, editor, volume
64 of ENTCS. Elsevier B.V., Amsterdam, NL, 2002.

[77] S. Lucas. mu-term version 1.0. user's manual. Technical Report DSIC-II/1/02, DSIC,
Universidad Polit�ecnica de Valencia, January 2002.

[78] S. Lucas. Termination of (Canonical) Context-Sensitive Rewriting. In S. Tison, edi-
tor, Proc. of 13th International Conference on Rewriting Techniques and Applications
(RTA'02), Springer LNCS 2378:296{310, 2002.

[79] S. Lucas. Polynomials for proving termination of context-sensitive rewriting. In Terceras
Jornadas sobre Lenguajes de Programaci�on (PROLE'03), 2003. Submitted.

[80] S. Lucas. Polynomials for proving termination of context-sensitive rewriting. Technical
Report DSIC-II/21/03, DSIC, Universidad Polit�ecnica de Valencia, September 2003.

TIC2001-2705-C03

[81] S. Lucas. Semantics of programs with strategy annotations. Technical Report DSIC-
II/8/03, DSIC, Universidad Polit�ecnica de Valencia, April 2003.

[82] S. Lucas. Strong and NV-Sequentiality of Constructor Systems. Information Processing
Letters, 2003. Submitted.

[83] S. Lucas. Termination of ComputationalRestrictions of Rewriting and Termination of Pro-
grams. In A. Rubio, editor, Extended Abstracts of 6th International Workshop on Termi-
nation, WST'03, pages 44{48. Technical Report DSIC II/15/03, Universidad Polit�ecnica
de Valencia, 2003.

[84] S. Lucas. Termination of programs with strategy annotations. ACM Transactions on
Programming Languages and Systems, 2003. Submitted.

[85] S. Lucas. Termination of programs with strategy annotations. Technical Report DSIC-
II/20/03, DSIC, Universidad Polit�ecnica de Valencia, September 2003.

[86] S. Lucas. Semantics of Maude and OBJ* programs with strategy annotations. In ACM
Symposium on Principles of Programming Languages, POPL'04, 2004. Submitted.

[87] J. G. Ramos, J. Silva, and G. Vidal. An Embedded Language Approach to Router Spec-
i�cation in Curry In Proc. Int'l Conf. on Current Trends in Theory and Practice of
Informatics (SOFSEM 2004). Springer LNCS, 2004. To appear.

[88] G. Vidal. A Partial Evaluation Tool for Multi-Paradigm Declarative Programs (in-
vited talk). In 2002 IEEE International Conference on Systems, Man and Cybernetics
(SMC'02). IEEE Press, 2002.

[89] G. Vidal. Cost-Augmented Narrowing-Driven Specialization. In Proc. ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-Based Program Manipulation (PEPM'02),
volume 37(3) of SIGPLAN NOTICES, pages 52{62, New York, 2002. ACM Press. Ex-
tended version to appear in Higher-Order and Symbolic Computation (formerly Lisp and
Symbolic Computation)

[90] G. Vidal. Forward Slicing of Multi-Paradigm Declarative Programs Based on Partial
Evaluation. In Proc. Logic-based Program Synthesis and Transformation (LOPSTR 2002).
Springer LNCS 2664:219{237, 2003.

[91] A. Villanueva. Model Checking for the Concurrent Constraint Paradigm. PhD thesis,
University of Udine in cotutela with Technical University of Valencia, May 2003.

2.1.2 University of M�alaga (UMA)

The contributions of the UMA team have been made in the �rst three tasks previously men-
tioned, although they have also made some contributions indirectly related to the fourth task.

� Task 1: Modeling and analysis of software components

{ A formalism based on process algebras and the notion of role have been used to
describe the interaction of CORBA components. The proposal is based on adding
protocol information to components whose signature is described by an IDL.

TIC2001-2705-C03

{ Di�erent coordination models (Linda, Reo) have been proposed to de�ne the be-
havioural protocols of software components. A process calculus has been de�ned for
each coordination model, and a compatibility relation has been de�ned to analyse
the safe combination of a component-based system.

{ The Maude language has been proposed as a common formalism to describe enter-
prise and information viewpoints in RM-ODP.

{ Construction of a prototype deriving Maude modules from UML graphical speci�-
cations (class diagrams). This tool permits the analysis of UML diagrams through
Maude speci�cations.

{ A tool is being developed (in cooperation with UPV team) to check the termination
of Maude speci�cations.

{ We have proposed a methodology for supporting the automated adaptation of soft-
ware components. The adaptation is automatically derived from the behaviour
speci�cation of components to be adapted, and the pattern to be ful�lled by the
derived adaptor.

{ A Pure Sequent Calculus has been de�ned, providing an equivalent presentation of
Pure Type Systems. This alternative presentation allows us to study two important
open problems for pure type systems: cut-elimination and expansion postponement.

� Task 2: Veri�cation, model checking and abstract interpretation

{ We have developed an abstract model checking theory, which is dual to the classical
one, where both the model and the property to be checked are over-approximated
(instead of under-approximating them).

{ A methodology has been proposed to apply abstract model checking techniques to
UML state-charts and MSCs (Message Sequence Charts).

{ We have constructed �SPIN, a tool implementing our proposal in the context of
Promela and LTL.

{ An operational semantics for full Promelahas been de�ned. As far as we know this
is the �rst formal semantics covering all features of Promela.

{ In cooperation with some UPV team members, we are applying abstract model
checking techniques to Timed Concurrent Constraint Programming.

� Task 3: Performance debugging and optimization

{ We have de�ned an implementation strategy for linear logic languages. The new
Tag-Frame system proposes a strategy for resource management that reduces the
complexity of all the linear connectives.

{ A prototype for the linear logic language Lolli has been constructed to illustrate the
possibilities of tag-frames.

� Task 4: Declarative debugging and program learning

{ Tracing Tag-Frame, a variant of Tag-Frame, allowing the debugging of Lolli pro-
grams.

TIC2001-2705-C03

References

[1] G. Rodriguez, P. Merino, M. M. Gallardo. An Extension of the ns Simulator for Active
Networks Research. Computer Communications, 25(3):189{197, 2002.

[2] J. M. Alvarez, M. Diaz, L.M. Llopis, E. Pimentel, and J.M. Troya. Integrating schedu-
lability analysis and design techniques in SDL. Journal of Real-Time Systems, 2003 (37
pages).

[3] J. M. �Alvarez, M. D��aza, L.M. Llopis, E. Pimentel, and J.M. Troya. An object oriented
methodology for embedded real-time systems. The Computer Journal, 46(2), 2003 (24
pages).

[4] A. Brogi, C. Canal, and E. Pimentel. On the speci�cation of software adaptation. En 2nd
International Workshop on Foundations of Coordination Languages and Software Archi-
tectures. Pendiente de publicaci�on en ENTCS. Preselected for publication in Science of
Computer Programming, 2003.

[5] Carlos Canal, Lidia Fuentes, Ernesto Pimentel, Antonio Vallecillo, and J. M. Troya.
Adding roles to Corba objects. IEEE Transactions on Software Engineering, 2003.

[6] F. Dur�an and J. Meseguer. Structured theories and institutions. Theoretical Computer
Science, 2003. In press.

[7] F. Dur�an and A. Vallecillo. FormalizingODP enterprise speci�cations in Maude. Computer
Standards & Interfaces, 25(2):83{102, 2003.

[8] M.M. Gallardo, J. Mart��nez, P. Merino, and E. Pimentel. A tool for abstraction in model
checking. Software Tools for Technology Transfer, 2002. Accepted for publication.

[9] M. M. Gallardo, P. Merino, E. Pimentel. Debugging UML Designs with Model Checking.
Journal of Object Technology, 1(2):101-117. 2002.

[10] M.M. Gallardo, P. Merino, and E. Pimentel. Re�nement of ltl formulas for abstract model
checking. In Proc. 9th Int'l Static Analysis Symposium. Springer LNCS 2477, 2002.

[11] F. Guti�errez and B. C. Ruiz. Expansion Postponement via Cut Elimination in Sequent
Calculi for Pure Type Systems. In J.C.M. Baeten, J.K Lenstra, J. Parrow, and G.J.
Woeginger, editors, 13th Int'l Colloquium on Automata, Languages and Programming
(ICALP2003). Springer LNCS 2719:956{968, 2003.

[12] J.S. Hodas, P. L�opez, J. Polakova, L. Stoilova, and E. Pimentel. A tag-frame system of
resource management for proof search in linear-logic programming. In J. Brad�eld, editor,
Annual Conference or the European Association for Computer Science Logic, Springer
LNCS 2471:167{182, 2002.

[13] J. M. Molina-Bravo and E. Pimentel. Composing programs in a rewriting logic for declar-
ative programming. Theory and Practice of Logic Programming, 3(2):189{221, March
2003.

TIC2001-2705-C03

[14] A. Rold�an, E. Pimentel and A. Brogi. Safe Composition of Linda-based Components,
TACoS'03 (ETAPS'03). volume 86.2 of ENTCS. Elsevier B.V., Amsterdam, NL, 2003.

[15] M.M. Gallardo, P. Merino, and E. Pimentel. A generalized semantics of Promelafor ab-
stract model checking. Formal Aspects of Computing, 2002. Enviado para su revisi�on.

2.1.3 University of Castilla-La Mancha

According to plan, Castilla- La Mancha is working mainly on the third task, pursuing the
optimization of both multi{paradigm declarative programs and languages.

� Task 3: Performance debugging and optimization

{ We have investigated the formal relation between needed narrowing and another
(not so lazy) demand{driven narrowing strategy which is the basis for popular im-
plementations of lazy functional logic languages. We demonstrated that needed
narrowing and demand-driven narrowing are computationally equivalent over the
class of uniform programs.

{ We also formalized a complete re�nement of demand-driven narrowing, called uni-
form lazy narrowing, which is still equivalent to needed narrowing over the afore-
mentioned class.

{ We introduced an optimized representation for the data structure of de�nitional
trees which are used to guide the needed narrowing mechanism in some high level
implementations of (needed) narrowing into Prolog. We formulated a generic algo-
rithm that builds re�ned de�nitional trees.

{ We developed the �rst fold/unfold transformation system for multi-paradigmdeclar-
ative languages which are based on needed narrowing. We provided strong correct-
ness results for the transformation system and also an experimental prototype (the
Synth system), which provides witness for the practicality of the method.

{ We endow the Synth system with two powerful heuristics: 1) an automatic compo-
sition strategy empowered with a eureka generator based on partial evaluation (PE),
and 2) an incremental, semi-automatic, tupling strategy which is based on the three
rules: de�nition introduction, unfolding and abstraction with folding. Our tupling
algorithm can derive (at a low cost) a good set of eureka de�nitions and performs
sophisticated termination tests during the search for regularities.

{ We formalized a factoring program transformation that, in some cases, eliminates
the non{determinism of the program by introducing a suitable \alternative" oper-
ator. We demonstrated the correctness of the factoring transformation under some
appropriate conditions and also de�ned some cost criteria which help to measure the
e�ectiveness of the transformation. We performed some experiments which demon-
strated that the factoring transformationmay save both execution time and memory
consumption.

TIC2001-2705-C03

References

[1] M. Alpuente, M. Falaschi, P. Juli�an, and G. Vidal. Uniform Lazy Narrowing. Journal of
Logic and Computation, 13(2):27, March/April 2003.

[2] M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. Rules + Strategies for Transforming
Lazy Functional Logic Programs. Theoretical Computer Science, 2004. To appear. (56
pages)

[3] Maria Alpuente, Moreno Falaschi, Pascual Juli�an, and Germ�an Vidal. Lazy narrowing
and needed narrowing: A comparison. In Proc. 11th Int'l Workshop on Functional and
(Constraint) Logic Programming (WFLP 2002), Grado, Italy, June 20-22, 2002, pages
21{34. UDMI/18/2002/RR, 2002.

[4] S. Antoy, P. Juli�an-Iranzo, and B. Massey. Improving the eÆciency of non-deterministic
computations. volume 64 of ENTCS. Elsevier B.V., Amsterdam, NL, 2003.

[5] P. Juli�an-Iranzo. On the correctness of the factoring transformation. In Z. Hu and
M. Rodr��guez-Artalejo, editors, Proc. of 6th Int'l Symp. on Functional and Logic Pro-
gramming (FLOPS'02). Springer LNCS 2441:119{133, 2002.

[6] P. Juli�an-Iranzo. Partial Evaluation of Lazy Functional Logic Programs. AI Communica-
tions, IO Press (Amsterdam), 16(1):3, 2003.

[7] P. Juli�an-Iranzo. Re�ned de�nitional trees and prolog implementations of narrowing. In
Proc. 12th Int'l Workshop on Functional and (Constraint) Logic Programming (WFLP
2003), pages 117{129. UPV, 2003.

[8] G. Moreno. A Safe Transformation System for Optimizing Functional Pro-
grams. Technical Report DIAB-02-07-27, UCLM, 2002. Available in URL:
http://www.info-ab.uclm.es/~personal/gmoreno/gmoreno.htm.

[9] G. Moreno. Automatic Optimization of Multi-Paradigm Declarative Programs. In F. J.
Garijo, J. C. Riquelme, and M. Toro, editors, Proc. of IBERAMIA 2002. Springer LNAI
2527:131{140, 2002.

[10] G. Moreno. Automatic Tupling for Functional{Logic Programs. Tech-
nical Report DIAB-02-07-24, UCLM, 2002. Available at URL:
http://www.info-ab.uclm.es/~personal/gmoreno/gmoreno.htm.

[11] G. Moreno. Incremental Tupling in a Functional-Logic Setting. In Proc. of Segundas
Jornadas sobre Lenguajes de Programaci�on (PROLE'02), El Escorial (Spain), pages 32{
48. UCM, 2002.

[12] G. Moreno. Transformation Rules and Strategies for Functional-Logic Programs. AI
Communications, IO Press (Amsterdam), 15(2):3, 2002.

[13] G. Moreno. A Narrowing-Based Instantiation Rule for Rewriting-Based Fold/Unfold
Transformations. In Proc. 12th Int'l Workshop on Functional and (Constraint) Logic
Programming (WFLP 2003), volume 86.4 of ENTCS. Elsevier B.V., Amsterdam, NL,
2003.

TIC2001-2705-C03

3 Results indicators

3.1 Publications

Table 3.1 below summarizes the publications produced by the three STREAM partners during
the reported period:

UPV UMA UCLM TOTAL

Int'l Journal 20 (7 SCI, 13 ENTCS) 19 (8 SCI, 11 ENTCS) 6 (4 SCI, 2 ENTCS) 45
Nat'l Journal 3 0 0 3
Int'l Conf. 24 16 4 44

Int'l Workshop 13 13 3 29
PhD Thesis 5 2 0 7
Tech. Reports 7 2 3 12
TOTAL 72 52 16 140

3.2 Other indicators

Sta� Training: A total of 7 PhD theses have already been completed during the develop-
ment of the project (F. Correa, A. Villanueva, C. Ferri, S. Escobar, M. L. Llor�ens, A. J.
Fern�andez and F. Gutierrez). Four PhD fellowships were funded by the Spanish Minis-
tery of Science and Technology (A. Villanueva), regional government (J. Silva), and the
partner universities (M. Abril, V. Estruch). Other �ve research fellows have been recently
hired by the project (E. Modroiu, C. Ochoa, D. Ballis, D. Garrido, and C. Villamizar).

International projects: UPV has participated in three bilateral cooperation projects:

� Acci�on Integrada Hispano-Alemana HA2001-005, with CAU Kiel, focusing on the de-
bugging of multi{paradigm declarative languages, including trace-based debuggers,
program pro�ling and declarative debugging, as well as their application to Curry.

� Acci�on Integrada Hispano-Austr��aca HU2001-0019, with TU Wien, pursuing the analy-
sis and optimization of functional programs under programmable strategies, and
their application to CafeOBJ, ELAN, Maude, OBJ3, and Stratego.

� Acci�on Integrada Hispano-Italiana HI2001-0161, with U. Udine, oriented towards the
development of a framework for the development of reactive programs, including
model checking and abstract debugging techniques.

UPV and UMA participate in a NoE (IST-2001-33123 CologNET) and are members of
SpaRCIM (a part of the European Research Consortium for Informatics and Mathematics
funded by Spanish MCyT since July 2003). UMA participates in a cooperation project
with U. Pisa. With U. Udine and U. Genoa (Italy), and U. Hyderabad (India), UPV has
recently submitted a proposal for an EU-India Economic Cross Cultural Project , which
aims at developing, experimenting and maintaining a number of intelligent web-based
knowledge dissemination and validation tools. Finally, UPV and UCLM are involved in
an ALFA project proposal led by the University of Minho.

TIC2001-2705-C03

Collaboration with other groups: The consortium has a strong relationship with other
groups in the form of joint projects, joint PhD Programmes, co{organization of work-
shops, stays, etc. The UPV collaborates with the Christian Albrechts Universit�at CAU
Kiel (Ge), IMAG Grenoble (Fr), and Portland State U. (USA) on the development of
program specialization, program analysis and debugging techniques for integrated lan-
guages. They also collaborate with the U. Udine (It) in the formalization of declarative
diagnosis and model checking tools. New collaborations have been set up in the reported
period with the Technische Universit�at Wien (Aut) on Strategic Programming, with the
U. Bristol (UK) on Machine Larning, and with the U.P. Catalonia (Sp) regarding ter-
mination of rewriting. A collaboration with IRISA Rennes (Fr) has led to the de�nition
of con�gurable nets, which model changes in concurrent systems. Joint publications de-
rived from the cooperations have been obtained in all cases. In the past two years, 24
stays have been made by UPV researchers to Melbourne University (P. Stuckey), CAU
Kiel (M. Hanus), T.U. Wien (B. Gramlich), U. of New Mexico (G. Gupta), U. Udine
(M. Falaschi), IMAG Grenoble (R. Echahed), Portland State U. (S. Antoy), and ENSP
Yaound�e (E. Baudouel). Also, other researchers have visited the group at UPV. These
include Marco Comini (U. Udine) and Frank Huch (CAU Kiel).

At UMA, collaboration with the group led by Jos�e Meseguer has continued. The goal is
to investigate di�erent aspects of the CRWL and Maude language. UMA also cooperates
with the group of Antonio Brogi (U. Pisa) on coordination languages and software archi-
tectures, and with Miguel Katrib (U. Havana) on integrating concurrency and assertions.
Important contacts continue with Prof. Dale Miller at LIX (Fr) and Prof. Joshua Hodas
at Harvey Mudd College (Claremont, USA) to cooperate on the eÆcient implementation
of linear logic{based languages. As a result of these collaborations, a 3-month research
visit to Claremont has been made. More recently, new collaborations have been set up
with the U. York (A. Evans) and U. Namur (J.-M. Jacquet). Finally, UCLM has a very
active ongoing cooperative e�ort with U. Udine and PSU.

As for other results, we would like to mention the following:

1. In the two-year period, a number of STREAM researchers have served on the program
committees of some of the most relevant conferences in the area, such as FLOPS, LPAR,
LOPSTR, ACM SIGPLAN PEPM, PPDP, RTA, WFLP, WIL, WRLA, WRS, AGP, etc.

2. Some STREAM members have participated as invited speakers in a number of Int'l
conferences and workshops, including the Int'l Workshop on Rewriting Logic and Appli-
cations (WRLA 2002, Pisa, September 2002), the annual meeting of the IFIP Working
Group 1.6 on Term Rewriting (Copenhagen, July 2002) and the IEEE Int'l Conf. on
Systems, Man and Cybernetics (SMC'02, Hammamet, October 2002).

3. UPV organized the Federated Conference on Rewriting, Deduction, and Programming
(RDP 2003), consisting of RTA'03 and TLCA'03, the satellite workshops FTP'03, RULE'03,
UNIF'03, WFLP'03, WRS'03, and WST'03, and the annual meeting of IFIP WG 1.6.
STREAM participants chaired WFLP 2003 and WRS 2001{03 (with T.U.Wien) proceed-
ings of WFLP 2003 and WRS 2003 appeared in the series Electronic Notes in Theoretical
Computer Science (ENTCS) published by Elsevier B.V. UMA organized ICALP 2002.

