
A service-oriented approach
for the i* framework

By Hugo Estrada Esquivel

PhD Thesis

Presented to the Department of Information Systems and
Computation of the Valencia University of Technology, Spain,
and to the Department of Information and Communication
Technology of the University of Trento, Italy in partial fulfillment
of the requirements for the Degree of Doctor of Philosophy in
Computer Science

Thesis Advisors:

Dr. Oscar Pastor López, Valencia University of Technology,
Spain

Dr. Paolo Giorgini, University of Trento, Italy

2008

ABSTRACT
New application areas such as e-Business, application service
provision and peer-to-peer computing all call for very complex
software systems which effectively support “on-line” enterprise
processes. To build such systems, practicing software engineers
are discovering the effectiveness of using organizational
modeling techniques to facilitate the elicitation of requirements
for information systems and also for guiding and supporting the
software production process.

In this context, the i* Framework is one of the most well-founded
organizational modeling techniques in use today. It mainly
focuses on: a) the representation of social and intentional
relationships among the network of actors of an enterprise, and b)
the representation of the internal behaviors required to satisfy
actor dependencies. The i* framework supports the description of
organizational networks made up of social actors that have
freedom of action, but that depend on other actors to achieve their
objectives and goals.

Despite the well-known advantages of the i* modeling approach,
there are certain issues that still need to be improved to assure
their effectiveness in practice. In order to accurately identify areas
of strength as well as weaknesses of i* in real case studies,
empirical evaluations of this framework must be conducted in
practice.

One of the objectives of this thesis is to present an empirical
evaluation that enables us to identify and to understand what the
practical problems of i* are. We present the lessons learned, both
in terms of the strengths of i* and in terms of the detected weak
points that need to be overcome. Solutions for these weak points
are also proposed as an initial response to the results of the
empirical evaluation.

We consider that service-orientation is currently considers as a
very promising paradigm to deal with the complexity of modeling
the IT systems. In this sense, the main objective of the thesis is to

define a service-oriented architecture to solve the problem of i*
complexity in real-life cases. The proposed architecture
distinguishes three abstractions levels (services, process and
protocols) and describes a methodological approach to align the
business models produces at these abstraction levels.

Our service-oriented approach considers the following aspects: a)
A conceptual modeling language, based on the i* primitives,
which defines the modeling concepts and their corresponding
relationships. b) A service-oriented architecture specific for the i*
framework that define the service components and the modeling
diagrams. c) A business modeling method to represent services at
the organizational level.

The business services and the service components have been
precisely defined in terms of properties and relationships. It is
important to point out that services components have been
designed based on the intended use of this abstraction in
representing services at the organizational level.

With the extensions proposed in this thesis, our intention is to
overcome the current limitations that practitioners face when
using i* in its current state. In fact, these extensions are intended
to both, solve the problems that were detected, and to make the
practical application of the method easier.

RESUMEN
Nuevas áreas de aplicación como comercio electrónico,
aplicaciones para provisión de servicios y computación P2P
(peer-to-peer) requieren de sistemas de software complejos que
puedan soportar procesos de negocio “en línea”. Actualmente, los
ingenieros de software han descubierto la efectividad de usar
técnicas de modelado organizacional para guiar el proceso de
producción de este tipo de sistemas complejos.

En este contexto, el framework i* es una de las técnicas de
modelado organizacional mejor fundamentadas hoy en día. i* se
enfoca en dos aspectos principales: a) la representación de las
relaciones sociales e intencionales que existen entre la red de
actores de un negocio. b) la representación del comportamiento
interno requerido para satisfacer las dependencias entre actores.
El framework i* permite describir una organización como una red
de actores que tienen libertad de acción, pero que dependen de
otros actores para lograr sus metas y objetivos.

Sin embargo, a pesar de las bien conocidas ventajas de i*, existen
ciertos problemas que necesitan ser resueltos para asegurar su
efectividad en ambientes reales de desarrollo. En este sentido, el
framework necesita ser evaluado en la práctica con el objetivo de
identificar sus fortalezas y debilidades en casos de estudio reales.

Uno de los objetivos de esta tesis fue realizar una evaluación
empírica que nos permitiera identificar y analizar los problemas
prácticos de i*. Se presentan las lecciones aprendidas en términos
de fortalezas y de puntos débiles que necesitan ser resueltos.
Además, la tesis presenta soluciones a los puntos débiles que
fueron detectados en la evaluación empírica.

Consideramos que la orientación a servicios es un paradigma muy
prometedor para enfrentar la complejidad del modelado de
sistemas de tecnologías de información actuales. En este sentido,
el principal objetivo de esta tesis fue definir una arquitectura
orientada a servicios que nos permitiera resolver los problemas de
complejidad de i* en la práctica. La arquitectura propuesta

distingue tres niveles de abstracción complementarios (servicios,
procesos y protocolos) y describe un enfoque metodológico para
alinear los modelos de negocios producidos en cada nivel de
abstracción.

Nuestro enfoque orientado a servicio considera los siguientes
aspectos: a) un lenguaje de modelado conceptual basado en las
primitivas de modelado de i*, el cual define los conceptos y sus
correspondientes relaciones. b) Una arquitectura orientada a
servicios, específica para el framework i*, que define los
componentes del servicio y los diagramas de modelado y
finalmente c) un método de modelado para representar servicios a
nivel organizacional.

Los servicios de negocio y los componentes del servicio han sido
definidos en forma precisa en términos de propiedades y
relaciones. Es importante hacer notar que los componentes del
servicio han sido diseñados teniendo en cuenta su utilidad para
representar servicios al nivel organizacional.

Nuestra intención al proponer extensiones al framework i* es dar
solución a las actuales limitaciones que tienen los analistas al usar
i* como lenguaje de modelado es su estado actual. Con esto se
intenta dar una solución a los problemas detectados y hacer más
simple la tarea de modelado organizacional.

i

A service-oriented architecture for
the i* Framework

Contents

1. INTRODUCTION... 1
1.1 THE CONTEXT ... 1
1.2 THE PROBLEM ... 3

1.2.1 The lack of evaluations of the i* framework......................... 3
1.2.2 The lack of methodological extensions to improve the i*
framework.. 4

1.3 THE SOLUTION .. 4
1.3.1 The lack of evaluations of the i* framework......................... 4
1.3.2 The lack of methodological extensions to improve the i*
framework.. 5

1.4 INNOVATIVE ASPECTS... 7
1.5 STRUCTURE OF THE THESIS ... 9

2. THE STATE OF THE ART... 11
2.1 EVALUATIONS OF THE I* FRAMEWORK.. 12

2.1.1 Shehory and Sturm research works 12
2.1.2 Dam and Winikoff research works 16
2.1.3 Sudeikat research works... 17
2.1.4 Summary of issues in the evaluation of i*........................... 18

2.2 GOAL MODELING PROPOSALS .. 19
2.2.1 The Teleological approach for business modeling
(Loucopoulos and Kavakli 1995)... 20
2.2.2 The GBRAM approach for requirements analysis (Anton
1996).. 24

ii

2.2.3 KAOS: Goal-based requirements elicitation Dardenne,
Lamsweerde and Fickas 1993) .. 26
2.2.4 EKD: Enterprise Modeling (Bubenko and Kirikova 1995) 30
2.2.5 Goal reasoning with Tropos ... 32

2.3 THE SERVICE-ORIENTED PROPOSALS ... 34
2.3.1 Services at the implementation level................................... 34
2.3.2 Services at the conceptual modeling level 36
2.3.3 Services at the organizational modeling level:................... 38
2.3.4 The i* proposals for representing services......................... 42

2.4 CONCLUSIONS ... 44
3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK
.. 45

3.1 INTRODUCTION.. 45
3.2 AN OVERVIEW OF THE I* FRAMEWORK 46

3.2.1 The i* modeling primitives ... 46
3.2.2 The i* modeling diagrams .. 47

3.3 THE CONTEXT OF THE EMPIRICAL EVALUATION 50
3.3.1 Object Model .. 53
3.3.2 Dynamic Model .. 53
3.3.3 Functional Model ... 54
3.3.4 Presentation Model... 54

3.4 THE CONTRIBUTION OF THE EMPIRICAL EVALUATION 55
3.5 TYPE OF EMPIRICAL EVALUATION ... 56
3.6 THE POPULATION BACKGROUND ... 56
3.7 EVALUATION DESIGN .. 57
3.8 THE SELECTED CASE STUDIES.. 58
3.9 THE EVALUATION FRAMEWORK .. 59
3.10 THE EVALUATION RESULTS ... 63

3.10.1 Feature: Refinement ... 65
3.10.2 Feature: Modularity ... 66

iii

3.10.3 Feature: Repeatability:... 68
3.10.4 Feature Complexity Management: 69
3.10.5 Feature Expressiveness: ... 70
3.10.6 Feature: Traceability: .. 73
3.10.7 Feature: Reusability: .. 74
3.10.8 Feature: Scalability:... 74
3.10.9 Feature: Domain applicability: .. 75

3.11 DISCUSSION... 76
4. THE MODELING LANGUAGE DEFINITION.......................... 79

4.1 INTRODUCTION.. 79
4.2 THE I* PRIMITIVE CONCEPTS ... 81
4.3 THE I* ABSTRACTION MECHANISMS .. 81
4.4 THE STRATEGY TO CHARACTERIZE ABSTRACTION MECHANISMS. 83
4.5 AGGREGATION (PART-OF) RELATIONSHIP 85

4.5.1 A multi-property framework to characterize aggregation in
i*.. 85
4.5.2 Decomposition links as an aggregation mechanism........... 91
4.5.3 The characterization of the decomposition based on the
proposed framework for the aggregation 92

4.5.3.1 The partAND relationship: ...93
4.5.3.2 The partOR relationship: ..93

4.5.4 Summary of decomposition as an aggregation relationship
... 101

4.6 THE ASSOCIATION (MEMBER-OF) RELATIONSHIPS 102
4.6.1 A multi-property framework for characterizing the
association relationships in i*... 102
4.6.2 Means-End links as an association mechanism................ 103
4.6.3 The characterization of the means-end link based on the
proposed framework.. 104
4.6.4 Summary of means-end as an association relation........... 111
4.6.5 Contribution links as an association mechanism.............. 111

iv

4.6.6 The characterization of the contributions link based on the
proposed framework.. 112
4.6.7 Summary of contribution link as an association relation . 120
4.6.8 Dependency as an association mechanism....................... 120
4.6.9 The characterization of dependency based on the proposed
framework.. 121
4.6.10 Summary of dependency as an association relationship 126

4.7 THE GENERALIZATION (IS-A) RELATIONSHIP.............................. 128
4.7.1 A multi-property framework for characterizing the
generalization in i*.. 128
4.7.2 The i* is-a relationship... 129
4.7.3 The characterization of generalization based on the
proposed framework.. 130
4.7.4 Summary of is-a as a classification relationship 133

4.8 THE CLASSIFICATION (INSTANCE-OF) RELATIONSHIP 133
4.8.1 A multi-property framework for characterizing the
classification in i*.. 133
4.8.2 The instance-of relationship as classification mechanism 133
4.8.3 The characterization of classification based on the proposed
framework.. 134

4.9 CONCLUSIONS ... 136
5. THE SERVICE-ORIENTED ARCHITECTURE FOR THE I*
FRAMEWORK... 139

5.1 INTRODUCTION.. 139
5.2 THE PROPOSED SOLUTION: A BUSINESS SERVICE APPROACH FOR
THE I* FRAMEWORK .. 140

5.2.1 What is a service?... 141
5.2.2 Our conceptualization about business service.................. 144
5.2.3 Why a service orientation? ... 147
5.2.4 The characteristics of business service orientation 148

5.3 A BUSINESS SERVICE ARCHITECTURE FOR THE I* FRAMEWORK151
5.3.1 The service-oriented strategy ... 152

v

5.3.2 Overview of engaging a business service 154
5.3.3 Implications of the service-oriented strategy.................... 155
5.3.4 The service-oriented components 157
5.3.5 Intentional elements.. 157
5.3.6 Actors.. 158

5.3.5.1 Actor composite structure...159
5.3.5.2 Actor Types ..162

5.3.7 Business Services.. 164
5.3.6.1 Basic and composite business services169
5.3.6.2 Offered and supporting business services.............................171

5.3.8 Requester(s) and Provider(s).. 174
5.3.9 Requesting a service ... 177
5.3.10 Business processes.. 179
5.3.11 Visibility rules... 181

5.3.10.1 Rules for service visibility ..182
5.3.10.2 Rules for actor visibility ...182

5.3.12 Delegation rules ... 183
5.4 ARCHITECTURAL MODELS ... 185

5.4.1 The Global Model... 185
5.4.1.1 Abstract view of the global model ..185
5.4.1.2 Concrete view of the global model186

5.4.2 The Process Model ... 189
5.4.2.1 Transactional and non-transactional processes189
5.4.2.2 Authorized actors..190
5.4.2.3 Process execution order ..191

5.4.3 The Protocol Model .. 192
5.5 THE FORMALIZATION OF THE COMPONENTS OF THE PROPOSED
SERVICE-ORIENTED APPROACH ... 194

5.5.1 Predicates ... 194
5.5.2 Axioms for predicates ... 197

vi

5.6 OUR BUSINESS SERVICE APPROACH AS STARTING POINT FOR
SERVICES IN THE IMPLEMENTATION LEVEL 198
5.7 CONCLUSIONS ... 202

6. THE SERVICE-ORIENTED METHOD FOR THE I*
FRAMEWORK... 203

6.1 INTRODUCTION.. 203
6.2 OVERVIEW OF THE PROPOSED METHOD 204
6.3 THE STRATEGY OF THE SERVICE-ORIENTED METHOD 208
6.4 DEFINING THE SERVICE GLOBAL MODEL.................................... 210

6.4.1 Defining the abstract view of the global model. 211
Step 1: Eliciting business services..212
Step 2: Representing the service provider ..213
Step 3: Representing the service requesters......................................213
Step 4: Representing the service dependency...................................214
Step 5. Defining composite and basic business services...................216

6.4.2 Defining the detailed view of the global model. 219
Step 1. Defining the provider’s needs and goals...............................220
Step 2. Defining the actors that are responsible for the service’s goals.
..225
Step 3. Detecting dependencies from the goal-refinement tree.........228
Step 4. Reviewing the delegation schema...232
Step 5. Defining the visibility schema. ...235

6.5 DEFINING THE PROCESS MODEL... 240
Step 1. Determining business processes by refinement241
Step 2. Determining process goals by abstraction241
Step 3. Linking goals and processes with organization actors..........241
Step 4. Reviewing the delegation schema...242
Step 5. Detecting dependencies from the goal-refinement tree.........245
Step 6. Defining the visibility schema. ...247
Step 7. Specifying process execution order248

6.6 DEFINING THE PROTOCOL MODEL.. 250
Step 1. Determining business tasks by refinement252

vii

Step 2. Determining process goals by abstraction252
Step 3. Linking the goals and process with organization actors252
Step 4. Detecting dependencies from the goal-refinement tree.........252
Step 5. Generating dependencies from the goal structure.................254
Step 6. Generating a rationale model from goal structure.................256
Step 7. Determining transactional business processes257

6.7 THE SERVICE-ORIENTED METHOD AS A MECHANISM TO ALIGN
BUSINESS GOALS ... 258
6.8 ANALYZING THE FUTURE ENTERPRISE SITUATION 260

6.8.1 Analyzing the market conditions....................................... 260
6.8.2 Defining objectives to be satisfied 260
6.8.3 Adapting the enterprise to the selected alternative........... 262

6.9 SUMMARY ... 263
7. THE SERVICE-ORIENTED METHOD: A CASE STUDY..... 265

7.1 INTRODUCTION.. 265
7.2 APPLYING THE SERVICE-ORIENTED METHOD 266
7.3 ANALYZING THE PROPOSED SERVICE-ORIENTED METHOD 293
7.4 SUMMARY ... 295

8. CONCLUSIONS AND FURTHER WORK 297
8.1 THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK 297
8.2 THE DEFINITION OF THE MODELING LANGUAGE 298
8.3 THE SERVICE-ORIENTED ARCHITECTURE 300
8.4 THE SERVICE-ORIENTED METHOD.. 301
8.5 SUMMARY OF MAIN CONTRIBUTIONS... 303
8.6 RELATED PUBLICATIONS... 303

8.6.1 International Journals .. 303
8.6.2 Book Chapters .. 304
8.6.3 International Conferences and Workshops....................... 304

8.7 FUTURE RESEARCH DIRECTIONS .. 307
9. REFERENCES.. 308

viii

1

Chapter 1

Introduction
This section briefly introduces the key aspects of the research
efforts presented in this thesis and describes several problems and
our solutions to them with an emphasis on the main research
contributions. The structure of the thesis is also presented at the
end of the section.

1.1 The Context

New application areas such as e-Business, application service
provision and peer-to-peer computing all call for very complex
software systems which effectively support “on-line” enterprise
processes. To build such systems, practicing software engineers
are discovering the effectiveness of using organizational
modeling techniques to facilitate the elicitation of requirements
for information systems and also for guiding and supporting the
software production process.

In this context, the i* Framework is one of the most well-founded
organizational modeling techniques in use today. It mainly
focuses on: a) the representation of social and intentional
relationships among the network of actors of an enterprise, and b)
the representation of the internal behaviors required to satisfy
actor dependencies. The i* framework supports the description of
organizational networks made up of social actors that have
freedom of action, but that depend on other actors to achieve their
objectives and goals.

Despite the well-known advantages of the i* modeling approach,
there are certain issues that still need to be improved to assure
their effectiveness in practice. In order to accurately identify areas

CHAPTER1. INTRODUCTION

2

of strength as well as weaknesses of i* in real case studies,
empirical evaluations of this framework must be conducted in
practice.

First aim of this thesis is to present an empirical evaluation that
enables us to identify and to understand what the practical
problems of i* are. We will present the lessons learned, both in
terms of the strengths of i* and in terms of the detected weak
points that need to be overcome. Solutions for these weak points
are also proposed as an initial response to the results of the
empirical evaluation.

We consider that service-orientation is currently considers as a
very promising paradigm to deal with the complexity of modeling
the IT systems. In this sense, the main objective of the thesis is to
define a service-oriented architecture to solve the problem of i*
complexity in real-life cases. The proposed architecture
distinguishes three abstractions levels (services, process and
protocols) and describes a methodological approach to align the
business models produces at these abstraction levels.

Our service-oriented approach considers the following aspects: a)
A conceptual modeling language, based on the i* primitives,
which defines the modeling concepts and their corresponding
relationships. b) A service-oriented architecture specific for the i*
framework that define the service components and the modeling
diagrams. c) A business modeling method to represent services at
the organizational level.

The business services and the service components have been
precisely defined in terms of properties and relationships. It is
important to point out that services components have been
designed based on the intended use of this abstraction in
representing services at the organizational level.

With the extensions proposed in this thesis, our intention is to
overcome the current limitations that practitioners face when
using i* in its current state.

CHAPTER1. INTRODUCTION

3

1.2 The Problem

In this section, we present the main problems addressed by this
work, namely: the lack of evaluations of the i* framework and the
lack of methodological extensions to improve the i* framework.

1.2.1 The lack of evaluations of the i* framework
i* Framework is one of the most well-founded frameworks for
organizational modeling. It uses strategic relationships to model
the social and intentional context of an enterprise, and has been
used widely in research and in some industrial projects. In this
context, the i* Framework and its methodological extensions
(such as GRL (Liu and Yu 2003) and Tropos (Bresciani, Perini,
Giorgini, Giunchiglia, and Mylopoulos 2004)) have been used as
a powerful analysis technique in a wide range of application
domains: Business Modeling (Kolp, Giorgini, and Mylopoulos
2003), Object-Oriented System Development (Castro, Alencar,
Filho, and Mylopoulos 2001), (Martinez, Castro, Pastor, and
Estrada 2003), Software Requirements Elicitation (Maiden, Jones,
Manning, Greenwood, and Renou 2004), (Estrada, Martinez, and
Pastor 2003), Agent System Development (Bresciani, et al. 2004)
(Bastos and Castro 2003), Selection of Components (Carvallo,
Franch, Quer, and Rodriguez 2004), Non-Functional
Requirements (Chung, Nixon, Yu, and Mylopoulos 2000),
Security, Trust, Dependability and Privacy (Yu and Liu 2001),
(Giorgini, Massacci, Mylopoulos, and Zannone 2005), etc. In all
these works, the research has been oriented to extend and enrich
the semantic of concepts so to be used in different domains and
for different applications.

However, up to now, no empirical evaluation has been proposed
and this makes very difficult to confirm and argue about the
practical i* usefulness. The thesis presents the results of an
empirical evaluation of i* using industrial case studies. We go a
further step in determining the modifications that are necessary to
ensure the real applicability of the i* framework.

CHAPTER1. INTRODUCTION

4

1.2.2 The lack of methodological extensions to improve
the i* framework

The i* modeling concepts have been used in a wide range of
application domains. In all applications, the i* concepts have been
used to capture the social and intentional elements of each
specific domain, but just a little attention has been paid to propose
mechanisms to manage the complexity of the modeling activity
and to improve the usability and scalability of the i* models.

Practical experiences have revealed that there are certain issues
that need to be improved to ensure their effectiveness in practice.
Particularly, new modeling primitives and mechanisms are
needed to handle the complexity management of large
organizational models. In order to do this, we have proposed a
method based on business services as building blocks that
encapsulate organizational behaviors.

1.3 The Solution

This section briefly presents our approach to solve the problems
discussed in the previous section.

1.3.1 The lack of evaluations of the i* framework
In this thesis, an empirical evaluation of i* using industrial case
studies was carried in collaboration with an industrial partner who
uses an object-oriented model-driven approach for software
development.

The evaluation of i* uses a feature-based framework that captures
relevant characteristics in industrial settings. By performing the
evaluation, the evaluators assign a judgment (value) to specify
how well or badly each evaluated feature is supported by the i*
framework. The evaluation framework has been designed keeping
in mind that it is to be used within model-based software
development environments.

CHAPTER1. INTRODUCTION

5

One contribution of this work is the definition of a consensus to
explain the reason for assigning a certain value to the analyzed
issues. As a result of the empirical evaluation, the thesis reports
on lessons learned from this experience, both in terms of strengths
and detected weaknesses. Another contribution is the definition of
a set of results that can play a relevant role in guiding future
extensions of the i* framework.

1.3.2 The lack of methodological extensions to improve
the i* framework

As main result of our practical evaluation, what is clearly required
is the need to extend the i* framework with mechanisms to
manage granularity and refinement in real-life projects. These
mechanisms must allow us to create and represent an
organizational model in a modular way. As a solution, in this
thesis we propose a service-oriented approach that deals with the
current drawbacks of i*.

We can characterize the service-oriented paradigm by the explicit
representation of the externally observable properties of a system.
Thus, a system (an enterprise in our case) can be described based
on the description of its external properties, that we called
business services. In this sense, organizational behaviors can be
encapsulated based on the description of the business services.
Thus, services can be used as basic buildings blocks where
business analysts do not need to have knowledge about the
internal implementation of the services that offer and expose an
enterprise. The services are the mechanism to map the abstract
definition of business functionalities with the internal protocols
needed to operationalize the services.

The main idea is the representation of an organizational model as
a composite of business services, where these services represent
the functionalities that the organization offers to potential
customers. Business services become the building blocks that
allow us to represent a business model in a high-level, three-tiered
conceptual architecture. Business services, business processes,

CHAPTER1. INTRODUCTION

6

and business protocols are the hierarchically interrelated tiers that
make up our service-oriented architecture.

In the proposed approach, the organizational modeling process
starts with the definition of a high-level view of the services
offered and requested by the organization. Each business service
is then refined into more concrete process models according to
the business service method introduced. The main advantage is
that it provides a solution to manage granularity, refinement and
reuse. This results essential when i* is applied in real-life,
complex projects.

We aim at making the modeling process simple by making the
social and intentional characteristics of i* hidden for novel
analysts, at least in the early elicitation stages. To do this, the
method uses a well-known elicitation mechanism, such as goal
analysis, in order to define a goal structure that is built in such a
way that it contains the organizational knowledge without explicit
social relationships. Thus, a method is proposed, as part of the
service-oriented method, in order to transform the goal structure
into i* business models.

We argue that the expressive power of the conceptual primitives
that we have introduced in the i* enables the analyst to better
manage the complexity of organizational modeling in practice.
However, we also consider that an analysis of the original i*
notation must be done in order to “clean” its syntax and
semantics. This is the reason why a revisited version of the i*
modeling concepts is proposed in this thesis, with the objective of
defining the service-oriented modeling language proposed for the
i* framework.

Furthermore, the proposed method makes it feasible to use i* as
the starting point for a full software production process. In this
process, the elaboration of the organizational model can be the
cornerstone of the software process because requirements
modeling and conceptual modeling will be the result of a precise
model transformation process, where organizational aspects are
correctly represented in the corresponding lower-level models.

CHAPTER1. INTRODUCTION

7

Given the advanced model-based software production tools that
currently exist in the market, having extended tools to support a
full software process that covers all the activities from
organizational modeling to its corresponding final software
product can become a reality.

1.4 Innovative Aspects

The key innovative aspects of the thesis can be summarized as
follows:

1. An empirical evaluation of the i* framework

One of the contributions of this thesis is the description of an
empirical evaluation framework that uses well-defined features to
asses i* with real projects in a software development company
that uses model-driven tools for software development. Another
contribution is to provide consensual explanations of the reasons
to assign a specific value to each one of the analyzed issues. To
do this, several meetings were held with designers and users of i*
and Tropos in order to make a judgment about the features values
of the evaluation framework. Last contribution of this thesis
section is the definition of a set of conclusions of the practical
evaluation of i* to be considered in the definition of new versions
of this framework.

2. The definition of a modeling language based on i* notation

In our proposal, i* is used as business modeling language in order
to take advantage of its powerful means for representing the
social an intentional setting of an enterprise. With regard to the
modeling language definition, one of the contributions of this
work is the analysis of the current i* modeling concepts in order
to propose a revisited version that overcomes some of the
problems that have been detected in the empirical evaluation.

CHAPTER1. INTRODUCTION

8

3. A service-oriented method for the i* framework

Finally, with regard to the service modeling method, the
contribution of this thesis is the definition of a new
methodological approach to address the enterprise modeling
activity using i*. The new approach is based on the use of
business services as building blocks for encapsulating
organizational behaviors. We propose a specific business
modeling method in accordance with the concept of business
service. The use of services as building blocks enables the analyst
to represent new business functionalities by composing models of
existing services. We propose, as first modeling step, an
elicitation technique to find actual implementations of the
services offered and requested by the analyzed enterprise, where
goals will play a very relevant role in the discovering process.

As a contribution of this work, we introduced a formal definition
of the basic concepts of the service-oriented architecture. This
architecture can be summarized with three modeling diagrams
that capture the service composition, service variability, service
objectives, services resources and service behaviors.

As a key point of the method, we propose an extensive use of
goals structures as an elicitation mechanism instead of starting the
modeling process directly with the intentional concepts of i*. The
idea of hiding the intentional characteristics of i* (at least in early
elicitation stages) is to make the method more suitable for non-
expert analysts in the use of i* concepts. Therefore, another
contribution is the definition of a method to derive goal-
refinement structures into i* business models in an automatic
way. This proposal, which joins a goal-based elicitation process
with the social aspects of the i* strategic models, represents one
of the contributions of this thesis over the current goal modeling
techniques.

CHAPTER1. INTRODUCTION

9

1.5 Structure of the Thesis

The presentation of this thesis is organized in the following
Chapters:

Chapter 1. Introduction
This introductory Chapter provides a brief overview of the
issues analyzed in this thesis and we explain the context in
which the thesis is developed. To do this, the relevance of
the service-oriented architecture is pointed out as a
solution to the problems detected in the empirical
evaluation of the i* framework.

Chapter 2. State of the art
This Chapter presents the state of the art in the fields that
are relevant to this thesis: evaluations of the i* framework,
goal modeling methods, and service-oriented computing
approaches.

Chapter 3. The Empirical Evaluation of the i* framework
This Chapter details the empirical evaluation of the i*
framework in a specific model-driven software generation
environment. The Chapter presents the framework used to
carry out the evaluation and the strategy that was used to
lead the experiment. We detail the features that integrate
the framework and, finally, we present an explanation of
agreed upon values assigned to each one of the selected
features of the framework.

Chapter 4. The modeling language definition.
In this Chapter, a revisited version of the i* modeling
concepts is presented. The objective of the proposed
revisited version is to address the issues detected in the
empirical evaluation. The revisited version will be the
basis for the definition of the service-oriented modeling
language proposed in this thesis.

CHAPTER1. INTRODUCTION

10

Chapter 5. The Service-oriented architecture for i*
Framework

This Chapter details the components of the service-
oriented architecture: modeling concepts and diagrams. It
presents in detail the definition of business services as a
key mechanism for encapsulating organizational
behaviors.

Chapter 6. The Service-oriented modeling method for the i*
Framework

This Chapter presents the business modeling method
based on the concept of services. We detail the set of steps
that allow an enterprise to be represented using the
concept of business service.

Chapter 7. The Service-oriented Method: a case study
An empirical evaluation of the proposed methodology is
presented in this Chapter. The aim is to empirically
demonstrate that the proposal overcomes the issues
detected in the empirical evaluation of the i* framework.

Chapter 8. Conclusions and further work.
This Chapter presents the main contributions and relevant
work of this thesis. Future work is also presented.

11

Chapter 2

2. The State of the Art
The main objective of this thesis is to improve the current i*
business modeling process. The first step in achieving this
objective was to determine the issues of i* that need to be solved
in order to ensure the use of i* in practice. To do this, an
empirical evaluation with industrial cases studies was performed
to detect the strengths and weaknesses of this modeling
framework.

Two complementary solutions have been given for the detected
issues: first, a revisited version of the i* modeling concepts has
been developed to overcome the repeatability problems found in
the empirical evaluation. Then, as a second solution, a service-
oriented architecture has been placed at the top of these modeling
primitives in order to solve the modularity and refinement issues.
This service-oriented approach allows us to encapsulate
organizational behaviors in well-defined building blocks.

One of the objectives of this proposal is to make the modeling
process simple by making the intentional characteristics of i*
hidden for novel analysts. To be able to do this, a method to
transform an elicitation goal structure into the i* strategic models
has been proposed. This transformation method represents one of
the contributions of this thesis.

This section introduces a brief overview of the state-of-the art in
the research areas that are considered to be relevant to this work:
evaluations of the i* framework and goal modeling methods. A
brief review about service-oriented technologies is also presented.

CHAPTER 2. THE STATE OF THE ART

12

2.1 Evaluations of the i* framework

Nowadays, the i* Framework and its methodological derivations,
such as GRL (Liu and Yu 2003) and Tropos (Bresciani, Perini,
Giorgini, Giunchiglia, and Mylopoulos 2004) are considered to be
among the most relevant agent-modeling techniques. In this
context, several research efforts have been made to evaluate and
compare them with other relevant agent-based techniques.

2.1.1 Shehory and Sturm research works
Shehory and Sturm (2001) propose a feature-based framework for
evaluating and comparing agent-oriented methodologies. The
framework examines various aspects of each methodology:
concepts and properties, notations and modeling techniques,
processes, and pragmatics. The authors propose a set of criteria to
evaluate the quality of the target methodologies from the software
engineering viewpoint. Following, the definition of the concepts
is presented according to Shehory and Sturm (2001):

Preciseness: the semantics of a modeling technique must be
unambiguous in order to avoid misinterpretation of the models (of
the modeling technique) by those who use it.

Accessibility: a modeling technique should be comprehensible to
both experts and novices.

Expressiveness: a modeling technique should be able to present:
the structure of the system; the knowledge encapsulated within
the system; the data flow within the system; the control flow
within the system; the interaction of the system with external
systems.

Modularity: a modeling technique should be expressible in
stages. That is, when new specification requirements are added,
there should be no need to modify pervious parts, and these may
be used as part of the new specification.

CHAPTER 2. THE STATE OF THE ART

13

Complexity management: a modeling technique should be
expressed, and then examined, at various levels of detail.
Sometimes, high-level requirements are needed, while in other
situations, more detail is required. Examination and development
of all levels should be facilitated.

Executability: either a prototyping capacity or a simulation
capacity should be associated with at least some aspects of the
modeling technique. That is, the modeling technique has related
tools that allow (possibly inefficient) computation for sample
input. These tools should demonstrate possible behaviors of the
system being modeled and help developers determine whether the
intended requirements have been expressed.

Refinability: a modeling technique should provide a clear path for
refining a model through gradual stages to reach an
implementation, or at least for clearly connecting the
implementation level to the design specification.

Analyzability: a methodology, or, preferably, an associated tool is
available to check the internal consistency or implications of the
models, or to identify aspects that seem to be unclear, such as the
interrelations among seemingly unrelated operations. Such tools
encourage both consistency and coverage.

Openness: a modeling technique should provide a good basis for
modeling agent-based systems without coupling them to a
specific architecture, infrastructure or programming language.

Shehory and Sturm also propose the following criteria to evaluate
the quality of modeling methodologies according to the desired
characteristics for agent-based systems:

Autonomy: unlike objects, agents may be active and are
responsible for their own activities: the agent has control over
both its reactive and proactive behaviors. The modeling technique
should support the capability of describing an agent's self-control
feature.

CHAPTER 2. THE STATE OF THE ART

14

Complexity: agent-based systems are basically sets of
components (agents) that interact with each other in order to
achieve their goals. These systems may consist of decision-
making mechanisms, learning mechanisms, reasoning
mechanisms and other complex algorithms. Modeling complex
algorithms and mechanisms requires strong expressive power and
many layers of detail. A modeling technique should support such
expressiveness in order to model the functionality of agent-based
systems. Moreover, the complexity feature requires that the
modeling techniques should be modular, support complexity
management and should describe the complex nature of an agent.

Adaptability: agent-based systems have to be flexible in order to
adjust their activities to the dynamic environmental changes. The
adaptability feature may require that a modeling technique be
modular and be able to activate each component according to the
environmental state.

Concurrency: an agent may need to execute several
activities/tasks at the same time. The concurrency feature raises
the requirement that some agent-based systems must be designed
as parallel processing systems. This requires the ability to express
parallelism and concurrency in the design and
implementation/deployment stages.

Distribution: multi-agent systems are sometimes working on
different hosts and should be distributed over a network. This
requires the ability to express distribution in the design and
implementation/deployment stages.

Communication richness: a basic definition of an agent consists
of its autonomous activity. As such, the agent must establish
communication with its environment. The environment may
include other agents and information sources. The communication
is characterized by its type (either inter-agent communication or
intra-agent communication), its content, and its architecture (e.g.
client-server, peer-to-peer). This requires that a modeling
technique be able to express the communication characterization

CHAPTER 2. THE STATE OF THE ART

15

in order to produce agent communication command or sentences
during the implementation stage.

All the properties defined by Shehory help the analyst to decide
the correct technique to be used to model a specific problem
domain.

Shehory and Sturm evaluated the selected agent techniques
(AOM, ADEPT, and DESIRE) via a case study for a single agent
application.

This first evaluation proposed by Shehory and Sturm did not
consider the i* framework; however, we consider this work to be
relevant because it analyzes the relevant characteristics to
evaluate modeling techniques. This work was later used in the
evaluation of a more extensive list of agent-based techniques.

In (Sturm and Shehory 2003), Shehory and Sturm used the
features catalog represented in their framework to perform an
empirical evaluation of the GAIA methodology.

More recently, the same authors (Sturm, Dori and Shehory 2005)
used the proposed framework in addition to an empirical
evaluation based on case studies to carry out an evaluation and
comparison analysis of several agent-oriented methodologies
including Tropos (Gaia, Tropos, MaSe, and OPM/MAS). The
case studies employed students taking a computer science course.
An important contribution of this work is the use of a framework,
that is based on a set of pre-defined criteria (features), for
evaluating and comparing agent-oriented methodologies.

One of the problems of this work is the subjectivity of the
evaluation. This is because some of the authors of the evaluation
are also authors of the AOMT methodology, which was one of
the methodologies analyzed. Therefore, some of the selected
features are well addressed by their agent-based technique.

CHAPTER 2. THE STATE OF THE ART

16

2.1.2 Dam and Winikoff research works
Dam and Winikoff (2003) also performed a feature evaluation
analysis of Agent methodologies (MaSe, Prometheus, and
Tropos) using an attribute-based evaluation framework. The
evaluation was carried out by comparing the strengths and
weaknesses of each evaluated methodology based on the set of
relevant features. These authors have selected a set of features
according to its relevance for the following issues: concepts,
properties, modeling, notation, processes, and pragmatics of the
technique.

The features that were evaluated for each topic are the following:

Features about concepts and properties:
Autonomy
Mental attitudes
Proactive
Reactive
Concurrency

Teamwork
Protocols
Situated
Clear concepts

Features about modeling and notation:
Static/dynamic
Syntax defined
Semantic defined
Clear notation
Easy to use
Easy to learn
Different views

Expressiveness
Traceability
Consistency check
Refinement
Modularity
Reuse
Hierarchical modeling

Features about process:
Requirements
Architectural design
Implementation

Testing and debugging
Deployment
Maintenance

CHAPTER 2. THE STATE OF THE ART

17

Features about pragmatics:
Quality
Cost estimation
Management decision
Applications
Real applications

Used by non-creators
Domain specific
Scalable
Distributed

The evaluation was carried out by comparing the strengths and
weaknesses of each evaluated methodology based on the set of
relevant features. In this evaluation, a group of summer students
developed the same case study using different methodologies.
The students then filled out a questionnaire to give feedback
about their experience in understanding and using the
methodologies based on the selected features. The authors of this
evaluation also collected comments from the authors of the
methodologies using the same questionnaire that the summer
students had completed. One of the interesting elements of this
work is the attempt to eliminate misconceptions by taking into
account comments from the authors of each methodology.

One of the main problems of this work is that the evaluation was
made using academic case studies developed by students. We
consider this to be an important limitation of this work. Academic
case studies usually do not reflect the real complexity of real
projects in software industries. Also, the different rates of
knowledge and experience of student compared with real analysts
can affect the results of the evaluation.

2.1.3 Sudeikat research works
Along similar lines, Sudeikat, Braubach, Pokahr, and Lamersdorf
(2004) presented an evaluation framework for the evaluation of
agent-oriented methodologies that takes platform-specific criteria
into account. The specific objective of this study was to determine
how the methodologies under evaluation (Mase, Tropos and
Prometeus) match up with the Jadex agent platform.

CHAPTER 2. THE STATE OF THE ART

18

The Sudeikat works place emphasis on developing evaluations
that correctly match the methodologies and platforms. Following
this approach, it is possible to compare one methodology to many
platforms, several methodologies to one specific platform and
many-to-many evaluations where several methodologies are
associated to several platforms.

The features of the Sudeikat works were separated into four
groups: concepts, notation, process and pragmatics:

Features about concept Features about notation
Internal architecture
Social architecture
Communication
Autonomy
Pro-activity
distribution

Usability
Expressiveness
Refinement
Dependency of models
Traceability
Clear definitions
Modularity

Features about process Features about pragmatics:
Coverage of workflows
Management
Complexity
Properties of process

Tool support
Connectivity
Documentation
Usage in projects

One of the main contributions of Sudeikat´s work is the
evaluation of agent methodologies according to specific criteria
rather than their analysis in the abstract. Therefore, the result of
the evaluation provides more precise information about the
strengths and weak points of a modeling technique.

2.1.4 Summary of issues in the evaluation of i*
The main problem with the current analysis of the i* framework
and its methodological extension is that the evaluations have been
developed by computer science students using academic (toy)

CHAPTER 2. THE STATE OF THE ART

19

cases studies. Evaluations in industrial contexts are needed in
order to evaluate i* in practice with real analysts.

2.2 Goal modeling proposals

Traditionally, requirements engineering has been defined as the
systematic process of identification and specification of the
expected functions of a software system. However, this approach
has certain weaknesses. McDermind (McDermind 1994) indicates
that when the functional specification of the software system is
the focal point of the requirements analysis, requirements
engineers tend to establish the scope of the software system
before having a clear understanding of the user’s real needs. This
constitutes a very important reason to explain why many of the
systems developed from a requirements model that focuses only
on the functionality of the software system do not comply with
their correct role within the organization.

It is important to point out that the main objective of an
information system is to automate certain tasks or activities in a
business process, allowing the organizational actors to reach their
particular goals, as well as the general goals of the organization.
In this context, there are research works that highlight the
importance of using goal modeling as the starting point for the
software development process. Goal modeling allows the analyst
to create a model that describes the relationship among the
strategic objectives of the managers and the specific goals of the
enterprise stakeholders. In this context, it is possible to evaluate if
the current organizational tasks correspond with the objectives of
the enterprise.

The most significant works in Goal-oriented requirements
engineering are: a) the Teleological approach (Loucopoulos and
Kavakli 1995): a modeling technique for eliciting the
organizational setting based on a set of complementary modeling
diagrams, b) GBRAM (Anton 1996): a Goal- Based
Requirements Analysis Method to represent the goals in an

CHAPTER 2. THE STATE OF THE ART

20

approach that is less formal but more focused on user needs,
c)KAOS (Dardenne, Lamsweerde and Fickas 1993): a formal
framework based on temporal logic to elicit and represent the
goals that the system software should achieve, and d) EKD
(Bubenko and Kirikova 1995): a technique based on the creation
of a set of sub-models that provide a different, but
complementary, view of the business model.

A brief description of these relevant goal-oriented modeling
techniques is presented below.

2.2.1 The Teleological approach for business modeling
(Loucopoulos and Kavakli 1995)

This proposal is based on the explicit modeling of the
organizational objectives, the social roles and the operations from
the Teleological point of view. One of the main premises of this
proposal is that an organizational model is relevant if it allows us
to provide explanations about the behavior of the enterprise.
Teleological proposal establishes the analysis of goals and the
analysis of organizational dependencies as the first step for and
in-depth understanding of the enterprise. This approach, which
has been called teleological, is useful for capturing the reasons
that exist behind the business task and also for explaining how a
certain activity has been assigned to a specific organizational
actor.

The teleological technique is composed of five basic elements:
goals, roles, actors, processes and resources. The goals are the
core of the modeling process because they provide clear
explanations about the current and future configuration of the
enterprise. The concept of actor considers people as
organizational units and as basis constructs. Processes are the
mechanisms that permit changes of states in the organizational
system. Finally, resources are the informational or physical means
that are produced as result of the business processes.

CHAPTER 2. THE STATE OF THE ART

21

Teleological approach includes three complementary views for
representing an organizational model: the teleological, social, and
process views. Each phase is described below:

The Teleological view: the goals of the stakeholders are
represented in this view. The goals imply intentions and also
represent solutions to the problems of the enterprise. The
constraints, which are operational goals, must be formulated in
terms of precise properties and actions (Figure 2.1).

Figure 2.1 The teleological view of the enterprise modeling

Social view: the organizational actors and their interactions are
detailed in this view (Figure 2.2). The actor is a key modeling
factor since the actor is the entity responsible for executing the
organizational activities. An actor can be and individual (person,
a software system, etc) or an organizational unit (department,
division, section, etc). The roles are a set of processes that are
assigned to a specific agent. This assignation is dependent on
their goals and capabilities. An actor can play several roles at the
same time.

CHAPTER 2. THE STATE OF THE ART

22

Figure 2.2 Meta-model of the social view

Process view: it provides a general view of the current process in
the enterprise (Figure 2.3). This view also considers the resources
that are relevant for the execution of the processes. The process
view permits the representation of triggers that correspond to
changes in the business. The events represent the dynamic
dependencies among the processes. The events can be generated
by processes or by temporal conditions.

The advantages of this proposal are the following:

• The views of the teleological model can be very useful
for constructing an initial set of requirements for either
the business model as for the software system.

• The proposal considers a well-defined graphical notation
for each business view. The views consider only a small
number of modeling elements.

• The technique enables us to define functional and
structural dependencies. This characteristic is useful for
determining when the tasks of a certain actor influence
the execution of tasks of other organizational actors.

CHAPTER 2. THE STATE OF THE ART

23

Figure 2.3 Meta-model of the process view

On the other side, the main issues of this proposal are the
following:

• Two kinds of analyses must be carried out. The first is the
determination of the high-level objectives of the
enterprise and their refinement until the operational
activities are elicited (prescriptive analysis). The second
analysis concerns the details of the operations of the
current business processes (descriptive analysis).
However, no details are given in order to reconcile the
two specifications when there is no precise match
between them.

• There is only a brief explanation about goal
decomposition. No details are given about conflicting or
redundant goals. Also, there is no formal description of
the elicited goals, which makes it difficult to validate the
goal model.

• Only a brief explanation of the traceability among the
different views of the proposal is given.

CHAPTER 2. THE STATE OF THE ART

24

• There is not an explicit association between the goal
model and the process model. This makes it difficult to
identify the processes that give support to a specific
enterprise goal.

• The complete explanation of the business model implies
the analysis of the three models. Therefore, it is not
possible to have a unique global view of the current
business process, which can be very useful for business
process reengineering.

2.2.2 The GBRAM approach for requirements analysis
(Anton 1996)

In the GBRAM approach (Goal-Based Requirements Analysis
Method), the goals are used as the appropriate mechanisms to
identify and justify the requirements of a software system
according to the business model.

In this technique, a button-up approach must be followed to elicit
the requirements. This is because the goals are obtained from the
description of the current processes and also from the descriptions
of the stakeholders.

GBRAM is composed of two main processes: goal analysis and
goal-refinement (Figure 2.4). These processes are detailed below:

Figure 2.4 GBRAM modeling activities

CHAPTER 2. THE STATE OF THE ART

25

GBRAM Goal Analysis. Goal analysis is the process of exploring
the documentation associated with the enterprise in order to
identify and clarify the business goals. This approach places
emphasis on the description of the abstract goals and the specific
behavior that the stakeholders expect for the system. The main
steps of the goal analysis are the following: a) exploration of
activities to look for relevant information. b) identification of
goals and responsible actors, and c) organization of activities
associated with goals according to goal dependencies.

GBRAM Goal Refinement. The objective of this phase is the
identification of high-level goals of the enterprise until the level
of operational goals is reached. To do this, two kinds of steps
must be performed: a) Elaboration: this step permits the
identification of obstacles to the fulfillment of goals and also
permits the identification of restrictions in order to make an
operational description of the elicited goals. B) Refinement:
implies the determination of the pre and post conditions needed to
obtain operational goals.

In the GBRAM proposal, the goals are classified into two
different kinds: maintenance and achievement goals. The
maintenance goals reflect the most abstract objectives of the
enterprise. The achievement goals describe actions that prescribe
the current behavior of the business processes.

The advantages of this proposal are the following:

• One of the main contributions of this work is the
definition of a clear method to elicit the abstract goals in
order to define a set of operational goals which will lead
the requirements for the information system. This
approach makes it possible to define of the reasons for the
existence of business activities.

• GBRAM offers appropriate mechanisms to detect
redundant goals and to consolidate equivalent goals. The
goal restrictions are used as “finishing” mechanisms. This

CHAPTER 2. THE STATE OF THE ART

26

helps the analyst to determine when the goal-refinement
process must end.

• This proposal considers the definition of the pre- and
post-conditions needed for goal fulfillment.

On the other side, the main issues of this proposal are the
following:

• There is no a formalization of the elicited goals.
Therefore, the description of the goals is made in natural
language. This is a disadvantage because natural language
cannot be used to perform formal verifications or
reasoning about the elicited goals.

• This approach does not propose a graphical notation for
the proposed goal category. Therefore, the only unique
material available to analysts is the natural language goal
definition.

• The modeling process of GBRAM ends when the
operational goals have been elicited. Therefore, this
technique does not offer mechanisms to define a business
model that explicitly associates the business process
model with the elicited goal model.

2.2.3 KAOS: Goal-based requirements elicitation
Dardenne, Lamsweerde and Fickas 1993)

The KAOS approach (Knowledge Acquisition in an automated
Specification) is a method for requirements elicitation based on
goals, agents and restrictions. These concepts must be presented
in a graph where the nodes represent an abstraction (goal, action,
restriction, and object) and where the arcs capture the semantic
links among these abstractions.

KAOS follows a top-down strategy for the requirements
elicitation process starting from the abstract goals and refining
them until the operational level is reached.

CHAPTER 2. THE STATE OF THE ART

27

In KAOS, the goals are non-operational objectives to be reached
by an enterprise. This means that the objective cannot be
formulated in terms of objects and actions available for a specific
agent in the system. A category of goals has been defined in order
to guide the analyst in the elicitation process. The goals are
classified into five well-established patterns: achieve, cease,
maintain, prevent, and optimize. These patterns have a direct
impact on the possible behaviors of the system. The aspects
regarding behavior generation are analyzed with achievement and
cease goals. The maintenance and avoid goals are used for
restricting behaviors, and finally, the optimization goals concern
comparison behavior.

In this proposal, the actions are mathematical relations over the
set of objects of the system. The application of actions defines the
state transitions. Also, the specification of the actions must
include preconditions, triggers, and postconditions. The pair
precondition - postcondition captures the state transitions
produced by the application of actions.

The restrictions in this proposal are operational objectives to be
reached by the enterprise. The restrictions must be formulated in
terms of objects and actions available for a specific agent in the
system. Constraints are ensured by restricting existing actions and
objects (through strengthened preconditions, invariants, etc.) or
through the introduction of new actions and objects.

In KAOS, the agents, events, entities and relations are joined in
the category of concerned objects. Figure 2.5 shows a fragment of
a KAOS meta-model where the relations among these concepts
are defined.

The KAOS approach offers a well-founded set of modeling
primitives that allows us to formally specify the requirements of
an information system.

CHAPTER 2. THE STATE OF THE ART

28

Figure 2.5 A fragment of the KAOS Meta-model (Dardenne, Lamsweerde and

Fickas, 1993)

KAOS provides a well-founded method to derive high-level goals
into operational restrictions. The main steps for requirements´
elicitation are the following:

Step 1. Identifying goals from initial documents.

Step 2. Formalizing goals and identifying objects.

Step 3. Eliciting new goals through WHY questions.

Step 4. Eliciting new goals through HOW questions.

Step 5. Deriving agent interfaces.

Step 6. Identifying operations.

Step 7. Operationalizing goals.

Step 8. Anticipating obstacles.

Step 9. Handling conflicts

CHAPTER 2. THE STATE OF THE ART

29

The formal focus of the KAOS approach enables us to make
formal analyses of the goal specification before determining the
requirements of the information system. This is very useful for
reasoning activities.

The advantages of this proposal are the following:

• An exhaustive treatment of the business goals has been
carried out in this proposal. The goals can be categorized
into different levels of abstraction. This focus enables the
analysts to build very complete and precise goal models.

• A specific method for each stage of modeling is
presented. This constitutes one of the main advantages of
this technique since precise guidelines are provided to
build the modeling diagrams.

• All the elements of the KAOS meta-model have a
corresponding formalization in temporary logic. This
formal-based approach enables us to perform automatic
reasoning about the goal specification to detect
inconsistencies and redundancies.

On the other side, the main issues of this proposal are the
following:

• There is no precise graphical notation that gives support
to the KAOS goal analysis method

• There is not a simple view of the set of actions involved
in the business processes.

• The top-down strategy of KAOS could cause descriptive
models that do not reflect the current organizational
setting.

• It is not possible to analyze the complex relationship
among the organizational actors.

• KAOS does not consider the definition of an explicit
business model to reflect the organizational setting. It
only considers the elicitation of requirements until the

CHAPTER 2. THE STATE OF THE ART

30

operational level is reached. In this context, the technique
does not provide well-defined mechanisms for business
reengineering.

2.2.4 EKD: Enterprise Modeling (Bubenko and Kirikova
1995)

This technique is based on the creation of a set of sub-models that
provide different, but complementary, views of the business
model. The starting point of the modeling process is the
determination of the goals of the enterprise. A set of
complementary models are defined from these goals (in a top-
down approach) in order to refine the goals until the description
of low-level goals is reached.

The EKD approach proposes six different models (Figure 2.6) for
enterprise modeling: the goal model, the business rules model,
actor and the resource model, the concept model, the business
process model, and the requirements model.

Figure 2.6 The sub-models comprising the enterprise model

CHAPTER 2. THE STATE OF THE ART

31

Goal model. This model represents the goals of the enterprise.
This model permits the identification of relevant properties of the
goals such as criticism, priority, relationships, and relevance.

Business rules model. This model is used to represent the set of
restrictions that affect the satisfaction of a specific goal of the
goal model.

Concept model. This model is used to precisely define the objects
and behaviors that are relevant to business processes. In this
model, entities, attributes and relationships are represented as
concerned objects.

Business process model. This model is a data-flow-like
specification used to represent the dynamic aspects of the
business model.

Resource and actor model. This model describes the type of
relationship among actors and resources identified in the goal and
process model.

Requirements model. This model focuses on the elicitation of the
requirements for the system-to-be from the previous modeling
stages.

The advantages of this proposal are the following:

• The EKD approach, which is based on multiple and
complementary views, approaches the modeling process
in an incremental way.

• There are well-defined graphical notations for each one of
the views that makes up the business model.

On the other side, the main issues of this proposal are the
following:

• The proposal only provides a brief definition about the
generation of a business goal model. This makes it
difficult for inexperienced analysts to differentiate among
the several types of goals defined in the proposal: abstract
goals, operational goals, etc.

CHAPTER 2. THE STATE OF THE ART

32

• The goals are defined in natural language. The lack of a
formal definition of the goals represented in the model
makes the detection of inconsistencies, redundancies and
conflicting goals difficult.

• The semantics of the organizational model must be
represented using a large number of models, which makes
the practical application of this proposal difficult.

• There is not a well-defined method that allows us to
derive the general goals of the enterprise from the
operational goals of the stakeholders. Only a description
of each sub model is presented in the proposal.

2.2.5 Goal reasoning with Tropos
In this work, Giorgini (Giorgini et al. 2002) presents a formal
framework for goal reasoning. Specifically, this work introduces
a qualitative and a numerical axiomatization for goal modeling
primitives. Label propagation algorithms, which are shown to be
sound and complete according to their respective axiomatizations,
are also proposed in this work.

The work of Giorgini has been developed in the context of the
Tropos methodology (which adopts the i* modeling concepts).
Tropos is an agent-oriented software methodology based on
concepts such as actors, goals, and social dependencies.

The advantages of this proposal are the following:

• The main advantage of this approach is the use of a
quantification-based approach to evaluate the degree of
goal accomplishment. This characteristic enables the
analyst to evaluate various alternatives to satisfy the
enterprise goals with the highest probability of success.

• This approach offers a well-founded set of axioms for
defining goal relationships. It also provides axioms to
lead the qualitative and quantitative reasoning with goal
models.

CHAPTER 2. THE STATE OF THE ART

33

• This approach introduces a well-defined goal relationship
to indicate both the positive and negative contributions of
the satisfaction of a goal to the satisfaction of other goals
in the model.

On the other side, the main issues of this proposal are the
following:

The main disadvantages of the works of Giorgini´s work is that
there are no mechanisms to associate the goal structure generated
by the application of their technique with the strategic models of
the Tropos framework. This is a consequence of the modeling
strategy, where the focus is placed on the analysis of the goals in
the abstract, without considering the specific actors that are
responsible for satisfying the elicited goals. Therefore, for
inexperienced analyst in Tropos, it could be complicated to take
the design decisions to assign a certain goal to a specific actor in
the enterprise.

In two of the above-mentioned research works (GBRAM and
KAOS) and in other goal-based approaches such as (Bolchini and
Paolini 2002), the software requirements are directly obtained
from the operations or restrictions that satisfy the goals. The
operations and restrictions are mapped into use case model
specifications or into services of the information system-to-be.
This approach allows us to carry out the elicitation process at an
abstraction level that is closer to the final users. However,
business analyses, such as business process reengineering
analysis, dependency analysis, and workflow analysis can be
carry out that are fundamental to obtaining requirements that
reflect the functionality expected by the users of the information
system. In this way, a more complete method must consider an
intermediate step among goals and requirements of the
information system-to-be. However, the transition among these
models is not straightforward.

In the other two research works (Teleological approach and EKD)
the representation of the business process that supports the
enterprise goals is too limited. These descriptions are only based

CHAPTER 2. THE STATE OF THE ART

34

on the procedural aspects of the business processes, which
permits a simple view of the processes, but does not enable
deeper analysis of the business, such as dependency analysis,
roles analysis, vulnerability analysis, performance analysis, etc.
Therefore, we consider that these goal-based techniques offer the
appropriate mechanism to have a simple view of the enterprise;
however, they do no offer the needed mechanisms to carry out
deeper business analysis, such as business process reengineering.

2.3 The service-oriented proposals

Service-oriented computing (SOC) is one of the fastest emerging
paradigms in software development today. Service-oriented
mechanisms have been the dominating technology for the next
years.

One of the definitions that reflects the current perception about
services associates them with autonomous platform-independent
computational elements that can be described, published,
discovered, orchestrated and programmed using XML artifacts
for the purpose of developing massively distributed interoperable
applications. Although this definition represents the current state
of service technology, it is only a partial view of the potential of
service-oriented computing for characterizing the static and
dynamic semantics of different application domains.

In this sense, several definitions of services have been given
according to the domain context where the service is used as a
representation mechanism. Further on, we present the concept of
services at the implementation, conceptual and organizational
levels.

2.3.1 Services at the implementation level
In this level, we have found the well-established technology for
Web Services. Web services are the appropriate mechanisms for
implementing e-services. The definition of web service provided

CHAPTER 2. THE STATE OF THE ART

35

by the Stencil Group seems to be one of the most representative
of what a web service is: web services are “loosely coupled,
reusable software components that semantically encapsulate
discrete functionality and are distributed and programmatically
accessible over standard Internet protocols” (Stencil Group 2001).

This application domain presents the Web Service Definition
Language defined by the World Wide Web Consortium (W3C
Working Group 2004) a standard reference about Web Services.

According to the schema proposed by the W3C, the definition of
a Web service must include the following components:

• message construction (envelope, header, body)

• message exchange patterns (MEP)

• processing model for messaging: originator,
intermediaries, destination

• extensibility mechanism

• fault system

• bindings to transport protocols (HTTP, SMTP, ...)

• message(s) accepted and emitted: abstract description
(XML Schema)

• network protocol(s) and message format(s)

• operation: exchange of messages

• port type: collection of operations

• port: implementation of a port type

• service: collection of ports
Some of the technological problems that lead the web services are
the following:

• message structure and infrastructure

• describing what messages a service accepts and sends

CHAPTER 2. THE STATE OF THE ART

36

• routing messages

• describing message exchange patterns (choreography,
workflow)

• finding services to exchange messages with

• security, authorization, access control

• transactions (succeed or rollback)

• asynchronous messaging (needs reliable messaging)

• caching and cache control

• correlation: tying messages together into a sequence
As commented above, there is a consolidated technology for each
and every possible aspect of Web Services.

2.3.2 Services at the conceptual modeling level
In addition to the consolidation of the technology for
implementing web services, there is an emerging set of modeling
techniques for characterizing the compositional aspects of the
service integration, and also for the definition of transactional
properties that must be defined on top of the basic web service
standards. In this context, several emerging standards, such as
BPEL4WS: Business Process Execution Language for Web
Services (Andrews et al. 2005), propose modeling mechanisms to
represent the services as an entity in a conceptual model that
gives a more abstract view of the problem domain.

The BPEL4WS is an XML-based standard for defining how you
can combine Web services to implement business processes. It
builds upon the Web Services Definition Language (WSDL) and
XML Schema Definition (XSD). Thus, the BPEL4WS extends
the Web Services interaction model and enables it to support
business transactions.

BPEL4WS is said to be a modeling technique in the
organizational level; however, we argue that this is an

CHAPTER 2. THE STATE OF THE ART

37

inappropriate viewpoint. In fact, almost all the definitions about
this emerging standard suggest that BPEL4WS offers semantics
for specifying business process behaviors. However, BPEL4WS
works with elements that are essentially software. In this context,
BPEL4WS models the composite of element software
components to fit the organizational structure. BPEL4WS does
not characterize the enterprise itself, but it models the appropriate
configuration of software services that give support to the
organizational structure.

A real technique for business process modeling must offer
mechanisms for describing actors and describing organizational
chart that organizes the actors hierarchically; it must offer
mechanisms for representing the chain value, the dependencies
among actors, the resources produced by the organizational tasks,
etc. The specifications of BPEL4WS lack of this semantics and
only represent the organizational activities with a one-to-one
correspondence with web services. In this sense, the following
definition puts BPEL4WS in the context of software artifacts
modeling: “The BPEL4WS process itself is basically a flow-chart
like expression of an algorithm. Each step in the process is called
an activity. There is a collection of primitive activities: invoking
an operation on some Web service (<invoke>), waiting for a
message to operation of the service's interface to be invoked by
someone externally (<receive>), generating the response of an
input/output operation (<reply>), waiting for some time (<wait>),
copying data from one place to another (<assign>), indicating that
something went wrong (<throw>), terminating the entire service
instance (<terminate>), or doing nothing (<empty>).” (Sanjiva
and Curbera 2002)

In this context, we can establish that the modeling task in
BPEL4WS corresponds to an intermediate level between the
organizational model and the implementation level.

BPEL4WS provides an XML notation and semantics for
specifying business process behavior based on Web Services. A
BPEL4WS process is defined in terms of its interactions with

CHAPTER 2. THE STATE OF THE ART

38

partners. A partner may provide services to the process, require
services from the process, or participate in a two-way interaction
with the process. Thus, BPEL orchestrates Web Services by
specifying the order in which it is meaningful to call a collection
of services, and assigns responsibilities for each of the services to
partners. (Mantell 2005)

According to the schema proposed by BPEL4WS, the definition
of a service composition must include the following components:

• Definition of abstract processes.

• Sequencing of process activities, especially Web Service
interactions.

• Correlation of messages and process instances.

• Recovery behavior in case of failures and exceptional
conditions.

• Bilateral Web Service based relationships between
process roles.

In a situation similar to the definition of services in the
implementation level, the technology for defining services in the
conceptual modeling level is currently in a consolidation stage.
The definition of emerging standards makes it possible to
consider a possible consolidation of this technology in the
following years.

2.3.3 Services at the organizational modeling level:
This is the most rapidly emerging research field in service-
oriented modeling. The focus of this phase consists of the
definition of the services that are offered by an enterprise. In
contrast to the definition of service in the conceptual or
implementation level, the definition of services at the
organizational level does not necessarily imply the definition of a
software system that gives support to organizational tasks.
Therefore, in these modeling phases, the focus is placed on the

http://www-128.ibm.com/developerworks/webservices/library/ws-uml2bpel/#author#author

CHAPTER 2. THE STATE OF THE ART

39

definition of abstract functionalities provided (manual or
automatically) by a supplier to potential customers. This
specification, which reflects the current situation of an enterprise,
must be the source for the generation of software services that
give support to the organizational activities. At the organizational
modeling level we also found a scarcity of methods or
mechanisms to model the enterprise following a service-oriented
approach. The main contribution of this thesis is to provide more
powerful and useful mechanisms to support services at the
organizational level. Following, we present some of the more
relevant works in this area.

One of the few existing proposals is On demand Business Service
Architecture (Cherbakov et al. 2005). In this proposal, the authors
explore the impact of service orientation at the business level. The
services represent functionalities offered by the enterprise to the
customers. It considers the definition of complex services
composed of low-level services.

One of the contributions of the Cherbakov work is that the
services are represented from the customer point of view. One of
the main weaknesses is the lack of mechanisms to model the
complex internal behavior needed to satisfy the business services.
The services are represented as “black boxes” where the internal
details of the implementation of each service are not represented.
This makes difficult to apply the technique to address business
model reengineering tasks, which are mainly based on the
operational aspects of the business processes. Figure 2.7 presents
an example of the definition of complex services that are
redefined into more concrete atomic services.

http://portal.acm.org/results.cfm?query=author%3AP727289&querydisp=author%3AL%2E%20Cherbakov&coll=GUIDE&dl=GUIDE&CFID=2687248&CFTOKEN=11918074

CHAPTER 2. THE STATE OF THE ART

40

Figure 2.7 Definition of complex enterprise services (Cherbakov et al, 2005)

Another example of the use of services at business level is the
proposal of Software-aided Service Bundling (Baida 2006). The
main contribution of this research work is the definition of an
ontology –a formalized conceptual model– of services to develop
software for service bundling. A service bundle consists of
elementary services, where service providers can offer service
bundles via the Internet. The ontology describes services from a
business value perspective. Therefore, the services are described
by the exchange of economic values between suppliers and
customers rather than describing services by physical properties.

The service value perspective is a demand-side, customer
perspective. It describes the service from the point of view of the
customers in terms of their needs and demands, their quality
descriptors and their acceptable sacrifice, in return for obtaining
the service (including price, but also intangible expenses such as
inconvenience costs and access time) (Baida 2006).

http://portal.acm.org/results.cfm?query=author%3AP727289&querydisp=author%3AL%2E%20Cherbakov&coll=GUIDE&dl=GUIDE&CFID=2687248&CFTOKEN=11918074

CHAPTER 2. THE STATE OF THE ART

41

The modeling language proposed in this work places emphasis on
the satisfaction of complex customer needs through complex
services. Complex services are composed of several elementary
services that are packaged in order to provide a value to the final
customers. Figure 2.8 presents different examples of schemas of
the service bundling approach.

Figure 2.8 Different configurations of service bundling (Baida 2006)

One industrial version of the software-aided service bundling is
e3value (Gordijn and Akkermans 2001). It has been developed to
put into practice the concept of services bundling. Some practical
cases have been developed to demonstrate the advantages of this
proposal (Gordijn and Akkermans 2003).

This modeling technique shares the same problem as the proposal
of on demand business service. The services are defined as black
boxes, where the main focus is on the definition of the set of input
and outputs of the service. This has been done in order to make
service bundling possible by matching the inputs and outputs of
the services to be composed.

One of the main consequences of not having mechanisms to
describe the internal behavior of the services is that it is
impossible to relate the services offered with the strategic
objectives of the enterprise. Therefore, it could be difficult to

CHAPTER 2. THE STATE OF THE ART

42

define the alternative services that better satisfy the goals of the
enterprise.

No matter what the services are analyzed in, in all cases there is a
strong dependency between the concept of services and the
concept of business functionalities. However, this key aspect of
service modeling has been historically neglected in the literature.
At present, there is only a partial solution to the problem of
representing services at the organizational level, in the same way
as the services are perceived by the final customers.

2.3.4 The i* proposals for representing services
The i* framework, and its methodological extension, Tropos,
have been used in several research works related to service-
oriented computing. Following, we present the most
representative works in this area.

Lau and Mylopoulos (Lau and Mylopoulos 2004) propose a
design methodology for Web services with Tropos. This work
uses goals to determine the space of alternative solutions to
satisfy these goals, where the solutions are represented by web
services. The generated web services are expected to
accommodate as many of those solutions as possible. This
proposed design methodology supports early and late
requirements as well as architectural and detailed design. One of
the main issues of this work is the use of the “pure” i* concepts to
capture the requirements for the web services. The use of the
original definition of the i* concepts raises to non-service-
oriented description models, so the mapping between the Tropos
social view of the modeling phases with Tropos and the web
service description is not straightforward analysts who are
inexperienced in Tropos.

The research works by Colombo (Colombo, Mylopoulos and
Spoletini 2005) presents a methodological framework that
supports the modeling and formal analysis of service
composition. In this work, the i* framework has been extended

CHAPTER 2. THE STATE OF THE ART

43

with a complementary process perspective. Specifically, the i*
concepts have been used to create a social specification of a
service composition. This social view enables the analyst to
represent the specification of market actors and dependencies
among them. This view also permits the refinement of business
relationships. This kind of analysis is developed using the “pure”
i* notation. Later on, the i* specification is used to define an
operational view of the enterprise process. This is done in order to
perform an operationalization of the intentional elements and also
to be sure that the process model composition complies with both
the social model and the policies that restrict the composition. As
in the case of Lau and Mylopoulos work (Lau and Mylopoulos
2004), the main issue of this Colombo work is the use of a non-
service-oriented version of i* for the initial elicitation tasks.

Finally, in Kazhamiakin (Kazhamiakin, Pistore and Roveri 2004)
has proposed changes to the i* notation in order to generate web
services. The authors propose a methodology for business
requirements modeling that use the Tropos framework to capture
the strategic goals of the enterprise. This method enables the
analyst to produce a concrete BPEL4WS description based on the
abstract description of business process with the i* concepts.

The modifications made to the i* framework consist in the
definition of separate layers to represent the strategic, activity and
message levels. Thus, the activities support the goal fulfillment.
However, the strategic model is used only for analysis and design
purposes because it is not possible to map the goals with any
implementation primitive for the generated web services. This is
the reason why, only the activity and message levels are used to
generate the web service specification. Even though the proposed
modifications extend the capabilities of i* to represent the process
needed to satisfy the enterprise objectives in a complementary
view, the analyst still does not have a complete notation and a
technique to elicit the organization requirements in a service-
oriented approach. Therefore, there is still an abrupt transition
from a non-service-oriented business model to a complete
service-oriented web service description.

CHAPTER 2. THE STATE OF THE ART

44

The analysis of different proposals to address services with i*
have revealed the need to give the i* modeling framework a
service-oriented orientation in order to permit a softer transition
between the enterprise modeling phase and web service modeling.

2.4 Conclusions

In this Chapter, the relevant works in areas of interest in this
thesis has been pointed out. First we present the research works in
evaluation of the i* framework: Sheory and Sturm works, Dam
and Winikoff works and Sudeikat works. We pointed out the
differences of these works with the research presented in this
thesis.

We have analyzed the most influent works in goal modeling:
Teleological approach, GBRAM, KAOS and EKD. We have
pointed out in the advantages and disadvantages of these research
works.

Finally, we have presented the proposals to represent services at
the different abstraction levels, implementation, conceptual and
business level.

45

Chapter 3

3. The Empirical Evaluation of the i*
Framework

This section introduces the empirical evaluation of the i*
framework, focusing on the strengths and weaknesses of i* in
industrial case studies of a software development company that
uses a Case tool for automatic software generation. The
evaluation was supported by an evaluation framework that
considers relevant features to be measured in practical
experimentation.

3.1 Introduction

One of the main contributions of this Chapter is the description of
an empirical evaluation of the i* Framework for real projects in a
software development company that uses model-driven tools for
software development. The objective of the evaluation was to
accurately detect the strengths and weaknesses of the i*
Framework in practice and to provide recommended solutions for
the issues that were detected. The evaluation framework has been
designed keeping in mind that it is to be used within model-based
software development environments with analysts who have no
previous knowledge of i*. Another contribution of this work is
the definition of a consensus to explain the reason for assigning a
certain value to the analyzed issues. Finally, the last contribution
of the Chapter is the definition of a set of conclusions to be
considered in the definition of future versions of i*.

The empirical evaluation of i* was conducted in Care
Technologies Inc. (http://www.care-t.com), a software
development Company that uses OO-Method (a well-founded

http://www.care-t.com/

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

46

Model Transformation and Conceptual Schema Centric Case Tool
(Pastor et al. 2001)) to automatically generate complete
information systems from object-oriented conceptual models.

Following, a brief explanation of the i* Framework is presented
that details the modeling primitives and the modeling diagrams.

3.2 An overview of the i* Framework

The i* framework (Yu 95) is a language for supporting goal-
oriented modeling and reasoning of requirements. The i*
modeling framework views organizational models as networks of
social actors that have freedom of action, and depend on each
other to achieve their objectives and goals, carry out their tasks,
and obtain needed resources.

The i* modeling is different that traditional mechanisms to
requirements specification that are based on the description of
what must be done in order to accomplish an organizational
process. i* is well equipped to exposing why business processes
are executed in a specific way, and also it permits the explicit
representation of the space of alternatives that exist for fulfilling a
business goal. The i* Framework permits omitting the operational
details of the processes by reducing the complexity of the
business model This allows us to have a high level representation
of the current enterprise situation. This abstraction level is also
useful to make analysis of the future enterprise situation.

3.2.1 The i* modeling primitives
The modeling primitives of i* are the following: actor, goal, task,
resource and dependency (Asnar et al. 2006).

An actor represents an entity that has strategic goals and
intentionality within the system or the organizational setting. In i*
the concept of actor can be specialized into agent, role and
position. An agent represents a specific instance of the actor’s

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

47

class. Therefore, the agent represents a physical actor. The role
represents and abstract characterization of the behavior of a social
actor within a specific context. A position represents a set of
roles. Thus, an actor can be instantiated into a specific agent, this
agent can occupy a certain position, where it can play different
roles according to its position.

A goal represents the strategic interest of a business actor. In i*
we distinguish hard goals from softgoals. How the goal is to be
achieved is not specified, allowing alternatives to be considered.
A goal can be either a business goal or a system goal. A softgoal
represent a goal where fulfillment conditions can be clearly
established. Softgoals are typically used to model non-functional
requirements.

Task specifies a particular course of action that produces a
desired effect. Tasks can also be seen as the solutions in the target
system that allow, totally or partially, fulfilling a goal. These
solutions provide operations, processes, data representations,
structuring, constraints and agents in the target system to meet the
needs stated in the goals and softgoals. The execution of a task
can be a means for satisfying a goal or a softgoal.

A resource represents a physical or informational entity.

A dependency between two actors indicates that one actor
depends, for some reason, on the other in order to attain some
goal, execute some task, satisfy a softgoal, deliver a resource, or
provide a service. The former is called depender and the latter is
called the dependee. The object around which the dependency
centers is called the dependee, which can be a goal, resource or
plan.

3.2.2 The i* modeling diagrams
The i* Framework is made up of two models that complement
each other: the strategic dependency model for describing the
network of inter-dependencies among actors, as well as the
strategic rationale model for describing and supporting the

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

48

reasoning that each actor goes through concerning its
dependencies on other actors. These models have been formalized
using intentional concepts from Artificial Intelligence, such as
goal, belief, ability, and commitment.

A strategic dependency model (SD) is a graph involving actors
who have strategic dependencies among each other. A
dependency describes an “agreement” (called dependum) between
two actors: the depender and the dependee. Dependencies have
the form depender dependum dependee.

The type of the dependency describes the nature of the agreement:
goal, task, resource and softgoal dependencies (Grau, Horkoff and
Yu 2006).

• In goal dependency the depender depends on the
dependee to bring about a certain state of affairs in the
world. In goal dependency, all decisions about fulfilling
the goal need to be taken by the dependee, therefore, the
depender doesn’t care about how the dependee goes
about achieving the goal. In goal dependency, the
depender delegates the responsibility for fulfilling the
goal to the dependee, who is the new goal owner.

• In softgoal dependency a depender depends on the
dependee to satisfy a non functional requirement.
Softgoal are similar that goal dependencies, but in the
case of the former, the fulfillment conditions cannot be
precisely defined (e.g., because it is subjective and/or
partial).

• In task dependency a depender depends on the dependee
to execute a given activity. The depender is the actor that
prescribes the procedure to execute the delegated task, in
this sense; the dependee has already made decisions about
how the task needs to be carried out.

• In resource dependency a depender depends on the
dependee to provide a resource. In resource dependency

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

49

we assume that there are no open issues to be addressed
about resource production or resource delivery.

In i* diagrams, actors are represented as circles; goals, softgoals,
tasks and resources are respectively represented as ovals, clouds,
hexagons and rectangles. In the SD model, the internal goals,
plans, and resources of an actor are not explicitly modeled. The
SD model is focused on representing the external relationships
among actors.

The strategic rationale model (SR) is a graph that focuses on
providing a representational structure for expressing the rationales
behind dependencies. The key idea of this model is the
representation of the actors behaviors needed to satisfy each actor
dependency.

The strategic rationale model is a graph with four types of nodes
(goal, task, resource, and softgoal) and three types of internal
links to the i* actor (means end links, task decomposition links
and contribution links). Following, a definition for these
modeling primitives is presented based on the definitions of Grau
(Grau, Horkoff and Yu 2006).

• Goal: represents an intentional desire of an actor. The
name of the goal represents the desired state of affairs.

• Task: represents the desire of an actor to accomplish
some specific task, performed in a specific way.

• Resource: represents information or information entities
produced as a result of the organizational tasks.

• Softgoal: represents the quality attributes that the
enterprise wants to fulfill by implementing a business
process. The means to satisfy such goals are described
using contribution links from the other modeling element.

• Means-end links represent the space of alternative ways
to satisfy a goal. The end is represented as a goal and the
means are represented by using the concept of task.

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

50

• Decomposition links represent necessary elements
needed to satisfy a task. Four alternatives exist to apply
decomposition links: task-goal decomposition, task-task
decomposition, task-resource decomposition and finally,
task-softgoal decomposition.

• Contribution links represent the positive and negative
contributions to a different degree of goals/tasks

3.3 The context of the empirical evaluation

As commented before, the empirical analysis of i* was made in
the context of OO-Method, which can be viewed as a Computer-
Aided Requirements Engineering (CARE) environment where the
focus is placed on properly capturing the system requirements in
order to manage the whole software production process. This is in
contrast to the more conventional CASE - Computer-Aided
Software Engineering- environments, where the correct
representation of requirements is not the basic issue. OO-Method
follows a model-driven development approach (MDD) to
generate complete information systems based on the information
contained in a conceptual model.

The key feature of OO-Method is the integration of formal
specification techniques with conventional object-oriented
modeling techniques. The main advantage of this is that the
models are built using concepts that are much closer to the
problem space domain. In addition, this integration avoids the
complexity associated with the use of formal methods.

In a MDD approach, two main aspects must be clearly stated:
which conceptual modeling patterns are provided by the method
and which notation is provided to properly capture those
conceptual modeling patterns.

Regarding to conceptual modeling patterns, OO-Method has
adopted the well-known OMT strategy by dividing the conceptual
modeling process into three complementary views: the object

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

51

view, the dynamic view, and the functional model view (adding a
fourth views to specify presentation patterns). When software
engineers are specifying the system, what they are doing is
capturing a formal specification of the system according to the
OASIS formal specifications language (Pastor et al. 2001). This
feature allows the introduction of a well-defined expressiveness
in the specifications, which is often lacking in conventional
methodologies.

The use of such a formal specification provides the context to
validate the system in the problem space, obtaining a software
product that is functionally equivalent to the specifications. This
equivalence is achieved by creating a model compiler that
implements all the mappings specified between the conceptual
patterns that represent what the system is (problem space level)
and their software representations (at the solution space level).
The execution model is based on the idea of transforming a set of
precise conceptual modeling constructs into their associated,
concrete software representations. The implementation of the
corresponding set of mappings between conceptual constructs and
software representations constitutes the core of a Conceptual
Model Compiler. The OO-Method approach provides a well-
defined software representation of the required representations in
the solution space. A concrete execution model based on a
component-based architecture has been introduced to deal with
the peculiarities of component-based systems. Naturally, we have
had to introduce relevant information to address specific features
of OASIS in these diagrams (Object Model, Dynamic Model,
Functional Model, and Presentation Model). Nevertheless, this is
always done preserving the external view that is compliant with
the most extended modeling notation, which is the UML.

Hence, the subset of UML used in OO-Method is the one that is
necessary to complete the information that is relevant for filling a
class definition in OASIS. This specification constitutes a high-
level data dictionary, which is the input for the final model
transformation process that creates the software product. In this

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

52

way, the arid formalism is hidden from the modelers when is
describing the system by making it more comfortable to use a
conventional notation. Another main objective in the design of
OO-Method was to keep, modelers from having to learn another
graphical notation in order to model an information system.
Having a formal basis allows us to provide a modeling
environment where the set of needed diagrams is clearly
established.

The OO-Method model transformation process from problem
space concepts to solution space representations opens the door to
the generation of executable software components in an
automated way. Taken together, these software components
constitute a software product that is functionally equivalent to the
requirements specification collected in the conceptual modeling
step. A graphical representation of the strategy of the OO-Method
approach is presented in Figure 3.1.

Problem
Space Level

d
on

Solution
Space Level

Formal SpecificationFormal Specification

Late Requirements

Repository

Uses

Conceptual Model

Functional Model

Object Model

Dynamic Model
Presentation Model

Navigational Model

Persistence Tier (SQL Server, ORACLE)

Application Tier (COM+, CORBA)

Interface Tier (Visual Environments, Web, XML)

Empiricism (ESE)Empiricism (ESE)

Obtain

Care Technologies, S.A.

Problem
Space Level

d
on

Solution
Space Level

Formal SpecificationFormal Specification

Late Requirements

Repository

Uses

Conceptual Model

Functional Model

Object Model

Dynamic Model
Presentation Model

Navigational Model

Uses

Conceptual Model

Functional Model

Object Model

Dynamic Model Functional ModelFunctional Model

Object ModelObject Model

Dynamic ModelDynamic Model
Presentation Model

Navigational Model

Presentation ModelPresentation Model

Navigational ModelNavigational Model

Persistence Tier (SQL Server, ORACLE)

Application Tier (COM+, CORBA)

Interface Tier (Visual Environments, Web, XML)

Empiricism (ESE)Empiricism (ESE)

Obtain

Care Technologies, S.A.
Figure 3.1 The OO-Method Approach for Model-Driven Software Development

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

53

Further on, we briefly introduce the four conceptual model views
that exist in the OO-Method approach.

3.3.1 Object Model
The object model is a graphical model where system classes and
relationships (association, aggregations, and inheritance) are
defined. Additionally, agent relationships are specified to state
the services that objects of a class are allowed to activate. These
primitives capture the static point of view of the system. The
corresponding UML-based diagram is the Class Diagram, where
the additional expressiveness is introduced by defining the
corresponding stereotypes.

3.3.2 Dynamic Model
The system class architecture has been specified using the Object
Model. Additionally, basic features (such as which object life
cycles can be considered valid and which inter-object
communication can be established) have to be introduced in the
system specification. To do this, OO-Method provides a dynamic
model. It uses two kinds of diagrams: State Transition Diagrams
and Interaction Diagrams.

The State Transition Diagram (STD) is used to describe correct
behavior by establishing valid object life cycles for every class.
By valid life, we mean an appropriate sequence of service
occurrences that characterizes the correct behavior of the objects
that belong to a specific class. The corresponding UML based
diagram is the State Diagram.

The Interaction Diagram (ID) specifies the inter-object
communication. We define two basic interactions: triggers,
which are object services that are activated in an automated way
when a condition is satisfied, and global interactions, which are
transactions involving services of different objects. The
corresponding UML base diagram is the Collaboration Diagram
where the context of the interaction is not shown.

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

54

3.3.3 Functional Model
A correct functional specification is a shortcut of many of the
most extended OO Methods. Sometimes, the model used breaks
the homogeneity of the OO models, as it happened with the initial
versions of OMT, which proposed using the structured DFDs as a
functional model. The use of DFD techniques in an object-
modeling context has been criticized for being imprecise, mainly
because it offers a perspective of the system (the functional
perspective) that differs from the other models (the object
perspective).

Other methods leave the free-specification of the system
operations in the hands of the designer. The OO-Method
functional model (FM) is quite different from these conventional
approaches. In this model, the semantics associated with any
change of an object state is captured as a consequence of a service
occurrence. To do this, it is declaratively specified how the
services change the object state depending on the arguments of
the service involved and object’s current state. A clear and simple
strategy is given for dealing with the introduction of the necessary
information. The relevant contribution of this functional model is
the concept of categorized attributes.

3.3.4 Presentation Model
The object’s society structure, behavior, and functionally are
specified using the three conceptual models described above. The
last step is to specify how users will interact with the system.

This is done by the Presentation Model through the definition of a
set of Presentation Patterns. The Presentation Patterns capture the
information required to characterize what appearance the
application will have, and how the user will interact with the
application.

Despite the major advantage of the OO-Method in automatically
generating information systems, there are disadvantages as well.
Specifically, there are currently no mechanisms for acquiring the

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

55

requirements of an information system. Accordingly, the next
step in developing further the OO-Method consists of adding a
new phase of organizational modeling as a starting point to
determine the correct requirements for the information system-to-
be.

In performing the empirical evaluation, our objective was to
determine possible extensions to i* that would make it suitable
for inclusion in the OO-Method modeling and methodological
framework. The main idea of this approach is the generation of a
modeling process that uses the intentional and social
characteristics of i* to determine the correct requirements for the
information system-to-be. There are some preliminary results of
this approach in (Martinez, Castro, Pastor, and Estrada 2003),
(Estrada, Martinez and Pastor 2003). Consequently, the selected
features for measurement in this empirical evaluation are inspired
by model-driven approaches.

3.4 The contribution of the empirical evaluation

Our empirical evaluation is different than those performed by
Shehory, Dam and Sudeikat (Sturm, Dori, and Shehory 2005).
Our evaluation focuses on an in-depth analysis of a specific
methodology (i* Framework) rather than a comparison of
several.
Moreover, our evaluation approach is also different from the one
presented in Sudeikat´s works (Sudeikat et al. 2004), because our
evaluation studies how well i* matches a specific software
development context (model-based software generation) in
practice, rather than analyze i* in the abstract.

Moreover, other evaluations of agent-oriented methodologies
(including Tropos), involve academic case studies developed by
students. This represents a major limitation of these studies
(because students are novices, rather than professional analysts)
and a major point of difference from our work.

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

56

There are also reported studies that use i* for some application. In
most of these studies, the modelers were well-acquainted with i*
concepts and their use. We have detected scarcity of experiments
where i* is evaluated in practice by modelers who are not used to
working with i* and who do not perform organizational modeling
as a current task in their modeling activities. This Chapter
presents such a practical evaluation that fills this gap.

3.5 Type of empirical evaluation

The empirical study of i* was based on a feature-based
framework. Such a framework consists of a set of features that
can be properties, qualities, attributes, or characteristics. These
features can describe the evaluated methodology well enough so
that it can be assessed for a particular purpose (Dam 2003). The
evaluation was conducted by evaluators who assigned a judgment
(value) of how well each feature was supported by the subject of
the evaluation. For our study, the features were selected on the
basis of their relevance to model-driven software generation.

The feature-based evaluations can be useful for assessing how
much support a methodology appears to provide for a specific
domain. This is done by selecting features that are relevant to the
application domain of interest and evaluating the methodology
against this set of relevant features. Therefore, this kind of
evaluation is appropriated for the objective of our research work,
because we tried to evaluate a specific set of relevant features in
the context of the Model-Driven Software Generation approach of
the Care Technologies Enterprise, rather than making an
evaluation of an extensive list of features.

3.6 The population background

The empirical evaluation was implemented using three real-life
projects that were developed in parallel by three different

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

57

development teams. The composition of the development teams
was as follows:

Team 1: Three experts in requirements engineering. These
analysts were experts in the use of advanced tools for generating
conceptual schemas from requirements models, with a high
degree of automation in the corresponding transformation
process. At the beginning of the evaluation, this team had limited
knowledge of i*.

Team 2: Three experts in programming. These analysts were
experts in the use of the CASE tool for automatically generating
information systems from conceptual models. At the beginning of
the evaluation, this team had no knowledge of i*.

Team 3: Two experts in i* Modeling. These analysts were experts
in the use of i* for organizational modeling.

In our evaluation, which took 9 months, the case studies were
conducted in isolation, i.e., with no exchange of information
among participant teams. This was done in order to avoid the
empirical analysis being affected by the different levels of
knowledge about i* by the teams involved.

3.7 Evaluation design

The empirical evaluation of the i* Framework was conducted in
five steps:

The first phase of the empirical evaluation consisted of the
determination of a set of relevant issues to be measured in the
empirical evaluation. The relevance of the issues was given by the
Model-Based transformational approach of the Company where
the analysis was developed.

The second step consisted of training the three teams, where
details about the concepts and proper use of i* were given out,
using original i* sources and basic teaching support.

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

58

The third phase of the empirical evaluation consisted in the use of
the i* Framework to develop the selected case studies.

The fourth phase consisted in the evaluation of the results of each
team. To accomplish this, each participating team evaluated i* for
each relevant feature.

The fifth phase consisted in analyzing the results and drawing
conclusions about the strengths and weaknesses of i*.

Figure 3.2 presents a graphical representation of the strategy
selected to perform the empirical evaluation.

Analysis & Conclusions

N
o

vi
si

bi
lit

y N
o visibility

Modeling Process

2 experts analyst in the
i* Framework

3 CARE Technologies expert
analysts in programming

3 CARE Technologies expert
analysts in requirements

Represent the
Semantics of the
Enterprise using i*

Interviews
with the Clients

Represent the
Semantics of the

Enterprise using i*

Interviews
with the Clients

Learning the i*
Methodology

Represent the
Semantics of the
Enterprise using i*

Interviews
with the Clients

Learning the i*
Methodology

Results ResultsResults

Analysis & Conclusions

N
o

vi
si

bi
lit

y N
o visibility

Modeling Process

2 experts analyst in the
i* Framework

3 CARE Technologies expert
analysts in programming

3 CARE Technologies expert
analysts in requirements

Represent the
Semantics of the
Enterprise using i*

Interviews
with the Clients

Represent the
Semantics of the

Enterprise using i*

Interviews
with the Clients

Learning the i*
Methodology

Represent the
Semantics of the
Enterprise using i*

Interviews
with the Clients

Learning the i*
Methodology

Results ResultsResults

Figure 3.2 The strategy for the empirical analysis

3.8 The selected case studies

As mentioned above, the case studies are real projects of the Care
Technology Company. Next, we briefly describe the case studies
that were analyzed.

• Technical Meeting Management. This case study implied
the modeling of the processes associated with review

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

59

papers for a technical meeting as well as the processes to
manage the operative aspects of the organization of the
meeting.

• Golf Tournament Management. This project implied the
modeling of the business processes for organizing Golf
Tournaments validated by the Spanish Golf Federation.
The case study included the processes for registering
golfers, creating matches, assigning controllers to specific
holes of the golf course as well as for obtaining and
publishing partial and final results for each match.

• Car Rental Management. This project dealt with the
modeling of the process for a car rental company in
Alicante, Spain. The case study included the processes for
renting cars and additional services as well as for buying
new cars for the Rental Company.

The goal of the development teams was to represent relevant
business processes for each project using i*. For the Technical
meeting management case study, the organizational environment
involves a large number of interactions among participant actors,
and a relatively small number of actors´ internal elements. For the
Golf tournament management case study, the organizational
environment concerns a large number of actors´ internal activities
and a small number of actor interactions. On the other hand, the
Car rental management case study involves an organizational
context with a large number of actors’ internal activities and
actors’ interactions. As such, the case studies had rather different
organizational characteristics and ensured that our study would be
biased because of similarities in the case studies chosen.

3.9 The evaluation framework

The empirical evaluation of i* was based on a set of features that
have been considered highly relevant in the context of a model-
based software development environment. In this specific context,

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

60

the modeling primitives of a model must provide precise,
bidirectional traceability with subsequent stages of the modeling
process. It is important to note that the experiment was designed
for practicing analysts who are used to dealing with software
production concepts such as model-driven architectures, code
generation, object-oriented analysis and late (conventional)
software requirements specifications, rather than analysts who are
familiar with early requirements. After all, we expect that this
will be the normal scenario for i* use in software production
companies. Therefore the determination of relevant features for
the study was perhaps the most critical step in the whole
evaluation process.

In order to assure the correct selection of those criteria to be
evaluated, we based our evaluation on relevant features that have
been proposed in the literature to evaluate agent-oriented
methodologies. Specifically, to evaluate the i* Framework, we
based our framework on proposals from (Padgham et al. 2005)
(Sturm and Shehory 2003) (Dam 2003), and (Dam and Winikoff
2003) to compare agent-oriented Methodologies. By including
features used in three different studies, we have tried to avoid
biases that arise from using a single set of features that might be
well suited for i*.

The empirical evaluation considered two main aspects of the i*
Framework: a) Modeling Language (Refinement, Modularity,
Repeatability, Complexity Management, Expressiveness,
Traceability, and Reusability) and b) Pragmatics of the Modeling
Method (Scalability and Domain Applicability). The features
selected for these aspects are listed below.

• Refinement: This feature measures the capability of the
modeling method to refine a model gradually through
stages until the most detailed view is reached (Bergenti,
Gleizes and Zambonelli 2004). This is a relevant feature
because it allows analysts to develop and fine-tune design
artifacts at different levels of granularity during the
development process (Dam and Winikoff 2003).

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

61

• Modularity: the degree to which the modeling language
offers well-defined building blocks for building model.
The building blocks should allow the encapsulation of
internal structures of the model in a concrete modeling
construct. This characteristic ensures that changes in one
part of the model will not have to be propagated to other
parts.

• Repeatability: the degree to which the modeling
technique generates the same output (i.e., same models),
given the same problem. This is a very relevant feature in
the context of model-driven approaches, where each
modeling element during a specific step of the modeling
process corresponds to a modeling element in subsequent
steps. Repeatability ensures that a correct result is
obtained when a transformation between models is
applied. We use this feature to evaluate whether we
obtain the same i* model when the same domain is
modeled by different modelers.

• Complexity Management: This feature measures the
capability of the modeling method to provide a
hierarchical structure for its models, constructs and
concepts. Model management is a fundamental problem
in industrial project settings.

• Expressiveness: the degree to which the application
domain is represented precisely in terms of the concepts
offered by the modeling technique. More concretely, this
feature measures the degree to which the modeling
technique allows us to represent static, dynamic,
intentional and social elements of the application domain.

• Traceability: the capability to trace modeling elements
through different stages of the modeling process. This
feature is important because it allows the user to verify
that all elements of one model (e.g., capturing
requirements) have corresponding elements during the
analysis and design stages, and vice versa. Traceability

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

62

makes it possible for the analyst to move back and forth
between models corresponding to different development
stages (Dam and Winikoff 2003). From an organizational
modeling perspective, this is basically oriented to assure
that the late requirements model and the subsequent
conceptual model are correct representations of the
original organizational model.

• Reusability: the degree to which models can be reused.
As with software code, this feature is causally related to
modularity. If the modeling technique allows the
definition of modules, general cases (patterns) can be
defined for reuse.

• Scalability: the degree to which the modeling framework
can be used to handle applications of different sizes.
Scalability also measures the degree to which the
inclusion of new modeling elements leaves unaffected the
understandability of models (also known as extensibility).
Scalability is related to refinement and modularity.

• Domain Applicability: the degree to which the modeling
framework matches modeling requirements for a
particular application domain.

This is the set of characteristics that we have selected to
accomplish the evaluation tasks. It is true that, for some of the
features chosen, one can evaluate i* (or any other modeling
framework, for that matter) on theoretical grounds alone.
However, in our study of i*, we wanted to include a practical
evaluation as confirmation of any preliminary theoretical
suppositions. Moreover, clearly the chosen features interact. For
instance, better modularity management, obviously contributes to
easier complexity management. Likewise, reusability contributes
to scalability. Also, refinement is close related to traceability. We
are studying such correlations and hope to integrate them in the
evaluation framework for future studies. For this work, we focus
on the application of the proposed set of features in evaluating i*
in practice.

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

63

3.10 The evaluation results

The evaluation was conducted over a 9-month period. The
average size of the models generated by the three teams had as
follows: (i) Technical meeting management: 12 actors, 55
dependencies, 70 actors´ internal activities; (ii) Golf tournament
management: 8 actors, 42 dependencies, 103 actors´ internal
activities; (iii) Car rental management: 13 actors, 143
dependencies, 219 actors´ internal activities.

The evaluation assigned one of three possible values (Well
supported, Not well supported, and Not supported) to each
feature. Another output of the evaluation was a list of reasons
given by the analysts for a judgment passed. In order to make the
evaluation consensual, a meeting was held at the end of each case
study. In these meetings, produced diagrams and personal
evaluations were presented and discussed. The meetings included
in-depth discussions for each feature in order to reach consensus
and a final judgment.

One interesting result of the evaluation concerns the differences
in the models produced by the participating teams. The members
of team 1 were experienced in requirements modeling, although
not used to modeling in terms of goals, actors and dependencies.
They understood well the concepts underlying i* (after all,
requirements concepts match well i* modeling), and were
enthusiastic about using i* in practice. In this case, resulting
models were partially compliant with i* philosophy. Moreover,
the analysts of this team detected several areas where i* lacked
mechanisms to guarantee the usefulness of organizational models
in generating system requirements.

 In Team 2, the analysts were used to work with class diagrams,
state and functional models as part of their on-going modeling
activities. In this case, i* social and intentional concepts were
rather unfamiliar and the analysts tried to use the concepts in the
same way they used the concepts they were accustomed to. In this
case, resultant models were less compliant with i* modeling

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

64

philosophy. Moreover, these analysts had a lot to say about the
lack of precise definitions for i* concepts, and guidelines for
generating i* models.

The analysts for Team 3 were experienced i* modelers. In this
case, resulting models were completely compliant with i*
modeling philosophy. However, these models were often too
abstract for generating software requirements.

Table 1 shows a synthesis of the results obtained in the empirical
evaluation. The first column indicates the type of evaluation
criteria (Modeling Language or Pragmatics), the second column
indicates the feature evaluated, and finally, the third column
indicates the judgment passed on each feature (Not supported,
Not Well Supported, Well Supported).

Evaluation
Criteria

Issue Evaluation

1 Refinement Not Well Supported
2 Modularity Not Supported
3 Repeatability Not Well Supported
4 Complexity

management
Not well Supported

5 Expressiveness Well Supported
6 Traceability Not Well Supported

Modeling
Language

7 Reusability Not supported
8 Scalability Not supported Pragmatics
9 Domain applicability Well Supported
Table 1 Results of the empirical evaluation

Let us point out that one of the contributions of this empirical
evaluation is the presentation of information about the reasons for
the analysts to give a certain evaluation to each one of the
selected issues. In this section, we present the arguments to justify
the consensus reached when analyzing the values assigned to each
one of the issues of the Evaluation Framework as a result of the
performed experimentation.

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

65

It is important to point out that the evaluation of the i*
Framework was made in order to determine how this framework
supports the relevant properties of a Model-Driven environment.
The analysis of the features was made taking into account this
objective. Therefore, the values assigned to the features (Not
supported, Not Well Supported, Well Supported) only represents
if the i* modeling framework fits the specific model-driven
environment, and they do no represent a global qualification of
the i* framework.

This is the first evaluation of the i* Framework focusing on a
specific application domain. However, the results obtained in our
empirical evaluation are similar to those obtained in research
works where i* and Tropos have been analyzed (with general
features) together with other agent-oriented methodologies ((Dam
and Winikoff 2003) and (Sturm and Shehory 2003)). The
similarities in the results support the conclusions of our
evaluation. An in-deep analysis must be done in order to
determine if the results obtained of our empirical evaluation could
be similar to those obtained applying the evaluation framework
outside the context of a model-driven development process. At
present there are no precise evidences to indicate that our result
can be interpolated to other application domains.

Once the values for each feature were assigned by the participant
teams, the next step was to understand and justify these values.
To do this, an explanation for the assigned values was obtained
by consensus of the participant teams. The explanation for each
feature is presented below.

3.10.1 Feature: Refinement
Evaluation: Not Well Supported

Explanation: There are two types of refinement supported by i*:
(i) refinement of strategic dependency models in terms of a more
detailed strategic rationale model, where one can see why actors
depend on each other; (ii) 2) refinement of actor goals into more

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

66

concrete subgoals. However, the literature using i* includes many
examples where a rationale model is not the result of a refinement
of a dependency model. This kind of refinement can be performed
in the boundaries of an actor model.

These types of refinement are useful when analyzing small case
studies. However, they have severe limitations when the model
grows in size and complexity. The dependency model is too
concrete to serve as a starting point for the analysis of a large
enterprise. In such cases, it may contain many actors with a large
number of dependencies corresponding to different business
processes, whose union constitutes a very complicated model to
manage.

The current version of i* does not include modeling primitives
that allows us to start the modeling process of an enterprise with
abstract concepts. These concepts would allow us to
incrementally add more detail -- using other, more specific,
modeling primitives -- until we reach concrete models of business
processes and their actor dependencies. There are also no
concepts to structure the different functional units of a complex
organization. As a consequence of this absence of high-level
refinement facilities, the modeling of complex systems that
involve a large number of dependencies among many different
actors is problematic for i*.

3.10.2 Feature: Modularity
Evaluation: Not Supported

Explanation: Based on the empirical evaluation, it was
concluded that modularity is not supported in i*. This is the case
because i* doesn't have mechanisms for using building blocks
that can be logically composed to represent different
organizational fragments (e.g., business processes). In this
context, if a new organizational process is added, this may affect
all models constructed so far.

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

67

The lack of modularity mechanisms in i* can be viewed as a
consequence of its focus on actor modeling rather than on
business process modeling. The modeling mechanisms of i* are
oriented towards the definition of the behavior of the
organizational actors (to satisfy their goals and dependencies)
rather than being oriented to the definition of high-level views of
the organizational business processes.

Due to this the lack of modularity, rationale models represent a
monolithic view where all elements of an enterprise are
represented at the same abstraction level without considering any
sort of hierarchy. Figure 3.3 shows an example for the Technical
Meeting Management case study where the goal dependency
“obtain quality reviews” and other dependencies associated with
this goal (the task dependency: “send reviews on time”, and the
resource dependency: “review”) are represented at the same
abstraction level. This makes it impossible to distinguish the
hierarchical level of these concepts, which are represented as
dependencies in the same diagram.

Reviews

send
notifications
and reviews

PcChair sort papers
resolve

critical cases

Send notifications
and reviews

Obtain
notification

Author

Reviewer

PcMember
To do quality

reviews

Assign
qualifications Assign

comments
Assign

evaluation

Send
reviews

send reviews
on time

Reviews
Send

reviews

To do quality
reviews

Assign
qualifications

Assign
comments Assign

evaluation

Send
reviews

Obtain quality
reviews

obtain quality
reviews

to do quality
reviews Notification

obtain quality
reviews

Goal 2

Activities
associated

to Goal 2

Legend

Actor
boundary

goal

Task

Resource

Depender Dependee

Decomposition link

send
notifications
and reviews

Reviews

send
notifications
and reviews

PcChair sort papers
resolve

critical cases

Send notifications
and reviews

Obtain
notification

Author

Reviewer

PcMember
To do quality

reviews

Assign
qualifications Assign

comments
Assign

evaluation

Send
reviews

send reviews
on time

Reviews
Send

reviews

To do quality
reviews

Assign
qualifications

Assign
comments Assign

evaluation

Send
reviews

Obtain quality
reviews

obtain quality
reviews

to do quality
reviews Notification

obtain quality
reviews

Goal 2

Activities
associated

to Goal 2

Legend

Actor
boundary

goal

Task

Resource

Depender Dependee

Decomposition link

Legend

Actor
boundary

goal

TaskTask

Resource

Depender Dependee

Decomposition link

send
notifications
and reviews

Figure 3.3 Example of the representation of concepts in the same abstraction

level.

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

68

3.10.3 Feature: Repeatability:
Evaluation: Not Well Supported

Explanation: One of the key points for ensuring repeatability in a
modeling method is the definition of a precise, formal semantics
for the modeling constructs. In principle, the modeling constructs
of i* have been defined using formal descriptions and meta-
modeling diagrams. These definitions are useful for expert
analysts in early requirements. However, for those who are not
experts in i*, these definitions do not provide the necessary,
precise support to determine which modeling construct to use
when. This problem can also be noted in the i* literature. There
are several examples where very similar settings have been
modeled using different primitives.

It is also possible to find in the literature examples of
dependencies that do not satisfy the basic semantics of an actor
dependency (vulnerable actor, actor who decides how to fulfill the
dependency, type of dependum). For example, we found cases
where the dependee of a dependency was incorrectly used as the
vulnerable actor, instead of the depender. In another example, we
found cases where the dependee of a dependency was incorrectly
treated as the actor who prescribes the actions to execute for a
delegated task (task dependency), instead of following the
guidelines of always placing the depender as the actor that
prescribes a task dependency. As a consequence of these
situations, it is difficult to ensure that a reasonable degree of
repeatability is achievable with i*.

Figure 3.4 shows an example of these repeatability problems. In
this example, taken from the Golf tournament management case
study, the process for “Pay for registration in tournament” was
represented in two different ways by the participating analysts:
either as a task dependency, where the focus was placed on the
activity to be executed; or as a resource dependency, where the
focus was placed on the payment, which was viewed as a concrete
resource relating the actors involved.

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

69

payment

Register in the
Tournament

Golfer

Participate in
the Tournament

Pay for
The register

Obtain
payment

Register Golfers
Participate in

the Tournament

Register

GTO Golfer

“Pay for the registration of the Tournament”

Pay the
registration

Register Golfers

GTO

Obtain
payment payment

Register in the
Tournament

Golfer

Participate in
the Tournament

Pay for
The register

Obtain
payment

Register Golfers
Participate in

the Tournament

RegisterRegister

GTO Golfer

“Pay for the registration of the Tournament”

Pay the
registration

Register Golfers

GTO

Obtain
payment

Figure 3.4 Example of two different representations for a given single process.

3.10.4 Feature Complexity Management:
Evaluation: Not Well Supported

Explanation: In the current version of i*, it is possible to analyze
an enterprise model using two different viewpoints: the strategic
dependency model and the strategic rationale model. These
viewpoints are useful for small cases, but they are not adequate
for dealing with large and complex problems. There are no
mechanisms for defining a high-level view of the whole process
executed in the enterprise. This high-level view would be
properly decomposed following a model-within-a-model strategy,
where lower level descriptions are created separately,
incorporating all relevant details.

The limitation in the mechanisms that are provided for managing
the system complexity make modeling in i* unnecessarily
complicated. The lack of hierarchies leads to problems such as: a)
difficulties to determine where to start the analysis; b) difficulties
to determine the elements of the model that correspond to each
organizational process and/or unit. The lack of hierarchies
produces models where several business processes are
represented and mixed all together in the same diagram, without
any indication of the ownership of neither each low-level activity
nor any information about the boundaries of each individual
process.

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

70

Figure 3.5 shows the graphical representation of a model where
several business processes are represented and mixed all together
in the same diagram, without any indication of the ownership of
the low-level activity or any information about the boundaries of
each individual process.

3.10.5 Feature Expressiveness:
Evaluation: Well Supported

Explanation: There was unanimous agreement among all
participants in this experiment that i* indeed provides a very
interesting set of conceptual primitives that make it possible to
build pure organizational models on top of conventional
requirements ones (mostly, use case-based models). Analysts also
agreed on the importance of linking early requirements and late
requirements, as a way of connecting software engineering
practices with organizational design tasks that are too often
performed in isolation by consultants.

…

…

…

…

…

…

… …

……

…

…

…

…

…

…

……

…

…

…

… …

……

…

…

…
…

… … …
…

… …

Organizational Process 1

Actor

Actor

Actor

Actor

…

…

…

…

Organizational Process 2
Organizational Process 3

…

…

…

…

…

…

… …

……

…

…

…

…

…

…

……

…

…

…

… …

……

…

…

…
…

… … …
…

… …

Organizational Process 1

Actor

Actor

Actor

Actor

…

…

…

…

Organizational Process 2
Organizational Process 3

Figure 3.5 Representation of different processes in the same diagram

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

71

The i* Framework was deemed adequate for capturing the
relevant concepts of the enterprise, providing mechanisms for
representing: a) the social structure of the enterprise, b) the
intentional aspects of the organizational actors, c) the activities
needed to satisfy the goals of the organizational actors, d) the
relevant resources in the business processes, e) the ability to
represent roles, positions and agents to describe the organizational
actors, f) the architecture of the enterprise and g) the interaction
between the system and external agents.

These conclusions account for the difference between i* and other
modeling techniques, which are not as well equipped to represent
the social and intentional reasons that underlie the operation of an
enterprise.

The static structure of the organization could be represented using
the graphical representation of the i* diagrams. These diagrams
allow us to represent a static overview of how the organization
works. These models show the actors, goals, tasks, dependencies,
resources, and the boundaries of the organization. Whereas the
graphical diagrams capture the static structure of the organization,
the formal specification of the modeling concepts captures some
aspects of the dynamic behavior of the system. To do this, the
formal specification represents the pre- and post–conditions and
triggers for the organizational tasks. The empirical evaluation
allowed us to demonstrate that building an i* organizational
model is very useful for detecting the following problems:

Bottlenecks: This is the case when an actor concentrates a large
number of incoming dependencies from other organizational
actors. In this case, a failure or delay in this organizational actor
could cause a chain reaction in the entire enterprise. The
bottleneck problem could be detected by analyzing the
dependencies where an actor plays the role of dependee of several
dependency relationships. We are not aware of other modeling
frameworks that account for this kind of analysis. Figure 3.6
shows a graphical representation of bottlenecks in a business
process represented in the i* Framework.

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

72

…

Actor

ActorActor

Actor…Actor

Bottleneck

…

Actor

ActorActor

Actor…Actor

Bottleneck

Figure 3.6 Representation of bottlenecks in a business process

Vulnerabilities: One of the key advantages of i* is the explicit
representation of vulnerabilities of organizational actors. In this
case, if an actor participates in too many dependencies as
depender, this actor could then become vulnerable if any of the
dependee actors fail to deliver on their respective dependencies.
Figure 3.7 shows a graphical representation of vulnerabilities in a
business process represented in the i* Framework.

…

Actor

Actor

Actor Actor

…

Actor

Actor
vulnerabilities

…

Actor

Actor

Actor Actor

…

Actor

Actor
vulnerabilities

Figure 3.7 Representation of vulnerability in a business process

Critical responsibilities: This is the case where an actor
concentrates many goal dependencies, which indicates that the

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

73

actor has many critical responsibilities in the business process. In
this case, it may be that the actor has excessive responsibilities
and needs help, or at least monitoring. Figure 3.8 shows an
example of this situation.

…

Actor

ActorActor

Actor…Actor

Critical
Responsibilities

…

Actor

…

Actor

ActorActor

Actor…Actor

Critical
Responsibilities

…

Actor

Figure 3.8 Representation of excessive responsibilities in a business process

The explicit representation of these organizational situations is
the basis to carry out a useful business process reengineering
analysis.

3.10.6 Feature: Traceability:
Evaluation: Not Well Supported

Explanation: i* provides modeling flexibility for adding
elements to an individual dependency and/or rational models.
This means that new dependencies can be added to the rationale
model that were not previously considered in the corresponding
dependency model (Figure 3.9), and vice versa. This is sometimes
useful with respect to modeling flexibility. However, it is also
true that this could have negative effects for model-driven
approaches, where the elements of a model must have
counterparts in previous models. We conclude that i* does not
have precise guidelines for deriving each element of the

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

74

dependency model from corresponding elements in the rationale
model.

3.10.7 Feature: Reusability:
Evaluation: Not Supported

Explanation: i* does not offer clear mechanisms for properly
managing reusability of parts of an organizational model. As
mentioned earlier, the lack of good reusability capabilities is a
consequence of the absence of mechanisms for modularization.
The lack of conceptual building blocks with the required
granularity makes it very complicated to reuse certain fragments
of a model. Moreover, i* lacks view definition mechanisms (in
the sense of database views) for selecting parts of a monolithic
model that capture new viewpoints.

ActorActor

…

Actor

Actor

…

…
…

Actor

Actor

Actor

??

??

??

??

Strategic Dependency Model Strategic Rational Model

ActorActor

…

Actor

ActorActor

…

Actor

Actor

…

…
…

Actor

Actor

Actor

??

??

??

????

??

??

??

??

Strategic Dependency Model Strategic Rational Model
Figure 3.9 Representation of problems of traceability

As a consequence of this weakness, modeling projects using i*
must too often start from scratch, without taking advantage of
previous projects for similar domains.

3.10.8 Feature: Scalability:
Evaluation: Not Supported

Explanation: This is probably the best-known and widely
acknowledged problem of i*. There are simply no clear

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

75

mechanisms for managing the scalability of strategic models in
i*.

For small problems i* clearly works fine. However, when the
modeling problem grows in size and complexity, the large
number of elements represented in the same diagram makes their
systematic use and analysis very complicated, when not
completely impossible. The scalability problem is also a direct
consequence of the lack of mechanisms for modularization, and
the inability to put together an abstract view of the high-level
business processes of an enterprise. Consequently, all modeling
elements for representing the semantics of a specific business
process must be placed in the same diagram. Figure 3.10 shows
an example of the high number of modeling elements in a
diagram for only a fragment of a business process. And this is a
very small fragment of the case study.

In summary, the lack of mechanisms for managing scalability is
one of the greatest problems for the real applicability of i*
modeling.

acceptation/
rejection

customer
dataanalyze the

client data

analyze
customer

credit
reference

notification of
the client

bank credit

client
data

communicate
the result

wait for
the result

analyze the own
preconditions

formalize
the renting

register the
car rented

delivery
invoice

register the
payment

Car can
be rented

borrow car to
other offices

analyze car
availability

obtain
rent data

inform the
availability

analyze car
availability

analyze
availability in
the office

analyze
availability
In other
offices

Obtain
car data

data

answer for
availability

delivering
the car

deliver
car keys

deliver
the car

obtain
date

car

car keys

invoice

payment

Car data

Dates for
renting

Rent a
car

provide data

provide
car data

obtain
invoice

pay

Select
company

determine
date for renting

select
a car

obtain
the car

receive
car keys

receive
car

analyze
alternatives

provide
data for
renting

provide
date

Rent a
car

Rental
car

Company

Bank

Customer

Associated
Branches

obtain Bank
credit

reference

renting a car
without

reservation
acceptation/

rejection

customer
dataanalyze the

client data

analyze
customer

credit
reference

notification of
the client

bank credit

client
data

communicate
the result

wait for
the result

analyze the own
preconditions

formalize
the renting

register the
car rented

delivery
invoice

register the
payment

Car can
be rented

borrow car to
other offices

analyze car
availability

obtain
rent data

inform the
availability

analyze car
availability

analyze
availability in
the office

analyze
availability
In other
offices

Obtain
car data

data

answer for
availability

delivering
the car

deliver
car keys

deliver
the car

obtain
date

car

car keys

invoice

payment

Car data

Dates for
renting

Rent a
car

provide data

provide
car data

obtain
invoice

pay

Select
company

determine
date for renting

select
a car

obtain
the car

receive
car keys

receive
car

analyze
alternatives

provide
data for
renting

provide
date

Rent a
car

Rental
car

Company

Bank

Customer

Associated
Branches

obtain Bank
credit

reference

renting a car
without

reservation

Figure 3.10 Fragment of the car renting process in the Car Rental Management

case study

3.10.9 Feature: Domain applicability:
Evaluation: Well Supported

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

76

Explanation: The i* Framework has a semantics and a
corresponding i* has an ontology and a corresponding notation
that we found well suited for organizational modeling. It is also
appropriate for the analysis of late requirements. The conceptual
primitives are expressive enough to be applied in different
domains, and they are appropriate for expressing properties that
an organizational model must include. The semantics of the social
concepts could also be applied, for example, to present
dependencies within and between communities of systems, or
even to represent the dependencies between an information
system and its stakeholders.

3.11 Discussion

The main conclusion of this empirical evaluation is that i* needs
to be extended with mechanisms that manage granularity and
refinement in models, as discussed below:

Granularity: Many of the negative results in the evaluation of i*
are related to the lack of mechanisms for defining granules of
information at different abstraction levels, and composition
mechanisms for composing these granules. This problem
becomes evident when the modeling problem grows in size and
complexity. In these cases, non-expert i* users have difficulty
with the scalability of their model. The result of this scenario is
usually an overloaded monolithic model that contains all the
relevant details of a social and intentional setting. Any activity
that tries to extend, analyze, adapt or reuse parts of such a model
is bound to be complicated and error-prone. To avoid this
problem, it is necessary to provide precise conceptual constructs
representing building blocks that break the monolithic structure of
i* models as well as composition mechanisms. Then,
encapsulated model units could be created, analyzed and reused in
an independent way. The practical implication of the granularity
solution is the introduction of viewpoints that go beyond the actor
viewpoint. For example, process viewpoints could give an

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

77

orthogonal view for an organizational model. Note that for this
extension, no modifications are needed to the original set of i*
modeling constructs.

Refinement: Apart from the definition of abstract primitives as
building blocks, analysts must be provided with guidelines that
allow them to structure a complete enterprise model. One way to
achieve this consists of using concrete specification units to create
the models following a refinement-based approach. In this way,
the modeling process starts with a high-level view of the
enterprise. Then, each element of this high-level view is refined
into a more concrete model. Viewpoint mechanisms are a very
promising direction to help manage the complexity of modeling
activities. A viewpoint on a system involves a perspective that
focuses on specific concerns regarding the system, while
suppressing irrelevant details (Sinan 2003). A promising strategy
in this direction would be to guide the organizational modeling
process using selected viewpoints. The refinement process
enables us to join the advantages of social modeling with a
compositional approach to create the organizational models
incrementally.

In order to propose a solution for the problems of refinement,
modularity, complexity management, reusability and scalability
found in the practical evaluation of i*, we propose a Business
Service Architecture for the i* Framework. This proposal
attempts to improve the current state of the i* Framework so that
it can be used in a Model-Driven approach. The detailed
description of the service-oriented approach for the i* Framework
can be found in Chapters 5 and 6 of this thesis.

As a further step in ensuring the repeatability of the modeling
results and also to ensure the traceability between models, we are
developing a proposal to revisit the definitions of the modeling
primitives of i*/Tropos based on a multidimensional framework.
The multidimensional framework captures relevant properties
(dimensions) which allow us to characterize each modeling
primitive of the *i/Tropos Framework. Thus, it is possible to

CHAPTER 3. THE EMPIRICAL EVALUATION OF THE I* FRAMEWORK

78

clearly differentiate the modeling primitives of i*. A detailed
description of this work can be found in Chapter 4.

79

Chapter 4

4. The Modeling Language definition
This section introduces the definition of the modeling language
for our service-oriented architecture. The modeling language is
the result of revisiting and extending the semantic of the i*
modeling concepts. The Chapter presents the proposed syntax and
semantics for association, aggregation, generalization and
classification relationships that were adapted from the i*
relationships.

4.1 Introduction

In this thesis, the basic i*/Tropos modeling concepts have been
adopted for organizational modeling purposes. However, a
reviewed version of these modeling concepts has been developed
in order to make the appropriate extensions for the service-
oriented method. To do this, an initial analysis allowed us to
precisely identify current issues in notation and semantics of the
i* modeling concepts. Another objective of revisiting the
modeling construct is the attempt to overcome some of the
problems detected in the empirical evaluation of the i*
framework. Our intention in reviewing the semantic of the i*
relationships is not the attempt to standardize the definition of the
i* relationship, but to provide a semantics clear for the purposes
of our service-oriented method.

The modeling constructs of i* have been defined using formal
descriptions and meta-modeling diagrams. However, for those
novel analysts in i*, these definitions do not provide the
necessary, precise support to determine which modeling construct
to use when a specific semantic must be represented when facing

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

80

real case studies. This problem was also found in bibliographical
research in i* literature. As a result of this situation, there are
several examples where very similar settings have been modeled
using different primitives. This situation makes it difficult to
ensure an appropriate rate of repeatability and traceability in the
modeling results.

As stated in empirical evaluation Chapter, at the present time it is
difficult to ensure that novel analysts use the same modeling
concept to represent similar semantics (repeatability problems).
The traceability issue correlates directly with the repeatability
factor. If repeatability cannot be ensured, then it will be difficult
to perform the automatic translation among modeling diagrams.
The weakness of i* to manage repeatability and traceability has a
more relevant impact on model-based development approaches,
where automation of models transformation process is a key
factor to ensure the correct model transition.

The basic components of a modeling language are primitive
concepts and abstraction mechanisms (relationships). In this
thesis, we focus on the analysis of the i* relationship concepts.
This is because modeling concepts of this kind are the main
source of the feeling of ambiguity detected in practical
experiences.

One of the objectives of this work is to review the semantics of i*
relationships to ensure that they will fit the needs of the analysts
in practical case studies, This is because we found several cases
where novel analysts had found it difficult to determine what
situations to use each i* concept must be used in, and to relate
what kind of elements must be associated through a specific
relationship. Therefore, instead of following the criteria of using
the semantics of the modeling constructs according to a specific
method (i*, Tropos or GRL) we propose a specific semantic for
our service-oriented method.

In this Chapter, we propose a specific semantics for association
(member-of), aggregation (part-of), generalization (is-a) and
classification (instance-of) relationships. To provide a formal

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

81

definition of each type of relationship, a multi-property
framework is proposed to provide our particular interpretation of
the i* abstraction mechanisms that overcome the current issues
detected in the empirical evaluation. We have pointed out the
differences of our reviewed version of the relations and the
original syntax and semantics of the i* modeling concepts. It is
important to point out that the analysis of the i* primitive
concepts (goal, softgoal, resource, and plan) is out of the scope of
this thesis.

The i* modeling elements (primitive concepts) and the proposed
relationships (abstraction mechanisms) to associate modeling
elements are presented below.

4.2 The i* primitive concepts

The i* Framework provides four basic modeling concepts: actor,
goal, task and resource.

Actor: An actor represents an autonomous and social entity that
has strategic goals and intentionality. Goal: A goal is a condition
or state of affairs in the world that the stakeholders would like to
achieve. A softgoal represents a goal that has no clear-cut
definition and/or criteria as to whether it is satisfied. Task: A task
specifies a particular way of doing something. Resource: A
resource represents a physical or an informational entity.

We have determined that the current definition of the i* primitive
concepts gives the correct support for the service-oriented method
proposed in this thesis.

4.3 The i* abstraction mechanisms

The conceptual modeling techniques must offer semantic terms
(primitive terms) for modeling an application (such as entity,
activity, agent goal, etc). Moreover, they must offer a way to

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

82

organize information in terms of abstraction mechanisms such as
generalization, aggregation and classification (Mylopoulos 1998).
The abstraction mechanisms allow us to structure primitive term
assemblies to represent a specific semantics of the problem space.

The i* Framework proposes five mechanisms for associating
basic concepts: decomposition links, means-end links,
contribution links, dependency relationships and is-a
relationships. However, to date, there is no analysis to associate
the i* relationships with the standard abstraction mechanisms
(generalization, aggregation and classification). Mappings of this
kind are needed in order to precisely define the characteristics of
each modeling primitive according to standard attributes for
abstraction mechanisms. By doing this, we give the analyst the
knowledge to select the modeling primitive to use to represent a
certain semantics. Therefore, the first objective of this work was
to propose a specific mapping between the i* relationships and
the abstraction mechanisms.

We propose the following mapping schema between the
abstraction mechanisms and the i* modeling primitives;
aggregation is implemented by using decomposition relationships,
the association corresponds with means-end, contribution and
dependency relationships; generalization is supported by the is-a
relationship, finally, classification is implemented by instance-of
link. The rationalities behind this specific mapping are presented
in following sections.

As stated above, a particular interpretation of the i* abstraction
mechanisms is proposed in order to make it comply with our
service-oriented method, and also to provide solutions to the
issues detected in the empirical evaluation of the i* framework.
To do this, an in-depth analysis of each modeling concept has
been made in order to clarify the ambiguities and inconsistencies
detected in the empirical analysis. The strategy for characterizing
each abstraction mechanism is presented in the following section.

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

83

4.4 The strategy to characterize abstraction mechanisms

The semantics of the abstraction mechanisms is influenced by a
set of constraints or properties that restrict the way in which the
elements can be associated. Therefore, the properties define the
rules to associate the primitive terms using a specific abstraction
mechanism.

In our proposal, the properties are used to define a multi-property
framework that precisely characterizes our revisited version of the
i* abstraction mechanisms. In this way, the framework allows us
to define our particular definition of each abstraction mechanism
according with the properties of the framework. The framework
captures the relevant constraints that must be expressive enough
to ensure that the modeling concepts can be properly
distinguished. By giving values to the constraints, we can
establish the semantic of the proposed relationships.

Multi-property approaches have been successfully applied to
define modeling constructs in several application domains. In
OO-Method project, a multidimensional framework has been
proposed to define the semantics of the relationships between
classes (association, aggregation and composition) in object-
oriented conceptual models (Albert et al. 2003). The purpose of
this work was to clearly define the properties that enable the
analyst to differentiate among UML relationships.

The properties defined in our framework explicit state the rules
for using the i* abstraction mechanisms in order to represent a
certain semantics. Therefore, the proposed framework makes it
possible to clearly differentiate the modeling primitives of i* so
that modelers get better guidance on what primitives to use in
different situations.

In order to reach an agreement about the relevant properties for
the modeling concepts, several meetings were held with designers
and users of i* and Tropos. In these meetings, the ambiguities that
were detected in practical case studies were presented and
discussed. We also performed an exhaustive review and analysis

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

84

of the i*/Tropos bibliography. By doing this, it was possible to
reach a consensus about the values for the proposed properties.

In the proposed multi-property framework, the values of the
properties are presented in a table. The columns indicate the
modeling concept being analyzed. The rows of the table show the
values for the proposed properties (Figure 4.1).

….
Dimension n

Dimension 2
Dimension 1

Modeling
concept

….
Dimension n

Dimension 2
Dimension 1

Modeling
concept

Figure 4.1The multi-property framework

One of the key points of this work is the definition of the set of
constraints and properties that help us to represent the rules for
using the i* abstraction mechanisms. In order to avoid the
ambiguity of selecting an arbitrary set of properties, we have
based the selection of the properties on a set of well-known
standard constraints for characterizing abstraction mechanisms.

The definition of the i* abstraction mechanisms is composed by
following elements: a) the standard definition of the relationship,
b) the description of the i* modeling construct that supports a
specific abstraction mechanism, c) the definition of relevant
properties for constructing the framework, d) the definition of the
revisited interpretation of the relationship were values were
assigned to the selected properties, e) the analysis about the
values assigned to each one of the properties, and finally, f) a
brief discussion of the abstraction mechanism being analyzed.

The definition of the abstraction mechanisms (aggregation,
association, generalization and classification) for the i*
framework is presented below.

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

85

4.5 Aggregation (part-of) relationship

Aggregation, which refines association (Albert et al. 2003),
(Saksena, France, Larrondo-Petrie 1999), (Ambler 2005),
associates an aggregate (or whole or composite) to its
components (or parts). Therefore, aggregation, which implies
stronger coupling than association, specifies that instances of one
class contain instances of the other class as parts. The aggregation
has also been called part-of relationship (Whole←Part).

Semantically, part-of relationships can be distinguished by
several constraints or properties based on multiplicity, transitivity,
reflexivity, symmetry, homogeneity, world assumption,
shareability, and existence dependency. Each of these influences
how the “part” components relate to the “whole” component
(Pardedel, Wenny, and David 2004). We have determined that
along with the standard properties for the aggregation, additional
constraints are also needed in our specific work for characterizing
the aggregation in i*. These additional properties are boundary
and operators.

4.5.1 A multi-property framework to characterize
aggregation in i*

Following, we present the definition of the properties that
integrate the framework for the aggregation relationship. The
definition of the properties considers the following elements: i)
the indication whether the property applies to the ends of the
relationship or to the relationship itself. ii) the level at which
properties apply (the instance or class level). iii) the intuitive
meaning of the property. iv) the possible values for the property,
and finally, v) the property formalization (when it is possible to
formalize it).

It is important to point out that the formal definitions of
multiplicity and existence dependency have been adopted from
the works proposed in (Albert 2006).

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

86

a) Multiplicity

Defined over: the ends of the relationship.

Applicability level: the class level.

Meaning: The multiplicity specified over an end E1 of a relation r
determines the minimum (Min) and maximum (Max) values of
objects of the end E1 that can be connected through the
relationship r to an object of the opposite end E2. The value of
the multiplicity must be determined for both sides of the
relationship. The multiplicity defined at the class level restricts
the association of elements at the instance level.

Values: non-negative integers.

Formalization (Albert 2006):

(∀X) A(x) ⇒ smaller_equal_that(size(r(X), MaxA) ∧
greater_equal_than(size(r(X), MinA)
where:
A is a predicate and A(x) is true if x is an object of the class
A.
r(X) takes an object and returns the set of objects
associated with this object through the relationship r.
size(r(X)) returns the number of group elements.

b) Transitivity

Defined over: the relationship

Applicability level: the instance level.

Meaning: A relationship R is transitive if xRy and yRz together
imply xRz

Values: transitive / non-transitive

Formalization:

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

87

Transitive relationship:
∀X, Y, Z, R(X,Y) ∧ R (Y,Z) ⇒ R(X,Z)
Non-transitive relationship:
∀X, Y, Z, R(X,Y) ∧ R (X,Z) ⇒ ¬ R(X,Z)

c) Reflexivity

Defined over: the relationship

Applicability level: the instance level.

Meaning: Reflexivity specifies whether an instance of a modeling
concept can be connected to itself. The value [Reflexive]
indicates that this is possible; [Anti-Reflexive] indicates the
contrary, and the value [Non-reflexive] indicates that it is possible
but not obligatory to associate an element to itself.

Values: reflexive / anti-reflexive / non-reflexive

Formalization:

Reflexive relationship: ∀X ⇒ R(X,X)
Non-reflexive: ∀X ¬ R(X,X)

d) Symmetry

Defined over: the relationship

Applicability level: the instance level.

Meaning: Symmetry specifies whether an instance of a modeling
concept can be connected to another instance of a modeling
concept which is already connected to it. If this is possible, the
value of the property is [Symmetric]. If this is not possible, the
value of the property is [Anti-symmetric].

Values: Symmetric / Anti-symmetric

Formalization:

Symmetric relationship
∀ X,Y R(X,Y) ⇒ R(Y,X)

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

88

Anti-Symmetric relationship
∀ X,Y R(X,Y) ⇒ ¬R(Y,X)

e) Homogeneity

Defined over: the ends of the relationship

Applicability level: the instance level.

Meaning: homogeneity identifies whether the types of component
that compose the relationship R are either homogeneous or
heterogeneous. If the relationship permits to associate elements of
different kinds, then the value of the property is [Heterogeneous].
If the relation only permits to associate elements of the same
nature, then the value of the property is [Homogeneous].

Values: Homogeneous / Heterogeneous

Formalization:

Homogeneous relationship
∀ X,Y R(X,Y) ⇒ type(X) = type(Y)
Heterogeneous relationship
∀ X,Y R(X,Y) ⇒ type(X) ≠ type(Y)

f) World assumption

Defined over: the ends of the relationship

Applicability level: the instance level.

Meaning: The open world assumption is that the presumption that
what is not stated is currently unknown. The closed world
assumption is the presumption that what is not currently known to
be true is false. Therefore, the world assumption identifies
whether the specification of the relationship indicates an
exhaustive set of associated elements. In this way, the relationship
R must be composed of a predetermined set of elements and no
others.

Values: open world assumption / close world assumption

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

89

Formalization:

Closed world assumption:
R({X1,X2,...Xn},Y) ∧ ℓ(∂ (Y)) ⇒ ¬∃Z R(Z,Y)
Open close assumption:
R({X1,X2,...Xn},Y) ∧ ℓ(∂ (X)) ∧ ∃Z R(Z,Y) ⇒ True
where:
ℓ(X) is a predicate that is true when X exists, and it is an
instance of a modeling element
∂(X) takes an object and returns the state of the object in
the next state of the system.

g) Shareability

Defined over: the relationship

Applicability level: the instance level.

Meaning: shareability identifies whether instance(s) of end
components can be shared by more than one instance of the other
end of the relationship. If they can be shared, we call it a
shareable aggregation.

Values: shareable / non-shareable

Formalization:

Shareable relationship:
∀ X,Y R(X,Y) ∧ R(Z,Y) ∧ X ≠ Z ⇒ True
∀ X,Y R(X,Y) ∧ R(X,Z) ∧ Y ≠ Z ⇒ True
Non-shareable relationship
∀ X,Y R(X,Y) ∧ R(Z,Y) ∧ X ≠ Z ⇒ False
∀ X,Y R(X,Y) ∧ R(X,Z) ∧ Y ≠ Z ⇒ False

h) Existence dependency

Defined over: the ends of the relationship

Applicability level: the instance level.

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

90

Meaning: this property identifies whether the components of the
relationship must or must not coexist and adhere to each other. If
the existence of one particular end of the relationship is totally
dependent on the other end of the relationship, we call it an
existence-dependent relationship. This means that removing the
end component of the relationship will also remove all the
associated part components. In the case of a non-existence
dependency relationship, the deletion of the end component only
implies removing the links with the part components.

Values: existence dependent / non-existence dependent

Formalization (Albert 2006):

existence-dependent relationship:
∀ X,Y R(X,Y) ∧ ¬ ℓ(∂ (X)) ⇒ ¬ ℓ (∂ (Y)) ∧ ¬R(ℓ(∂
(X)), ℓ(∂ (Y)))
non-existence-dependent relationship:
∀ X,Y R(X,Y) ∧ ¬ ℓ(∂ (X)) ⇒ ¬R(ℓ(∂ (X)), ℓ(∂ (Y)))
where:
ℓ(X) is a predicate that is true when X exists, and it is an
instance of a modeling element
∂(X) takes an object and returns the state of the object in
the next state of the system.

i) Boundary

Defined over: the relationship

Applicability level: the class and the instance level.

Meaning: Boundary specifies if the modeling construct can be
used only in the actor’s limits. If this is true, then the value of this
dimension is [Internal]. If the modeling construct permits
associate elements outside the actor’s limits (the link crossing the
actor boundaries), then the value of the construct is [External]. It
is important to point out that, in this property, the reference point

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

91

to indicate if the modeling construct is internal or external is the
actor’s boundary.

Values: internal / external

j) Operators

Defined over: the relationship

Applicability level: the class level.

Meaning: This dimension specifies the type of operator or quality
metric supported by the modeling relationships.

Values: AND, OR, XOR, +, ++,-,--

Once the properties to characterize aggregation have been
defined, the decomposition link, which is the i* modeling concept
that implements aggregation, is defined based on the proposed
framework.

4.5.2 Decomposition links as an aggregation mechanism
We have determined that the i* decomposition link can properly
fit the semantics of the aggregation relationship. The
decomposition (task decomposition in i* and AND/OR
decomposition in Tropos) allows for a decomposition of a root
element into a set of leaf elements, where the elements of the
compositions constitute an exhaustive set of elements that permit
a root element to be achieved. In this context, the component
elements are the parts that constitute the composite root basic
concept.

The decomposition relationship implies full satisfaction. This
indicates that, in the case of the AND decomposition, the
satisfaction of the part components implies full satisfaction of the
root element. In OR decomposition, the satisfaction of (at least)
one of the possible alternatives, represented as part components,
implies full satisfaction of the root elements.

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

92

In our proposal, the aggregation must be applied to the following
sort of elements: goal, resource, plan and actor. In the case of the
original definition of the i* decomposition, it can only be applied
to goals and tasks. We analyze the decomposition as an abstract
modeling relationship and also the AND/OR decomposition as a
specialized part-of relationship. The decomposition link can be
denoted by: partof(X,Y), where X represents the part component
and Y represents the whole component. Figure 4.2 presents the
decomposition notation.

composite

composed composed

composite

composed composed

And decomposition Or decomposition
Figure 4.2The notation for decomposition link

4.5.3 The characterization of the decomposition based on
the proposed framework for the aggregation

Once the properties to characterize aggregation have been
introduced, the semantics of the i* decomposition (represented as
partof in the clauses) is defined by giving values to the
framework properties. The first rows represent the standard
aggregation definition.

∀ X,Y partof(X,Z) ∧ isa(Y,Z) ⇒ part of(X,Y)
∀ X,Y partof(X,Y) ⇔ wholeof(Y,X)

Standard
formalization
of aggregation partof(X,Y) ∧ partof(Z,X) ∧ Y ≠ Z ⇒ True
Sort set {goal, resource, plan, actor}
Multiplicity (1,*), (1,*):

A(whole)⇒smaller_equal_that(size(r(whole),1)
∧ greater_equal_that(size(r(whole), *)
A(part)⇒smaller_equal_that(size(r(part),1) ∧
greater_equal_that(size(r(part), *)

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

93

Transitivity Transitive:
∀X,Y,Z partof(X,Y) ∧ partof(Y,Z) ⇒
partof(Z,X)

Reflexivity Non-reflexive:
∀X ∧ partof(X,X) ⇒False

Symmetry Anti-symmetric:
∀ X,Y partof(X,Y) ⇒ ¬partof(Y,X)

Homogeneity Homogeneous:
partof(X,Y) ⇒ type(X) = type(Y)

World
assumption

Closed world assumption:
partof({D1,D2,...Dn},C) ⇒ ¬∃Z part of(Z,C)

Shareability Shareable:
partof(X,Y) ∧ partof (Z,Y) ∧ X ≠ Z ⇒ True
wholeof(X,Y) ∧wholeof(X,Z) ∧ Y ≠ Z ⇒True

Existence
dependency

Non-existence dependency :
∀ X,Y R(X,Y) ∧ ¬ ℓ(∂ (X)) ⇒ ¬R(ℓ(∂ (X)),
ℓ(∂ (Y)))

Boundary Internal
Operators AND, OR

4.5.3.1 The partAND relationship:
The partAND relationship is a specialization of the partof
abstraction mechanism. This relationship allows us to decompose
a root goal into a set of subgoals using an AND operator.

isa(partAND, partof)
Ins(X,C) ∧ partAND({D1,…Dn}, C) ⇒ (partof(X,X1) ∧
ins(X1,D1)) ∧ (partof(X,X2) ∧ ins(X2,D2)) ∧,… (part
of(X,Xn) ∧ ins(Xn,Dn))

4.5.3.2 The partOR relationship:
The partOR relationship is a specialization of the part/of
abstraction mechanism. This relationship allows us to define a set
of alternative goals needed to satisfy a root goal.

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

94

isa(partOR, part of)
Ins(X,C) ∧ partOR({D1,…Dn}, C) ⇒ (partof(X,X1) ∧
ins(X1,D1)) ∨ (partof(X,X2) ∧ ins(X2,D2)) ∨,…
(partof(X,Xn) ∧ ins(Xn,Dn))

Following, we present the analysis of the decomposition based on
the values of the multi-property framework. In this analysis, we
present the semantic differences between the original i* definition
and the revised concept. It is important to point out that the
original i* definition has been taken from Yu´s thesis (Yu 1995).

a) Multiplicity: The value for the Multiplicity constraint for the
original i* concept is defined as follows:

decomposition (i*)
(Root- leafs)

(1:N, 1:1)
This value indicates that a root node can be associated with 1 or
more leaf nodes; it also indicates that a leaf node can only be
linked with a root node. In this context, the standard definition of
the aggregation relationship does not imply a specific value for
the multiplicity constraint, in contrast to the composition
relationship (which refines the aggregation) in which the needed
value of the multiplicity value must be (1, 1, *, *) to indicate the
existence dependency of the part to the whole. Therefore, there
are no restrictions for the value of multiplicity for the aggregation
mechanism. However, we found it very useful to represent the
situations where the same leaf node can part from more than one
root node (for example: a task that is used to execute various
high-level tasks). This situation can be found in several papers on
business modeling (Aart, Wielinga and Schreiber 2004), (Van
Welie, Van der Veer, and Eliëns 1998), (Decker, Erdman and
Studer 1996).

The value of the Multiplicity constraint for our revised version of
the decomposition links is defined as follows:

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

95

decomposition (revisited concept)
(Root- leafs)
(1..N, 1..N)

As indicated above, the multiplicity property applies at the
instance level. In the example, an instance of a root goal can be
associated with several goal instances, and a leaf goal can be
associated with more than one root goal (Figure 4.3).

Multiplicity:
(1..N, 1..N)

composite composite

composed composed composed

Figure 4.3 The multiplicity property for the decomposition link.

b) Transitivity: The part-of relationship is a transitive relationship
(Terry 1998). Therefore, we can establish that if a modeling
element C is part of another element B, and if this modeling
element is also part of element A, then C is also part of element
A.

There is no information about this topic in the original i*
definition of the decomposition relationship.

In the following example (Figure 4.4), the decomposition of goal
A into goal C, and the later decomposition of this goal into goal E
implies that goal E is also a decomposition of goal A. Transitivity
applies to the instance level.

B C

A

D E
Transitive relationship

Figure 4.4 The transitivity property for the decomposition link.

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

96

c) Reflexivity: The part-of relationship is a non-reflexive
relationship (Albert 2006). Therefore, it is not allowed to define a
decomposition link that connects an intentional element to itself.
This premise is only true at the instance level; in the definition of
the meta-class level it is possible to connect classes of intentional
elements to themselves in order to indicate, for example, that a
class goal must be decomposed only into other goals.

This topic has not been analyzed before in the i* bibliography.

Figure 4.5 indicates that it is not possible to define a
decomposition in which the whole and the part are the same
instance of a goal class.

Non-reflexive relationship

composite

Figure 4.5 The reflexivity property for the decomposition link.

d) Symmetry: The part-of relationship is a non-symmetric
relationship (Albert 2006). Therefore, it is not possible to create a
decomposition relationship between the intentional elements A
and B, where B is already connected to A by a decomposition
relationship. This assumption is true when applied to the instance
level. In the class level, it is possible to define a symmetric
relationship that indicates that a specific class type must be part
and whole of the decomposition.

In Figure 4.6, we show that an instance of the task class cannot be
part and whole at the same time for the same decomposition
relationship.

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

97

Non-symmetric relationship

composite

composed

Figure 4.6 The symmetry property for the decomposition link.

e) Homogeneity: The And/Or Decomposition analysis is the
appropriate modeling concept to be used to represent the
decomposition of a high-level component in more concrete and
specific sub-components (this is done in order to simplify the
complexity of the semantics to be represented). Following, we
present the values of the homogeneity in the original i* definition
of this modeling construct:

decomposition (i*)
Non-homogeneous

(composed of – composite to)
Task – (Task, Goal, Resource, Softgoal)

In the original definition of this concept, the root of the
decomposition is always a task. This is the reason why the
original name of this construct is Task-Decomposition. However,
we have detected that, in practice, this specification avoids the
specification of goal reduction, which is one of the basic analyses
to determine how the strategic objectives of an enterprise are
refined into more specific sub-goals and tasks. Therefore, we
propose using the decomposition links to associate, not only
tasks, but also goals, resources and actors. In this way it is
possible, for example, to make an explicit reduction of the
concept of high-level goal until the level of operational goals is
reached. While it is true that at a certain point goals need to be
operazionalized through the definition of tasks, it is also true that
in some cases, the definition of the goals elicited by the analysts
do not necessarily correspond with goals from low levels (those
susceptible to be operationalized), instead it corresponds to

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

98

abstract objectives that need to be refined into low-level goals.
We propose the use of the decomposition link to implement the
concept of refinement.

In order to make a consistent use of this concept, we have
concluded that this kind of relationship can be used to decompose
a modeling construct into subcomponents of the same nature
(actor-actor, goal-goal, task-task, and softgoal-softgoal). In this
way, it is not possible to represent decompositions that associate
different kinds of primitive concepts. The main idea is to define a
polymorphic modeling construct that could be applied for all i*
primitive concepts. The current decomposition link represents a
mono-morphic representation in the sense that it can only be
applied to decomposition with a task as root node. The proposed
modification to the decomposition link (which is based on
ontological foundations of aggregation) represents a significant
improvement over the original i* definition.

In the case of actor decomposition, this modeling construct is
used to define generic actors that are refined until the level of
specific actors is reached. The decomposition is used to define the
structure of an organization by defining the subcomponents of an
actor. In this particular case of actor decomposition, the OR-
decomposition in the class level disappears at the instance level,
in which a specific aggregation instance must be represented in
the model.

In the case of task analysis, the decomposition is useful to
represent the set of low-level activities that are needed to execute
a high-level task. In the example presented in Figure 4.7, the
decomposition link is used to associate goals, which indicate the

decomposition (revisited concept)
Homogeneous
(composed of– composite to)
Goal – Goal
Plan – Plan
Softgoal – Softgoal
Actor – Actor

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

99

refinement of an abstract goal into low level subgoals that refine
the root node.

Homogeneous relationship
composed composed

composite

Figure 4.7 The homogeneity property for the decomposition link.

It is true that proposed semantics for the decomposition links is
more restrictive that original definition, however, our intention
with this semantic is the attempt to simplify the use of the
modeling constructs for the specific context of our service-
oriented method. In some other context, the flexibility of the
original i* notation is required.

f) World assumption: In order to ensure the complete definition of
part components that permit the fulfillment of the root node, the
specification of decomposition must imply the definition of an
exhaustive set of part components during analysis time. For this
reason, it is never possible to incorporate new instances of part
element that fulfill the root node. Therefore, the decomposition
represents a closed world assumption relationship in the sense
that only those part components that have been represented
permit the satisfaction of the root goal. Those that are not
currently specified during analysis time are false.

Again, there is no information about this topic in the original i*
definitions.

Figure 4.8, which identifies the world assumption property of the
decomposition relationship, indicates that it is necessary to define
an exhaustive set of leaf goal nodes “a priori” in order to
decompose a root goal. Therefore, when a certain decomposition
has been created in a time t, it is not possible to add new instances
of part components in a time t´.

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

100

Close world assumption
relationship

Time t Time t´

B C

A A

B C D
Close world assumption

relationship

Time t Time t´

B C

A A

B C D

Figure 4.8 The close world assumption property for the decomposition link.

g) Existence-dependency: As commented above, the definition of
aggregation does not imply a specific value for the existence
dependency attribute. In this thesis, the And/Or Decomposition
represents a non-existence dependency relationship, which
indicates that the existence of the instances of the part
components is not subordinated to the existence of the instances
of the root node. One direct consequence of the existence
dependency is the delete propagation schema. In the And/Or
Decomposition, if an instance of a root node is eliminated, only
the links among the root node and the leaf nodes of the
relationship must be deleted.

It was not possible to find information about this topic in the i*
bibliography.

The example presented in Figure 4. 9, which represents the
existence dependent property of the decomposition relationship,
indicates that the existence of the leaf nodes is not subordinated to
the root node, and therefore, the deletion of the root node A
implies the deletion of the links that are part of the relationship.

Existent dependent relationship

Time t

B C

A
Time t´

B C

A

Existent dependent relationship

Time t

B C

A
Time t´

B C

A

Figure 4. 9 The existence dependency property for the decomposition link.

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

101

i) Boundary: When the decomposition mechanism is used to
associate goals, tasks and resources, then it must only be used
within the actor’s limits. In this case, there are no changes
according to the original definition of i*. In the cases where the
decomposition is used to associate organizational actors, then the
value of the boundary property is external.

The example (Figure 4.10) shows the internal boundary of the
decomposition for associate goals, tasks, and resources, and also
the external limit of the decomposition for representing actors.

Actor

Internal relationship

Actor

Actor Actor

External relationship

composed composed

composite

is-a

Figure 4.10 The boundary property for the decomposition link.

j) Operators: The original specification of this modeling construct
only considers the use of AND logical operator. However,
practical experiences have demonstrated (Sannicolo, Perini and
Giunchiglia 2001) that it is also necessary to represent different
alternatives for satisfying a parent goal or task. Thus, we have
included the OR logical operator to represent the alternatives.
This is the reason why the name of this modeling construct has
been changed to And/Or Decomposition. Figure 4.2 presents the
syntax for the AND/OR decomposition links.

4.5.4 Summary of decomposition as an aggregation
relationship

The decomposition relationship, which implements the part-of
abstraction mechanism, should be used in the following scenarios:
a) there is evidence that the low-level components completely
satisfy the root node, b) the elements involved in the

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

102

decomposition are elements of the same type, and c) it is possible
to define “a priori” the exhaustive set of parts that compose the
whole (closed world assumption).

4.6 The association (member-of) relationships

The association models the existence of some kind of logical
relationship between two entities. As stated above, the
aggregation, which refines the association, implies stronger
coupling. Therefore, in the case of the associations, their
specification will be less restricted than the definition of the
decomposition, which implements the aggregation mechanism.

In the association, as well as in the aggregation, it is possible to
specify the role of the entities involved in order to clarify the
structure (Cossentino and Sabatucci 2003). The i* framework
provides several mechanisms to associate primitive concepts in
less restricted links than aggregation: means-end links,
contribution links and dependency relationships. Therefore, these
primitive concepts were categorized as association relationships.

4.6.1 A multi-property framework for characterizing the
association relationships in i*

The association relationships can be distinguished by using the
same properties used to characterize the aggregation
relationships: multiplicity, transitivity, reflexivity, symmetry,
homogeneity, world assumption, existence dependency, boundary
and operators (Elsmasri and Navathe 2004). In contrast to
aggregation which restricts the values of transitivity, reflexivity
and symmetry (transitive, not reflexive and not symmetric), the
standard definition of association does not imply specific values
for the defined properties (Albert 2006). This is because the
association indicates a weaker coupling between the associated
elements. For this reason, specific values for the different kinds of
associations in i* have been given in order to distinguish them.

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

103

We also consider the satisfiability as a relevant property to
characterize the association relationships on i*.

The definition of the properties for characterizing the aggregation
relationship has been detailed in section 4.5.1. The definition of
the satisfactibility is the following:

a) Satisfiability:

Defined over: the ends of the relationship

Meaning: This property specifies the level of fulfillment reached
by a goal through the fulfillment of its associated subgoals.

Values: full satisfaction / partial satisfaction

It is important to point out that the values for the satisfiability
property (full satisfaction / partial satisfaction) imply the intention
of satisfaction more than satisfaction itself. In this context, full
satisfaction implies full evidence that a goal would be satisfied. In
the same way, partial satisfaction implies that there is a not
complete evidence to indicate that the root goal will be satisfied.

Following, each relationship that implements the association in i*
is presented according to the same schema used to define the
aggregation abstraction mechanism.

4.6.2 Means-End links as an association mechanism
This means-end link proceeds by refining a goal into subgoals in
order to identify plans, resources and softgoals (the means) that
provide ways to achieve the goal (the end). Therefore, the means-
end represents the various alternatives that exist to satisfy a root
element.

The means-end relationship implies full satisfaction. This
indicates that each alternative solution represented by the means
element implies the full satisfaction of the end element.

Usually, in the i* approach, the modeling of the internal behavior
of the organizational actors starts with the definition of a set of

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

104

goals that the actor needs to fulfill. Then, once these goals have
been detected, the means for achieving these goals must be
elicited following a top-down strategy. However, it is also
possible for the elicitation activities to start with the definition of
low-level tasks of the organizational actors. In this case, the next
activity would be the determination of high-level goals (ends) that
give support to low-level goals.

The means-end link can be denoted by: me(X,Y), where X
represents the end element and Y represents the means element.
Figure 4.11 present the notation of this modeling concept.

end

means means
Figure 4.11 The means-end notation.

4.6.3 The characterization of the means-end link based
on the proposed framework

The semantic of the i* means-end relationship is defined by
giving values to each one of the properties of the framework.

∀ X,Y me(X,Z) ⋀ isa(Y,Z) ⇒ me(X,Y) means-end
definition ∀ X,Y me(X,Y) ⇔ ¬wholeof(Y,X) *
Sort set {goal, resource, plan}
Multiplicity (1,*), (1,*):

A(end)⇒smaller_equal_that(size(r(end),1) ∧
greater_equal_that(size(r(end), *)
A(means)⇒smaller_equal_that(size(r(means),1)
∧ greater_equal_that(size(r(means), *)

Transitivity Transitive
∀ X,Y,Z me(X,Y) ⋀ me(X,Z) ⇒ me(Z,Y)

Reflexivity Non-reflexive
∀ X ¬ me(X,X)

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

105

Symmetry Anti-symmetric:
∀ X,Y me(X,Y) ∧ Y ≠ X ⇒ ¬me(Y,X)

Homogeneity Non-homogeneous:
me(X,Y) ∧ type(X) = type(Y) ⇒ False

World
assumption

Open world assumption:
me({D1,D2,...Dn},C) ∧ ∃Z me(Z,C) ⇒ True

Shareability

Shareable:
me(X,Y) ∧ me (Z,Y) ∧ X ≠ Z ⇒ True

Existence
dependency

Non-existence dependency :
∀ X,Y meR(X,Y) ∧ ¬ ℓ(∂ (X)) ⇒ ¬R(ℓ(∂ (X)),
ℓ(∂ (Y)))

Boundary Internal
Operators OR
Satisfiability me(X,Y)∧ins(C, X)∧ins(D, X)∧FS(C) ⇒ FS(D)
Once the values for the relevant properties have been established,
the following step is the analysis of the means-end relationship
based on the assigned values.

a) Multiplicity: The original means-end concept is defined in the
original i* proposal as follows:

Means-end (i*)
(end - means)

(1:N, 1:1)
This cardinality indicates that an end can be associated with 1 or
more means, and it also indicates that a means can only be related
to a root node. However, in practice, we have found several cases
where the same means helps to achieve more than one end.
Therefore, the proposed value for the Multiplicity property is the
following:

means-end (revisited concept)
(end - means)

(1..N, 1..N)
Figure 4.12 presents the case where an instance of an
organizational task is used to satisfy several instances of high-
level goals of the enterprise.

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

106

Multiplicity:
(1..N, 1..N)

end end

means means means

Figure 4.12 The multiplicity property for the means-end link.

b) Transitivity: We propose the means-end as a transitive
relationship. Therefore, we can establish that if a goal is a means
for satisfying a softgoal, the set of plans that implements the goal
are also means for fulfilling the softgoal root.

This topic has been not analyzed before in the i* bibliography.

Figure 4.13 represents an example of a transitive means-end
relationship.

Transitive relationship

means

means means

end/means

end

Figure 4.13 The transitivity property for the means-end link.

c) Reflexivity: It is not possible to define a means-end relationship
that connects an instance of an intentional element to itself. This
is because this relationship would indicate that an element can be
means and end at the same time. For this reason, the relation is
not reflexive. The value of this constraint comply with the
original i* definition. Figure 4.14 represents the means-end as a
non-reflexive relationship.

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

107

Non-reflexive relationship

end

Figure 4.14. The reflexivity property for the means-end link.

d) Symmetry: It is not possible to create a means-ends relationship
between the intentional elements A and B, where B is already
connected to A by another means-end relationship. Therefore, this
kind of relationship is not symmetric (Figure 4.15).

The value of this constraint complies with the original i*
definition.

Non-symmetric relationship

end

means

Figure 4.15 The symmetry property for the means-end link.

e) Homogeneity: Following, we present the values of the
homogeneity in the original i* definition of the means-end links:

Means-end (i*)
Non-Homogeneous

(end - means)
Task, Goal, Resource, Softgoal – Task

Goal – Goal
Softgoal – Softgoal

The i* philosophy that gives support to these values is the
following: the Means of the relationship represents how to fulfill
the end (which represents what to do). In this way, the natural
way for expressing how to fulfill an activity in i* is using the
concept of task. This is why, in most cases tasks are used to
represent the means of the relationship in i* models. However,

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

108

sometimes, in practice, more expressiveness is needed in this
modeling construct in order to represent, for example, the set of
alternatives goals that satisfy a softgoal.

In order to reduce the possible semantic overlapping between the
means-end links and the decomposition links, we propose
restricting the kind of elements involved in the relationships. We
propose the means-end relationship to be a polymorphic
relationship that is used to associate only elements of different
types. Therefore, the means-end analysis can be the appropriate
modeling concept to represent the refinement of a goal in a set of
alternative tasks that allows us to satisfy it.

In our proposed language, we argue that the relations Task-Task,
Goal-Goal, and Softgoal-Softgoal need to be modeled using
decomposition links instead of a means-end relationship. This is
because our decomposition applies to elements of the same type,
which exactly correspond to the above-mentioned cases. We have
eliminated the softgoal-task relationship because in our method it
is not possible to define tasks that fully satisfy goals that cannot
be precisely defined (softgoal). We have also eliminated the
resource-task relationship because the focus in i* is rarely placed
on indicating the generation of resources as a result of
organizational tasks.

The Homogeneity property for the revised concept is defined as
follows:

means-end (Revisited Concept)
Non-Homogeneous

(end - means)
Goal –Plan

Softgoal – Goal
Figure 4.16 presents examples of the use of means-links for
associating elements of different types.

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

109

Non-homogeneous relationship

end end

means means means means

Figure 4.16 The homogeneity property for the means-end link.

 f) World Assumption: The Means-End relationship implies and
open world assumption. This means that there are no mandatory
restrictions to specify the exhaustive set of end nodes that permit
the root node to be fulfilled. Therefore, means could exist that are
not currently specified in the means-end representation (nodes
currently unknown) and that could also satisfy the end node. As a
result of this, it is possible to incorporate, at any given time, new
instances of means that permit to fulfill the End. One of the
reasons for assigning the open world assumption to the means-
end relationship is that the focus of the means-end is descriptive
rather than prescriptive. The idea is to describe the different
alternatives to satisfy an end without the restrictions for doing an
exhaustive list of means.

It was not possible to find information about this topic in the i*
bibliography.

Figure 4.17 represents the case where new means are added in
execution time in order to satisfy the root goal

Exclusive relationship

Time t Time t´

B C

A A

B C D

Figure 4.17 The open world assumption property for the means-end link.

g) Existence-dependency: The means-end relationship represents
a non-existence dependency relationship, which indicates that the

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

110

existence of the instances of the means is not subordinated to the
existence of the instances of the end node. This is because there is
not a strong coupling between end and means. One direct
consequence of the existence dependency is the delete
propagation schema. In the means-ends, if an instance of a root
node is eliminated, only the links of the relationship must be
deleted (Figure 4.18).

There is no information about this topic in the original i*
definition of the means-end relationship.

Non-existence
dependency

Time t1 Time t1

means meansmeans means

Figure 4.18 The existence dependency property for the means-end link.

h) Boundary: The means-end links can only be used within the
actor’s limits to associate goals, tasks and softgoals. The value of
this constraint complies with the original i* definition.

Figure 4.19 shows the internal boundary of the means-end
relationship.

Actor

Internal relationship

end

means means

Figure 4.19 The boundary property for the means-end link.

j) Operators: The specification of this modeling construct only
considers the use of OR logical operator in order to specify the
various alternatives that could exist to satisfy the root element.

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

111

j) Satisfiability:

The means-end relationship implies fully satisfaction. This
indicates that each alternative solution represented by the means
components implies the fully satisfaction of the end component.

4.6.4 Summary of means-end as an association relation
We can conclude that the means-end relationship should be used
when there is enough evidence to assure that the alternative
subcomponents (means) fully satisfy the root component (end).
The means-end links could be considered to be similar to the OR-
Decomposition in the sense that both represent alternative
solutions, and also in both cases, the satisfaction of the leaf
components implies the full satisfaction of the root node. The
difference between the means-end and the or-decomposition is
that the former must be used to relate elements of different kinds
and the or-decomposition must be used to associate elements of
the same kind. Therefore, this kind of relationship is the
appropriate selection to detail the set of plans that allow a target
goal to be fulfilled, and also to represent the organizational goals
that permit a quality attribute (softgoal) to be satisfied.

4.6.5 Contribution links as an association mechanism
The contribution link is a special association relationship that
applies only with goals (hard goals and softgoal) and plans.
Contribution analysis allows the designer to point out goals,
softgoals and plans that can contribute positively or negatively
towards reaching a specific goal. The contribution links must be
applied following the viewpoint of a specific actor that wants to
fulfill a specific objective.

The contribution link permits the analyst to represent partial and
full satisfaction relationships among instances of modeling
concepts. Specifically, the contribution link is the only abstraction
mechanism to associate elements through partial satisfaction. The
means-end and And/Or decomposition imply full satisfaction

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

112

relationships. This modeling concept cannot be used to associate
constructs of actor type.

The following table presents the different qualitative metrics for
the contribution links.

+ positive contribution: partial satisfaction
++ positive contribution: full satisfaction
- negative contribution: partial denial
-- negative contribution: full deny

A contribution can be annotated with a qualitative metric, denoted
by +,++,-,--. In particular, if goal g1 contributes positively to
goal g2 with metric ++, then if g1 is satisfied, so is g2. If goal g1
contributes positively to goal g2 with metric +, then g2 is partially
satisfied if g1 is satisfied. The labels - and – represent the partial
and sufficient negative contribution towards the fulfillment of a
goal. The contribution link can be denoted by: cont(X,Y), where
X represents the element “contributed by” and Y represents the
element “contributed to”.

Figure 4.20 presents the notation of this modeling concept.

++--
contribute

contributed contributed
Figure 4.20 The contribution link notation.

4.6.6 The characterization of the contributions link
based on the proposed framework

The semantics of positive (+) contribution links is defined giving
values to each one of the properties of the framework.

contribution
definition

∀ X,Y +cont(X,Z) ∧ isa(Y,Z) ⇒ +cont(X,Y)

Sort set {goal, resource, plan}

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

113

Multiplicity (0,*), (0,*):
A(contribute)
⇒smaller_equal_that(size(r(contributeto),0) ∧
greater_equal_that(size(r(contributeto), *)
A(contributed)
⇒smaller_equal_that(size(r(contributedby),0) ∧
greater_equal_that(size(r(contributedby), *)

Transitivity Transitive
∀ X,Y,Z +cont(X,Y) ∧ +cont(X,Z) ⇒
+cont(Z,Y)

Reflexivity Non-reflexive
∀ X ¬ +cont(X,X)

Symmetry Symmetric:
∀ X,Y+cont(X,Y)∧+cont(Y,X) ∧ Y ≠ X ⇒ True

Homogeneity Non-homogeneous:
+cont (X,Y) ∧ type(X)=goal ⇒ type(Y)=goal ∨
type(Y)=plan ∨ type(Y)=softgoal
+cont (X,Y) ∧ type(X)=plan ⇒ type(Y)=goal ∨
type(X)=plan∨ type(Y)=softgoal
+cont(X,Y) ∧ type(X)=softgoal ⇒ type(Y)=goal
∨ type(Y)=softgoal

World
assumption

Open world assumption:
+cont({D1,D2,...Dn},C) ∧ ∃Z+cont(Z,C) ⇒
True

Shareability Shareable:
+cont(X,Y) ∧ +cont(Z,Y) ∧ X ≠ Z ⇒ True

Existence
dependency

Non-existence dependency :
∀ X,Y +cont(X,Y) ∧ ¬ ℓ(∂ (X)) ⇒ ¬R(ℓ(∂
(X)), ℓ(∂ (Y)))

Boundary Internal / External
Operators + positive contribution: partial satisfaction
Satisfiability

+cont(X,Y): FS(X) ⇒ PS(Y)
 PS(X) ⇒ PS(Y)

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

114

The semantics of positive (++) contribution links is defined
giving values to each one of the properties of the framework.

contribution
definition

∀ X,Y ++cont(X,Z) ∧ isa(Y,Z) ⇒ +cont(X,Y)

Sort set {goal, resource, plan}
Multiplicity (0,*), (0,*):

A(contributedto)
⇒smaller_equal_that(size(r(contributedto),0) ∧
greater_equal_that(size(r(contributedto), *)
A(contributedby)
⇒smaller_equal_that(size(r(contributedby),0) ∧
greater_equal_that(size(r(contributedby), *)

Transitivity Transitive
∀ X,Y,Z++cont(X,Y)∧++cont(X,Z) ⇒
++cont(Z,Y)

Reflexivity Non-reflexive
∀ X ¬ ++cont(X,X)

Symmetry Symmetric:
∀ X,Y ++cont(X,Y) ∧ ++cont(Y,X) ∧ Y ≠ X ⇒
True

Homogeneity Non-homogeneous:
++cont (X,Y) ∧ type(X)=goal ⇒ type(Y)=goal
∨ type(Y)=plan ∨ type(Y)=softgoal
++cont (X,Y) ∧ type(X)=plan ⇒ type(Y)=goal
∨ type(X)=plan∨ type(Y)=softgoal
++cont(X,Y) ∧ type(X)=softgoal ⇒
type(Y)=goal ∨ type(Y)=softgoal

World
assumption

Open world assumption:
++cont({D1,D2,...Dn},C) ∧ ∃Z++cont(Z,C) ⇒
True

Shareability Shareable:
++cont(X,Y) ∧ ++cont(Z,Y) ∧ X ≠ Z ⇒ True

Existence
dependency

Non-existence dependency :
∀ X,Y ++cont(X,Y) ∧ ¬ ℓ(∂ (X)) ⇒ ¬R(ℓ(∂
(X)), ℓ(∂ (Y)))

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

115

Boundary Internal / External
Operators ++ positive contribution: full satisfaction
Satisfiability

++cont(X,Y): FS(X) ⇒ FS(Y)
 PS(X) ⇒ PS(Y)

The same value schema must be followed for defining the
negative (-,--) contributions.

Once the values for the relevant properties have been established,
the following step is the analysis of the contribution relationship
based on these assigned values.

a) Multiplicity: The value for the Multiplicity in the original i*
definition is defined as follows:

contribution (i*)
Contributed by – contributed to

(0..*, 0..*)
We consider that this definition allows us to correctly represent
the cases we found in practice. This value of multiplicity indicates
that it is possible for some instances of the goals or task to not
contribute with other instances of modeling constructs, and it also
indicates that it is possible for a goal to not have influence on the
satisfaction of any other instances of modeling elements.

Figure 4.21 shows a cardinality (1..*,1..*) for a specific
contribution relationship.

++ + +++
--

Multiplicity:
(1..N, 1..N)

contribute contribute

contributed contributed contributed contributed

Figure 4.21 The multiplicity property for the contribution link.

b) Transitivity: We propose the contribution as a transitive
relationship. Therefore, we can establish that if goal E contributes

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

116

positively to goal C, then the achievement of goal A that is
contributed by C is also influenced indirectly by goal E. Figure
4.22 presents an example of the contribution as a transitive
relationship.

Transitive relationship

A

B C

D E

+ ++

++++

Figure 4.22 The transitivity property for the contribution link

c) Reflexivity: It is not allowed to define reflexive contribution
relationships. Therefore, it is not possible to define a contribution
relationship that connects an intentional element to itself, because
this specification would indicate that the satisfaction of a goal has
influence on its own satisfaction. There is no information about
this topic in the i* bibliography. Figure 4.23 shows an example of
the non-reflexive contribution relationship.

Non-reflexive relationship

--

contribute

Figure 4.23 The reflexivity property for the contribution link

d) Symmetry: It is allowed to define symmetric contribution
relationships. The reason that supports this justification is the
existence, in practice, of circular-arc graphs among goals, where
the satisfaction of goals influences the achievement of goals that
already influence the former (Figure 4.24).

This topic has been not analyzed before in the i* bibliography.

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

117

Symmetric relationship

Actor A

B C

+ ++

++

C

++++
++ +

D
D E

Figure 4.24 The symmetry property for the contribution link

e) Homogeneity: Following, we present the values of
homogeneity relationship property in the original i* definition of
this modeling construct:

contribution (i*)
Not Homogeneous

 (contributed by – contributed to)
 Softgoal – Task, Goal, Resource, Softgoal

In i*, the softgoals are contributed by tasks, goals, resources and
softgoals. The philosophy that supports these values is the
following: softgoals are goals that cannot be precisely defined;
therefore, only contribution analysis makes it possible to define
how the instances of other modeling constructs influence the
fulfillment of the softgoal. However, we consider that, in practice,
not only softgoals are influenced by the environment. It is
possible to find examples where tasks or goals are influenced by
other instances of modeling constructs. For example, the use of a
new encryption system in a bank has direct influence on the
secure access to the data customers (Figure 4.26). In this case we
have the case where a business plan influences a business goal.

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

118

Use a new
encryption system

Bank internet
Customer

+
…

Improve
security

Secure
access

……
Use a new

encryption system

Bank internet
Customer

+
…

Improve
security

Secure
access

……

Figure 4.25 The boundary property for the contribution link

An analysis of real cases was performed in order to find the
different alternatives that could be represented with the And/Or
Decomposition. We have determined that plans, goals and
softgoals could be influenced by other plans, goals and softgoals.
The homogeneity dimension for the revised concept of the
contribution was defined as follows:

contribution (revisited concept)
Non-homogeneous

(contributed by – contributed to)
Plan – (Plan, Goal, Softgoal)
Goal - (Plan, Goal, Softgoal)
Softgoal – (Goal, Softgoal)

The contribution link is the only abstraction mechanism that can
be used to associate instances of elements of different and same
types. The Figure 4.26 represents some examples of the use of
contribution links.

Non-homogeneous relationship

++ - ++--

contributed contributed contributed contributed

contribute contribute

Figure 4.26 The homogeneity property for the contribution link

f) World assumption: The contribution link is an open world
assumption relationship mechanism. This indicates that it is
possible to determine, in execution time, new contributions of the

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

119

existent goals with other instances of elements in the
organizational model. In fact, the contributions represented in the
model depend on the particular aspect being analyzed in the
model. Therefore, the contributions for representing security
aspects could be different from those considered for representing
contributions of performance aspects.

There is no information about this topic in the original i*
definition of the contribution relationship.

g) Existence-dependency: The contribution link represents a non-
existence dependency relationship, which indicates that the
existence of the instances of the contributed-to element is not
subordinated to the existence of the instances of the contributed-
by element. The reason to do this is that there are no hierarchical
relationships among the element participants in the contribution
relationship. Therefore, it is only possible to delete the
relationship that associates the delete node with the contributed
node (Figure 4.27). This is because, typically, the remaining
elements can continue contributing with other elements.

It was not possible to find information about this topic in the i*
bibliography.

Time t Time t´

Non-existence dependency

++ - ++ -

contributed contributed contributed contributed

Figure 4.27 The existence dependency property for the contribution link

h) Boundary: In the revised version of this modeling construct,
we consider that this modeling concept can be used to represent
internal and external relationships. Therefore, this concept allows
us to represent how an instance of a modeling construct
contributes to the performance of an instance of a modeling

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

120

element of another actor. In the original definition of i*, the
contribution analysis is considered as an internal relationship.
However, we consider that activities executed by an actor in the
enterprise environment may influence the performance of actions
of other actors in the enterprise. Figure 4.25 shows an example of
this situation.

j) Operators: The contribution link concept uses the qualitative
metrics ++,+,-,-- to represent the rate of contribution between two
instances of modeling elements.

j) Satisfiability:

As stated above, the contribution link could imply full or partial
satisfaction depending on the qualitative metric. In the case of a
[++] contribution between the constructs A and B, where B
contributes to A, this indicates that the satisfaction of B implies
the fulfillment of A. In the case of a [+] contribution between the
constructs A and B, where B contributes to A, this indicates a
positive influence on the performance of B in the fulfillment of A.
In this case, there are no changes according to the original
definition of i*.

4.6.7 Summary of contribution link as an association
relation

This class of relationship should be used when an instance of an
intentional element contributes positively or negatively to the
achievement or satisfaction of another instance of a modeling
construct.

The contribution link is the only abstraction mechanism that
allows us to define partial contributions among elements of the
same or different types.

4.6.8 Dependency as an association mechanism
A dependency between two actors indicates that one actor
depends on another actor to attain a goal, execute a plan, or

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

121

deliver a resource. The former actor is called the depender, while
the latter is called the dependee. The object (goal, plan resource)
around which the dependency centers is called dependum. By
depending on other actors, an actor is able to achieve goals that he
would otherwise be unable to achieve on his own, or not as easily,
or not as well. There are four types of dependencies: goal
dependency, softgoal dependency, task dependency and resource
dependency. The dependency relationship can be denoted by
dep(X,Y,D), where X is the depender actor, Y the dependee actor,
and D the dependum of the relationship. Figure 4.28 presents the
notation of this modeling concept.

dependee
actor dependum

depender
actor

Figure 4.28 The dependency notation

4.6.9 The characterization of dependency based on the
proposed framework

The semantics of the dependency relationship is defined by giving
values to each one of the properties of the framework.

Standard definition
of contribution

∀ X,Y dep(X,Z) ∧ isa(Y,Z) ⇒ dep(X,Y)

Sort set {actor, goal, resource, plan}
Multiplicity (0,*), (0,*):

A(dependee)
⇒smaller_equal_that(size(r(dependee),1)
∧ greater_equal_that(size(r(dependee), 1)
A(depender)
⇒smaller_equal_that(size(r(depender),1)
∧ greater_equal_that(size(r(depender), 1)

Transitivity Transitive / Non transitive
∀ X,Y,Z,D dep(X,Y,D) ⇒ dep(X,Z,D1) ∧
dep(Z,Y,D2) ∧ D1 = D2

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

122

Reflexivity Non-reflexive:
∀ X,Y,D dep(X,Y,D) ∧ X =Y ⇒ False

Symmetry Symmetric:
∀ X,Y,D dep(X,Y,D) ∧ dep(Y,X) ∧ Y ≠ X
⇒ True

Homogeneity homogeneous:
dep(X,Y,D)∧type(X)=actor∧type(Y)=actor
∧ type(D)={goal, resource, plan} ⇒ True

World assumption Open world assumption:
dep(X,Y,D) ⇒ ∃Z dep(X,Z,D)

Shareability Shareable:
dep(X,Y,D) ∧ dep(Z,Y,D) ∧ X ≠ Z ⇒
True

Existence
dependency

Non-existence dependency :
∀ X,Y,D cont(X,Y,D) ∧ ¬ ℓ(∂ (X)) ⇒
¬R(ℓ(∂ (X)), ℓ(∂ (Y)))

Boundary External
Operators None
Satisfiability Full Satisfaction

Once the values for the relevant properties have been established,
the following step is the analysis of the dependency relationship
based on these assigned values.

a) Multiplicity: A specific dependency relationship associates
only two actors (depender and dependee) through one dependum
element. However, an actor could be associated with many
organizational actors through incoming dependencies. Also, an
actor could participate in many dependencies playing the
depeendee role. Therefore, the multiplicity of a dependency
relationship is (1:*, 1:*).

The value of this constraint complies with the original i*
definition.

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

123

Figure 4.29 presents the case where an actor is associated with
several actors through dependency relationships.

Plan B

actoractor
Plan A

actor

Plan B
Multiplicity:
(1..N, 1..N)

Plan B

actoractor
Plan A

actor

Plan B

Plan B

actoractor
Plan A

actor

Plan B
Multiplicity:
(1..N, 1..N)

Figure 4.29 The multiplicity property for the dependency relationship.

b) Transitivity: The dependency implies a delegation of
responsibilities between two actors. If an actor A1 delegates the
element E1 to the actor A2 and this actor also delegates E1 to the
Actor A3, then we can establish that A1 indirectly depends on A3
for achieving E1. The transitivity characteristic of the dependency
can only be applied if the dependum involved in the dependencies
is the same in all the relationships for the actors participating in
the chain of responsibilities (Figure 4.30)

The Example shows the dependency relationship as a transitive
relationship.

E1A1 A2

E1

A3

A1 depends on A3 for E1

E1A1 A2

E2

A3

A1 doesn't depend on A3 for E1
Figure 4.30 The transitivity property for the dependency relationship

c) Reflexivity: The dependency relationship is a non-reflexive
relationship. Therefore, it is not allowed to define a dependency

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

124

that connects an actor because this relationship would indicate
that an actor depends on himself to do something. The correct
representation of this semantics implies the use of an internal goal
or task in the internal description of the actor, which indicates that
the actor must fulfill a specific goal or task.

The value of this constraint complies with the original i*
definition.

The example shown in Figure 4.31 indicates that it is not possible
to define a dependency in which the depender and the dependum
are the same actor.

Actorplan

Figure 4.31The reflexivity property for the dependency relationship

d) Symmetry: The dependency relationship supports the
specification of symmetric relationships. Thus, the dependency
relationship permits the creation of a dependency between the
actors A and B, where B is already connected to A by another
dependency relationship.

Figure 4.32 presents the dependency as a symmetric relationship.

Plan E2

actoractor

Plan E1

Figure 4.32 The symmetry property for the dependency relationship

e) Homogeneity: The dependency is the only i* relationship that
allows us to associate organizational actors. The elements of a
dependency relationship are always two actors and the dependum
object. The dependum could be a goal, a resource or a plan.

f) World Assumption: The definition of dependencies is one of the
key points of the i* modeling framework. We have found that, in

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

125

practice, the definition of new dependencies in execution time is
needed in order to represent complex scenarios. This is because it
could be complicated to determine “a priori” all the possible
dependencies that exist in the network of actor in an enterprise.
For this reason, we define the dependency relationship as an open
world assumption relationship.

Again, it was not possible to find information about this topic in
the i* bibliography.

h) Existence-dependency: The dependency links represent a non-
existence dependency relationship, which indicates that the actors
involved in the dependencies could exist even when the
dependencies disappear. As a consequence of this fact, if an
instance of a dependency is eliminated from the model, the actors
involved remain the same (Figure 4.33).

This topic has been not analyzed before in the i* bibliography.

Example: the example, which represents the non-existence
dependency property of the dependency relationship, indicates
that the existence of the actors involved in the relationship is not
determined by the existence of dependencies between them.

Plan E2

Plan E1

Plan E2

Time t

actor actoractoractor

Time t´

Figure 4.33 The existence dependency property for the dependency relationship

i) Boundary: the concept of dependency allows us to relate actors
through external relationships (Figure 4.34). It is not allowed to
define dependencies within the limits of individual actors. j)
Operators: In this proposal, there are no operators for the
dependency relationship.

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

126

planresource

Actor

Actor

Figure 4.34 The boundary property for the dependency relationship

4.6.10 Summary of dependency as an association
relationship

This kind of relationship must be used to represent the delegation
of responsibilities between actors.

The dependencies represent the unique mechanisms provided by
i* to represent communication and social relationships among
actors. This is why the concept of delegation of responsibilities
involved in the dependency represents a powerful mechanism to
represent, not only strategic interest of the actors, but also to
represent low-level activities such as the delivery and request for
resources among actors.

4.6.10.1 Guidelines to represent dependency relationships

The empirical evaluation of i* has revealed that one of the main
sources of inconsistent results in novel analysts is the definition
of i* dependencies. In order to give an initial solution to some of
these issues, some useful guidelines for representing dependency
relationships are presented below.

Guideline 1: The actor defined as depender in a dependency
relationship must always be the actor that becomes vulnerable as
the result of the dependency relationship. However, in the
literature, it is possible to find several examples where the
vulnerable actor has been placed as dependee actor of the
dependency relationship. Figure 4.35 shows an example of this
kind of inconsistent dependency. In this case, the actor who
becomes vulnerable is the dependee of the dependency
relationship.

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

127

IKEA Assemble
(Furniture) Customer

Vulnerable actor

IKEA Assemble
(Furniture) Customer

Vulnerable actor
Figure 4.35 A non-consistent use of a dependency relationship

In order to solve inconsistencies of this kind we must:

1) Determine the actor that becomes vulnerable if the dependency
is not fulfilled. 2) Determine the appropriate dependency
according to the point of view of the vulnerable actor.

Figure 4.36 shows a correct specification of the same case shown
in Figure 4.35.

Assemble
(Furniture)

assembling
InstructionsIKEA

Vulnerable actor

Customer
Assemble
(Furniture)

assembling
InstructionsIKEA

Vulnerable actor

Customer

Figure 4.36 A consistent use of a dependency relationship

Guidelines 2: It is not possible to use only one dependency to
represent the case where the depender and the dependee are both
vulnerable in the dependency relationship. In this case, two
different dependencies must be created.

Guideline 3: In plan dependency, we find the only case where the
actor that decides how to fulfill the activity is the depender. In the
case of the resource, goal and softgoal dependencies, the actor
that prescribes the procedure is the dependee actor.

Following this criteria, it is possible to define these simple rules
for deciding between a goal and a plan dependency:

1) Determine the vulnerable actor and use this as the depender
actor. 2) If the depender actor defines the plan for fulfilling the
activity, then a plan dependency must be used. 3) If the dependee

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

128

actor decides how to fulfill the activity, then a goal dependency
must be used.

Guideline 4: The plan dependency provides visibility between
actors because the depender actor decides the way in which the
dependee must perform the activity; thus, it is possible to
introduce monitoring tasks to control the performance of the plan
delegated to the dependee. In the case of the goal dependency, it
is not possible for the depender to monitor the fulfillment of the
goal because the dependee must take all the decisions about the
fulfillment of the goal.

4.7 The generalization (is-a) relationship

Generally speaking, the generalization relates superclasses to
their specializations called subclasses. Subclasses inherit all
properties from their superclasses. Subclasses may define new
specific properties. The generalization represents the is-a
relationship.

4.7.1 A multi-property framework for characterizing the
generalization in i*

The generalization relationship can be distinguished by the
following constraints: transitivity, symmetry, reflexivity,
homogeneity, coverage, and mutual exclusion. Each of these
influences how the “Superclass” is related to the “subclasses”.
Similarly to the aggregation and association mechanisms, in our
proposal, these relevant properties are used to define the
framework to define generalization. The framework defines our
particular definition of generalization according to the properties
of the framework.

Following, the definition of coverage and mutual exclusion
properties is presented. The definitions of the transitivity,
symmetry, reflexivity, and homogeneity have already been
presented in section 4.5.1.

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

129

 a) Coverage:

Defined over: the ends of the relationship

Meaning: The coverage is total if each member of the generic
class is mapped to at least one member among the member
classes. The coverage is partial if there are some member(s) of the
generic class that cannot be mapped to any member among the
member classes. (Elmasri 2004)

Values: total / partial

b) Mutual exclusion

Defined over: the ends of the relationship

Meaning: In an exclusive relationship, a member of the generic
class is mapped to one element of, at most, one subset class. In an
overlapping relationship, there are some members of the generic
class that can be mapped to two or more of the subset classes
(Elmasri 2004).

Values: exclusive / overlapping

Once the properties that we consider relevant to characterize the
generalization have been defined, the i* is-a relationship is
defined based on the proposed framework.

4.7.2 The i* is-a relationship
The is-a relationship is a modeling primitive that is supported by
the original i* definition. In i*, the generalization relationship
allows us to define actor hierarchies. In this sense, the is-a
relationship is a mono-morphic construct that must only be
applied to actor elements. In this thesis, we propose a
polymorphic is-a construct that can be applied to the following
sort of elements: goal, resource, plan and actor. The
generalization relationship can be denoted by is-a(X,Y), where X
is the sub-class component and Y the super-class component.

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

130

4.7.3 The characterization of generalization based on the
proposed framework

Once the properties have been introduced, the semantics of the
generalization is defined by giving values to each one of the
properties of the framework. The first rows of the table represent
the definition of the concept.

is-a(C,D) ∧ ins(X,C) ⇒ ins(X,D) Standard is-a
definition class(C) ∧ class(D) ∧ is-a(C,D) ⇒True
Transitivity Transitive:

is-a(C,X) ∧ is-a(X,D) ⇒ is-a(C,D)
Symmetry Non-Symmetric

∀ C,D is-a(C,D) ⇒ ¬ is-a(D,C)
Reflexivity Reflexive

∀ C is-a(C,C)
Homogeneity Homogeneous

is-a(C,D) ⇒ type(C) = type(D)
Coverage partial
Mutual
exclusion

Exclusive:
is-a(C,D) ⇒ ¬∃Z is-a (C,Z)

Once the values for the relevant properties have been established,
the following step is the analysis of the generalization relationship
based on these assigned values.

a) Transitivity: The is-a relationship is a transitive relationship
(Figure 4.37). Therefore, we can establish that if a modeling
element C is associated with the element B through a is-a
relationship and this element is also associated with A through a
is-a relationship, then it is possible to establish that A is a
generalization of C. In this case, C is a type of B, and B is a type
of A, then C is a type of A.

There is no information about this topic in the original i*
definition of the is-a relationships.

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

131

Actor A Actor B Actor C
is-a is-a

Transitive relationship

Actor A Actor B Actor C
is-a is-a

Transitive relationship
Figure 4.37 The transitivity property for the is-a relationship

b) Symmetry: The is-a relationship is a non-symmetric
relationship. Therefore, it is not allowed to define a is-a
relationship between the intentional elements A and B, where B is
already connected to A by a is-a relationship (Figure 4.38).

Actor B Actor C

is-a

is-a
Non-symmetric relationship

Actor B Actor C

is-a

is-a
Non-symmetric relationship

Figure 4.38 The symmetry property for the is-a relationship

c) Reflexivity: The is-a relationship is a reflexive relationship. The
value of this property indicates that it is possible to specify that a
is-a relationship connects an instance of a modeling concept to
itself (Figure 4.39).

There is no information about this topic in the i* bibliography.

Actor A
is-a

reflexive relationship
Figure 4.39 The reflexive property for the is-a relationship

d) Homogeneity: The is-a relationship must be applied to
associate elements of the same kind. In the original i* definition
of the is-a relationship, it can only be applied to associate
instances of actors. In our proposed definition, we apply the

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

132

concept of polymorphic relationship to permit the use of actors,
goals, tasks and resources as sorts of the is-a relationship. The is-
a relationship applied to actors allows us to represent the actors´
hierarchies in an enterprise. The is-a relationship applied to goals
permits the definition of categories of goals, making possible the
definition of abstract goals, general goals, achievement goals,
maintenance goals, executable goals, etc. The is-a relationship
applied to resources permits the definition of hierarchies of
physical or informational resources. Finally, the is-a relationship
applied to the definition of instances of tasks allows us to
represent abstract organizational procedures that are specialized
into concrete organizational tasks (Figure 4.40).

is-a

Strategic
goal

plan

Manual
plan

automated
plan

is-a

maintain
goal

is-a
enterprise
mission

Homogeneous relationship
Figure 4.40 The homogeneity property for the is-a relationship

e) Coverage: The value of coverage for the generalization in i* is
partial. This indicates that not all generic classes must be mapped
into specific class members.

f) Mutual exclusion: the value of the mutual exclusion property
for the generalization is exclusive. This indicates that the multiple
heritance is not allowed in our definition of the is-a relationship
(Figure 4.41).

Exclusive relationship
Figure 4.41 The exclusivity property for the is-a relationship

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

133

4.7.4 Summary of is-a as a classification relationship
The specialization/generalization relationship offers a powerful
mechanism to create categories and hierarchies of concepts. This
is why we have extent this modeling concept to associate
modeling elements of different type (goal, resource, tasks and
actor).

4.8 The classification (instance-of) relationship

The classification relates a class with a set of objects that share
the same properties. An object must be an instance of at least one
class (class ← instance). It is also known as is-of or is an instance
of.

4.8.1 A multi-property framework for characterizing the
classification in i*

The classification relationship can be distinguished by the
following constraints: transitivity, symmetry, reflexivity, and
world assumption. Each of these influences how the class is
related to its corresponding instances. Similarly that the
aggregation and specialization mechanisms, in our proposal the
relevant properties are used to define the framework for
characterizing the classification. The framework defines our
particular definition of classification according to the properties
of the framework.

The definitions of transitivity, symmetry, reflexivity, and world
assumption have already been presented in section 4.5.1.

4.8.2 The instance-of relationship as classification
mechanism

At the present time, there are no definitions for the instance-of
modeling construct in the i* framework. In this thesis, we propose

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

134

a polymorphic instance-of construct that can be applied to the
following sort of classes: goal, resource, task and actor.

The instance-of relationship can be denoted by ins(X,Y), where Y
is the class component and X the instance of the corresponding
class.

4.8.3 The characterization of classification based on the
proposed framework

Once the properties have been introduced, the semantics of the
classification must be defined by giving values to the framework
properties.

Standard
instance-of
definition

class(C) ∧ instance(D) ∧ ins(D,C) ⇒True

Transitivity Non-Transitive:
ins(C,X) ⇒ ∃Z ins(Z,C)

Symmetry Non-Symmetric
∀ C,D ins(C,D) ⇒ ¬ ins(D,C)

Reflexivity Non-Reflexive
∀ C ¬ ins(C,C)

World
assumption

Open world assumption:
ins({D1,D2,...Dn},C) ∧ ∃Z ins(Z,C) ⇒ True

Once the values for the relevant properties have been established,
the following step is the analysis of the classification relationship
according to the assigned values.

a) Transitivity: The instance-of relationship is a non-transitive
relationship. This is because it is not possible to use an instance
component to define new sub-instances. Therefore, an instance
element cannot be instantiated (Figure 4.42).

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

135

Instance Instance Class
ins ins

Non-transitive relationship

Instance Instance Class
ins ins

Non-transitive relationship
Figure 4.42 The transitivity property for the classification relationship

b) Symmetry: The instance-of relationship is a non-symmetric
relationship. Therefore, it is not allowed to define a instance-of
relationship between a class A and an instance B, where B is
already connected to A by a instance-of relationship (Figure
4.43).

Class Instance

ins

ins
Non-symmetric relationship

Figure 4.43 The symmetry property for the classification relationship

c) Reflexivity: The instance-of relationship is a non-reflexive
relationship. The value of this property indicates that it is not
possible to specify that a class element can also be an instance
component (Figure 4.44).

Class
ins

Non-reflexive relationship
Figure 4.44 The reflexive property for the classification relationship

d) World assumption: The classification represents an open world
assumption relationship. This indicates that it is not possible to
define “a priori” an exhaustive set of instances for a specific class
component. Therefore, when certain instances have been created

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

136

in a time t, it is possible to add new instances of the same class in
time t´ (Figure 4.45).

Open world assumption

Time t Time t´
class

instance instance

class

instance instance instance

ins ins ins

Open world assumption

Time t Time t´
class

instance instance

class

instance instance instance

ins ins ins

Figure 4.45 The close world assumption property for the classification link.

The classification relationship offers a powerful mechanism to
create instances of the classes provided by the modeling
language. The explicit indication of instances in the
organizational model enables us to make specific models that
precisely characterize the solution space.

4.9 Conclusions

In this Chapter, a revised version of the i* modeling concepts has
been proposed in order to make it comply with the service
orientation proposed in this thesis. Also, the revised version of
the i* modeling concepts was developed in order to propose
solutions to the problems detected in the empirical evaluation.
This is because practical experiences revealed that in several
cases, the i* concepts are not interpreted in the same way by
different modelers. Also, an exhaustive bibliography study about
i* and its methodological derivations (GRL and Tropos) has
revealed that there is not a consensus about the semantics of the
modeling concepts. All this generates a feeling of semantic
ambiguity that makes it difficult to ensure the repeatability and
traceability of the modeling results in practical cases.

In this Chapter, we have presented a specific characterization for
the modeling primitives of the i* Framework based on a multi-
property framework approach. The framework identifies a set of

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

137

relevant properties (dimensions) that allows us to precisely define
the modeling primitives by giving values to the dimensions of the
framework.

One of the key points of this work is the determination of the
appropriate set of properties to characterize each modeling
primitive. An exhaustive bibliographic analysis about abstraction
mechanisms has been carried out in order to avoid the selection of
an arbitrary set of constraints. According to this analysis, a
standard set of properties that has been used to characterize the
aggregation, association, generalization and specialization were
obtained. All these properties, together with others that we
consider relevant for a specific modeling primitive, were used to
define each one of the proposed frameworks.

The analysis of the values for the framework properties allows us
to precisely justify the proposed modifications to the original i*
definitions. The proposed approach makes it possible to clearly
differentiate the modeling primitives of i* so that modelers get
better guidance on which primitives to use.

CHAPTER 4. THE MODELING LANGUAGE DEFINITION

138

139

Chapter 5

5. The Service-Oriented Architecture for
the i* Framework

The objective of this Chapter is to introduce the definition of the
components of the proposed service-oriented architecture for the
i* framework. We present meta-models for understanding
business services and the relationships between the components
of the service-oriented proposal.

5.1 Introduction

As stated in Chapter 3 (empirical evaluation of i* framework), the
main conclusion of this evaluation is that, despite the advantages
of the i* modeling approach, practical experiences have revealed
that there are certain issues that need to be improved to ensure
their effectiveness in practice. We have concluded that i* needs to
be extended with mechanisms to define granules of information at
different abstraction levels, and composition mechanisms to
manage these granules (granularity mechanisms). Guidelines are
also needed to start the organizational modeling process with the
definition of a high-level view of the enterprise. Then, the
guidelines must help the analyst to refine the high-level view into
more concrete primitives until the lower abstraction level of the
processes is reached (refinement mechanisms).

Our proposed solution is based on the concept of business service
as a high-level concept that encapsulates fragments of an
organizational model as composite business processes. We
illustrate our approach using a case study in the travel agency
sector. The case study (which is an extension of the rental car
case study used in the empirical evaluation of the i* framework)

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

140

considers the set of services offered by a company specialized in
selling travel packages and car rentals.

5.2 The proposed solution: a business service approach
for the i* framework

Our proposed solution to improve the i* organizational modeling
process is based on the hypothesis that it is possible to focus the
organizational modeling activity on the values (services) offered
by the enterprise to their customers. In this thesis, we will call
them business services. Following this hypothesis, the proposed
method provides mechanisms to guide the organizational
modeling process based on the business service viewpoint.

Using the proposed approach, the monolithic structure of the i*
strategic rationale model can be broken down into several
business services (Figure 5.1). These business services can be
used as the basic granules of information that allow us to
encapsulate a set of i* business process models.

Enterprise

Goal

Customer

Organizational Process 1
Organizational Process 2

Organizational Process 3

…

…

…

…

…

…

… …

……

…

…

…

…

…

…

……

…

…

…

… …

……

…

…

…
…

… … …
…

… …

…

…

…

…

Customer

Enterprise

Enterprise

Enterprise

service

Goal

service

Goal service

Enterprise

EnterpriseEnterprise

Goal

Customer

Organizational Process 1
Organizational Process 2

Organizational Process 3

…

…

…

…

…

…

… …

……

…

…

…

…

…

…

……

…

…

…

… …

……

…

…

…
…

… … …
…

… …

…

…

…

…

Customer

Enterprise

Enterprise

Enterprise

service

Goal

service

Goal service

Enterprise

Enterprise

Figure 5.1 The business service strategy

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

141

One of the practical implications of this proposal is that the focus
of the modeling activity has been changed from the actor’s
viewpoint to the service’s viewpoint. In the current state of i* and
Tropos, the modeling process starts by determining the relevant
actors in the organizational setting and also by determining the
goals they want to fulfill. The following step consists of
determining the tasks needed to satisfy the actors´ goals. As a
result of this analysis of the actor’s goals, the delegation of
responsibilities to other actors must also be detected. These
delegations are represented using the concept of strategic
dependency. As a result of this modeling process based on actors,
the current mechanisms for decomposition, refinement, and
modularity in i* are limited only to the actors´ boundaries.

In our business service approach, the modeling process starts by
considering the enterprise as a service provider and by eliciting
the services that the enterprise offers to end customers. The
following step consists of determining the way in which the
business services satisfy the goals of the enterprise. Once the
services have been elicited, we need to refine each service in the
set of business processes needed to perform it. As a result of this
new approach, the mechanisms for decomposition, refinement,
and modularity are focused on business services.

With this proposed approach, we can take advantage of the
powerful intentional and social characteristics of i* combined
with a compositional modeling process, which could be more
comfortable for non-expert analysts in i*.

This thesis addresses the explanation of the services-oriented
approach: (1) informally, by giving a set of graphical diagrams
and demonstrating their use with examples. (2) formally, by
defining axioms to define the rules of the service architecture.

5.2.1 What is a service?
Several service definitions have been proposed according to the
application domain where the service concept is used. In this

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

142

sense, most current software engineers associate the concept of
service with web services or e-services. However, currently there
is no consensus about the definition of either services or e-
services. The Baida´s work (Baida 2006) offers a well-establish
survey of definitions of services in several application domains
(business research, computer science and information science).
Following, a brief description of the services terminology is
presented based on the definitions provided in Baida (Baida
2006)

Services in Business Research
In the business research community, there is consensus on
considering services as (business) activities that result in value for
the customers.

At this level, we found two different approaches for describing
services. One definition deals with the economic value produced
by customers and providers interchanging objects of economic
value (business value perspective). Other proposals focus the
service definition on the processes needed to produce values for
the customers (business operation perspective).

More recently, the concept of e-service has been incorporated in
the terminology of business research. This specific kind of
service is considered as an extension of “traditional” services. In
this sense, e-services have been defined as providing services
over electronic networks (Rust and Kannan 2002). In Ruyter
works (Ruyter et al. 2001) e-services are defined as “an
interactive, content-centered and internet-based customer service,
driven by the customer and integrated with related organizational
customer support processes and technologies with the goal of
strengthening the customer-service provider relationship”. In this
definition, the customers are considered as the main initiators of
the activities that compose the service.

Although this application area is directly concerned with the
representation of services as business activities, no explicit and

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

143

precise definitions have been given for the concept of business
services.

Services in Computer Science
In computer science, the concept of service is highly associated
with the specific concept of web services.

One of the most accepted definitions of web services in the
computer science community is the one provided by the Stencil
Group, where services are defined as “loosely coupled, reusable
software components that semantically encapsulate discrete
functionality and are distributed and programmatically accessible
over standard Internet protocols” (Stencil Group 2001).
Functionality is one of the key concepts in this definition, and in
almost all definitions about web services. However, it is
important to point out that the functionalities make reference to
functions of the software components more than business
activities. There is no consensus on the relationship between the
software functionalities (web services) and the business activities
(business processes) needed to provide services in the
organizational level. Nonetheless, we can still deduce that an
implicit semantic relationship exists between both service
specifications.

Sometimes, in the computer science community, the term service
is used as a synonym for ‘web service’, as well as ‘e-service’.
However, several authors have pointed out the differences among
these three closely related concepts. The term service has been
defined as organizational activities in a definition according to the
business research area. The term e-service deals with
organizational activities performed by a software system that
works on internet but without emphasizing on how these services
are operationalized on a specific platform. Finally, web-services
have been defined as a low-level mechanism to implement e-
services using precise implementation technologies.

In a more precise classification, services in computer science can
be categorized as services to provide information to customers

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

144

and providers (information-providing services), and also services
that modify the “state” of the customers or providers (world-
altering services).

Services in Information Science
The information science community has adopted the definitions
of service provided either by business research (representing
services as business activities that produce value) or services as
defined in computer science (functionalities associated with
internet and software systems). There is no new (re)definitions of
the concepts defined in these application areas, more specifically,
the use of web service is adopted from the computer science area,
the service concept is adopted from the business research area,
and the e-service concept is used with the same level of
ambiguity presented in these previous communities.

A specific definition of business service has been developed in
this thesis that defines the services at the organizational level.
This definition is presented below.

5.2.2 Our conceptualization about business service
As stated above, there is no consensus on the definition of
business service; even though it has been widely used in the
service-oriented computing bibliography. In the cases where
some explanations were given about this concept, services have
been associated with organizational activities that are performed
using internet. The following definition from (Amsden 2005) is
an example of this business services conception: “The Business
Services Model (BSM) is a dynamically created UML2 model of
a service specification between business clients and IT
implementers. The Business Services Model is a mediator
between the business requirements expressed in process models
and any implementation, including object or service-oriented
implementations”. As this definition states, business services are
considered as a high-level specification of services that are
implemented for use on internet.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

145

Our concept of service concerns the organizational environment
and organizational processes rather than the functionalities
offered by software systems. In fact, the definition of services in
this thesis does not imply that services need to be implemented by
software systems. This is because the activities that compose the
service can be executed manually by the organizational actors.
The business service architecture enables the formalization of the
relationship between the abstract definition of services (from the
customer point of view) and its realization through a set of
business processes.

We have defined a business service as a functionality that an
organizational entity (an enterprise, functional area, department,
or organizational actor) offers to other entities in order to fulfill
its goals. To provide the functionality, the organizational unit
publishes a fragment of the business process as an interface with
the users of the service. The business services concept refers to
the basic building blocks that act as the containers in which the
internal behaviors and social relationships of a business process
are encapsulated.

Our service-oriented architecture for the i* framework provides a
formal relation between an abstract representation of services and
the set of processes that perform them. In this sense, the service
specification is a contract that specifies the rules that determine
how the providers and requester collaborate in order to achieve
their objectives.

The proposed definition of business service complies with the
definition of services defined in business research in the sense
that is based on organizational activities and customers. However,
our definition is different from those provided by current research
works because it emphasizes the social and intentional
perspectives on services rather than a traditional transactional
perspective.

The services can be seen as an explicit agreement among
customers (that want to fulfill their goals by using a service) and
the providers (that want to fulfill their own goals by offering a

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

146

service). By using the service, the customer extends its
capabilities by using a set of services provided by an external
entity. Therefore, the customer delegates the responsibility to a
provider to perform the activities of the service. Although the
delegation of responsibilities among requesters and providers
extends the capabilities of the requester, it can also affect the
requester who becomes vulnerable if the provider fails to deliver
the service,

In our approach, services have a direct influence on the
fulfillment of the goals of customers and providers. This makes
our proposal different from the current research works which are
based on describing services as transactional activities or services
as business values generators.

The idea of our approach is to introduce a precise conceptual
hierarchy consisting of business services that are refined in
business processes, which are finally expanded in what we call
business protocols. These protocols constitute the lower-level of
the service description.

The proposed business architecture for the i* framework permits
the appropriate representation of the following key aspects:

• The services offered by the enterprise.

• The providers (enterprises) and requesters (final
customer) involved in the service.

• The communication between providers and requesters.

• Shows the reasons for the enterprise to offer a service and
the reasons for the customer to request it.

• Shows the values interchanged by the execution of the
service and the reason for transfering these values.

• Indicates the reasons for the values being interchanged
among the service participants.

The explicit representation of these aspects in a service model
enables the analyst to improve the model before starting the

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

147

development of services at the implementation level. Thus, the
analyst can use the service approach to generate a view of the
current situation of the enterprise as a starting point for the
generation of the future situation of the enterprise.

5.2.3 Why a service orientation?
One of the fastest emerging technologies in software engineering
is the separation of concerns, which is an established software
engineering theory that is based on the notion that it is beneficial
to break down a large problem into a series of individual
problems or concerns. This allows the logic required to solve the
problem to be decomposed into a collection of smaller, pieces, so
that each piece can address a specific concern (Elr 2006).

The service orientation can be considered as a specific
mechanism to implement the separation of concerns. This is
because the philosophy of services is to isolate the abstract
functionality (service) from the details of its implementation.
Therefore, the service-oriented approach promotes decomposition
and granularity, which are basic concepts of the separation of
concerns approach. This is the reason why we argue that service
technology can benefit the management of the complexity of the
i* modeling process.

Another reason to adopt a service orientation for the i*
framework, besides the well-known advantages of the SOA, is
that this architecture enables the enterprise to quickly respond the
changing market conditions. The dynamic environment of
business today represents a challenge for the current modeling
methodologies. Modeling techniques usually offer the means to
model a stable application domain where changes to the
specification are not frequent. However, nowadays, enterprises
need to change very quickly in order to respond to very frequent
market challenges. In this sense, enterprises today require more
flexibility and agility in modeling techniques to add new
functionalities or to modify existing ones in current enterprises.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

148

One of the main advantages of representing services as basic
units to model an enterprise is related to the reuse of high-level
services. The services can be used as a key mechanism to adapt
the enterprise to new market conditions by including new services
or by the modification of the existing services. This is because a
service represents a self-contained organizational unit with a
weak coupling with other services. This makes it possible to
accomplish modifications in the service structure without
disturbing the structure of the other services in the same
environment.

The service-oriented architecture enables the enterprise to
manage the complexity of each service in an incremental process
starting with a high-level description of the services, and
finishing with a low-level description of the processes that
compose the service. This approach enables us to make
improvements or replacements of processes without altering the
abstract representation of the services offered by the enterprise.

From the business modeling perspective, business services are
relevant because they enable the analyst to focus on high-level
descriptions rather than analyzing the entire organization in detail
in the first modeling approximation. In this sense, Jones (Jones
2005) argue that “the organizations are, at the high level, first
focused on the what (key functions) and only secondly on the
process, the how”. The proposed business service architecture
adopts this philosophy by introducing a service global model that
represents all the service offered by the enterprise without details
about their implementation by a means of business processes.

5.2.4 The characteristics of business service orientation
Although a standard set of service-orientation principles does not
exist in the current literature, there is, however, a common set of
principles that are associated with service orientation (Erl 2006):
services are autonomous, share a formal contract, are loosely
coupled, are composable, are reusable, are discoverable and they
abstract underlying logic.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

149

Following, we discuss how the business service-oriented
approach presented in this thesis complies with these set of
principles of service orientation. To do this, we have adapted the
definitions provided in the Erl works (Elr 2006) according to the
proposed business service architecture:

Business services are autonomous. All the business activities
needed to satisfy the services reside within an explicit boundary.
Therefore, a business service does not depend on other services to
be executed. In practice, real business services offered by an
enterprise are conceptualized and implemented as autonomous
entities that could be offered in isolation to final customers.

Business services share a formal contract. The business service
can be considered as a contract between the provider and the
requester. This contract describes the set of interactions and
information exchanges needed to provide the service. The service
contracts provide a formal definition of (Elr 2006):

• The protocol for requesting the service. This establishes
the set of requirements for the customers needed to start
the service.

• The set of business processes that make operational the
service.

• The set of inputs and outputs of the service, which must
be encapsulated in the service definition.

• The set of restrictions to perform the service. The
restrictions can be imposed by internal or external
entities.

• The dependencies among customers and provider.

• The protocol to finish the execution of services. This
defines the conditions that must be fulfilled in order to
finish the service.

The i* models that describe business services can be considered
as a service contract at the class level. In the case of business

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

150

services, the contracts are commonly named as terms and
conditions. The restrictions placed in the contract will be the
conditions that the customers must accept in order to use the
service (instance level). Since the business service tries to model
the real world, the definition of the contracts is given by external
entities that regulate the service offering.

Business services are loosely coupled. The set of dependencies
among requesters and providers that make up the service must be
limited in order to comply with the service contract. The loosely
coupled characteristic of the service orientation enables the
analysts to respond to unforeseen changes in the market in an
agile way.

Business services abstract underlying logic. The business logic
beyond the abstract service definition must be invisible to the
outside world. In fact, only the activities declared in the interface
are visible to the service requester. In most cases, a business
service can be established as a black box where the underlying
logic of the service is hidden to the service requesters.

In the current literature, there is no consensus about the
appropriate abstraction level to define services. In some cases, it
might be interesting to define services as very general business
functionalities; in other cases, it could be more convenient to
design services as individual business processes that offer a value
to final customers. The definition of the appropriate abstract level
will depend on the granularity that can be detected in the
enterprise.

Business services are composable. One of the main objectives of
the thesis has been to provide a solution to the scalability issues
in i*. The source of most scalability problems is the lack of
mechanisms to manage the composition. These problems are eve
greater when the model grows in size and complexity. In this
case, mechanisms are needed to appropriately manage the levels
of granularity.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

151

In our proposal, complex services can be decomposed into basic
services, allowing the service description to be represented at
different levels of granularity. The definition of a model that
represents the abstract definition of the services offered by the
enterprise make it possible to orchestrate the services that
collaborate to satisfy the goals of the enterprise. This
characteristic promotes reusability and the creation of service
abstraction layers.

Business services are reusable. Regardless of whether immediate
reuse opportunities exist, services are designed to support
potential reuse. Service orientation promotes the reuse by
generating services and service components with a minimized
dependency on other service components. The definition of self-
contained components enables the analyst to reuse them with
minimal modifications.

In this thesis, each service needs to be defined in an isolated way
in order to promote reusability. Reuse is one of the key objectives
of the proposed business service approach.

Business services are discoverable. The enterprise must make it
public fragments of its business process in order to allow the
customer to use the business service. All the customer-provider
interactions must be encapsulated in a specific business service.
The explicit modeling of the protocol for requesting a service
(this is the means to discover the service) enables the analyst to
avoid the specification of redundant services. The explicit
representation of business activities needed to support a service
avoids the specification of services that implement redundant
behaviors.

5.3 A Business Service Architecture for the i*
Framework

To make the practical application of the business service
orientation possible, the business service architecture must be

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

152

introduced. This architecture must provide definitions and precise
alignments for the concepts used in the proposal. We have also
developed meta-models to help understand business services and
the relationships among the components of this model.

Some of the definitions of the business services architecture are
adaptations of the concepts presented in the W3C description for
web services architecture (W3C Working Group 2004). This was
a conscious decision to be able to generate a definition that is
compliant with the current standards for defining services.

5.3.1 The service-oriented strategy
The key idea of the service-oriented approach is to use the
business services as building blocks that encapsulate internal and
social behaviors. Therefore, complementary models were defined
to make it possible to reify the abstract concept of service in low-
level descriptions of its implementation.

The business service architecture is composed of three
complementary models (Figure 5.2) that offer a view of what an
enterprises offers to its environment and what enterprise obtains
in return:

• Global Model. In the proposed method, the
organizational modeling process starts with the definition
of a high-level view of the services offered and used by
the enterprise. The global model permits the
representation of the business services and the actor that
plays the role of requester and provider. Extensions to i*
conceptual primitives are used in this model.

• Process Model. Once business services have been
elicited, they must be decomposed into a set of concrete
processes that perform them. To do this, we use a process
model that represents the functional abstractions of the
business process for a specific service. This model
provides the mechanisms required to describe the flow of

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

153

multiple processes. Extensions to i* conceptual
primitives are used in this model.

• Protocol Model. Finally, the semantics of the protocols
and transactions of each business process is represented
in an isolated diagram using the i* conceptual constructs.
This model provides a description of a set of structured
and associated activities that produce a specific result or
product for a business service. This model is represented
using the redefinition of the i* modeling primitives
(which is explained in Chapter 4).

The proposed approach enables the analyst to reuse the definition
of protocols by isolating the description of the processes in
separate diagrams. In this way, the process model represents a
view of the processes needed to satisfy a service but without
giving details of its implementation. Each business process is
detailed through a business protocol. The detailed description of
the protocols is given in the protocol model. The protocols are
represented using the i* notation.

Enterprise

resource

Enterprise customer
Goal

Enterpriseservice

task

task

task

detailed view +-

Global
Model

Process Model Protocol Model

task

task

task

Goal

task task

task

Goal

Customer

service

Goal customercustomer

Goal

Process TT

Process

Process

service

Enterprise

resource

Enterprise customer
Goal

Enterpriseservice

task

task

task

detailed view +-

Global
Model

Process Model Protocol Model

task

task

task

Goal

task task

task

Goal

Customer

service

Goal customercustomer

Goal

Process TT

Process

Process

service Goal customercustomer

Goal

Process TT

Process

Process

Process TT Process TT

ProcessProcess

ProcessProcess

service

Figure 5.2 The business service proposal

The main idea of this approach is to promote the granularity of
the service definition by isolating the organizational behavior of
each business service in a separate business description. The
meta-model that represents these elements of the business service
proposal for the i* framework is presented in Figure 5.3. The
meta-model is represented using concept maps, which is an

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

154

informal graphical way to illustrate concepts and relationships.
The boxes represent a concept and the arrows represent
relationships. The concept maps help the analysts to rapid
navigate the key concepts to know how they relate to each other.

The proposed meta-model establishes that business services are
the mechanism to fulfill the business goals. The business services
are composed of business processes, which can be defined as
transactional processes or non-transactional business processes.
Business services and business processes are both represented by
using the proposed extension to the i* modeling primitives.
Finally, the meta-model indicates that business protocols, which
are the low-level specification of a business service, need to be
represented with i* modeling primitives. This protocol model
represents the organizational behavior that is needed to perform a
business process.

Business
Services

Business
goals

Transactional
Process

No Transactional
Process

Business
process

i* modeling
primitives

Represented by

is-a

establishes

Composed
by

Business
protocol

Implemente
d by

extensions
for the i*
modeling
primitives

Represented by

Figure 5.3 The meta-model of the service-oriented architecture components

5.3.2 Overview of engaging a business service
In practice, there are many ways to implement business services,
but, generally speaking, the following steps are required. 1) The
service requester requests the service following the established
protocol, 2) The service provider analyzes whether or not the
service requester fulfills the conditions for the service, 3) The
service provider agrees or disagrees to provide the service, 4) The

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

155

service semantics are performed by the requester and the provider
actor, and 5) The requester and the provider actor agree to finish
the service. Figure 5.4 presents a simple pattern of the steps to
perform a business service.

Service consumer
(uses service)

Service provider
(offers service)

service request
service response

service interaction
service ending

Service consumer
(uses service)

Service provider
(offers service)

service request
service response

service interaction
service ending

Figure 5.4 The basic pattern of the process of engaging a business service

5.3.3 Implications of the service-oriented strategy
As a result of the service orientation, the focus of the i* modeling
activity has been modified to consider services as the basic
decomposition unit.

In the original i* approach, the modeling process starts by
determining the participating organizational actors in the
enterprise. Once the actors are elicited, their internal activity must
be represented using the i* relationships: means-end, task
decomposition, and contribution links. This is why the
decomposition mechanisms in i* are limited to the actor’s
boundaries.

We argue that this current i* approach can be useful in the
context of small cases studies with a limited number of involved
business processes. This approach is also very useful when the
modeling activity is focused on designing new enterprises,
starting “from scratch”. However, in cases where the model
grows in size and complexity, or in cases when the modeling
activity focuses on the representation of the current situation of
an existing enterprise, then it could be complicated to represent
the fragments of the model that correspond to several business
processes that are represented in the strategic rationale model
(Figure 5.5).

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

156

Actor

Figure 5.5 Actor as basic concept for decomposition in i*

The service-oriented architecture proposed in this thesis changes
the modeling focus from actors to service descriptions. In this
sense, the decomposition applies to services (which represent
business functionalities) that are reified in business processes.
Therefore, the service approach breaks the modeling actor
cohesion of the original i* definition (Figure 5.6). This implies a
change in the business modeling approach since the method
proposed starts with the definition of services in place of starting
with the identification of goals of the current i* process. We
consider that, in the initial modeling stages, it is more convenient
to first answer the question what we do rather than the question
how we do it.

Enterprise

Global
Model

Process Model

Goal

Customer

service

Goal customercustomer

Goal

Process TT

Process

Process

service

Enterprise

Global
Model

Process Model

Goal

Customer

service

Goal customercustomer

Goal

Process TT

Process

Process

service Goal customercustomer

Goal

Process TT

Process

Process

Process TT Process TT

ProcessProcess

ProcessProcess

service

Figure 5.6 Services as basic decomposition mechanism

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

157

5.3.4 The service-oriented components
To make the application of the service-oriented architecture
possible, several aspects need to be considered where modeling
business processes. The set of service components are presented
above:

• Intentional elements

• Actors

• Business services

• Service requester and provider

• Service request

• Service visibility

• Service delegation rules

• Business processes
Each one of these components, which influences the definition of
the service architecture, is analyzed in detail below.

5.3.5 Intentional elements
In our service-oriented approach, we adopt the intentional
elements of the i* framework: goal, resource, softgoal, task and
dependency. A goal represents the strategic interests of a
business actor. In i* we distinguish hard goals from softgoals. A
softgoal represents a goal whose fulfillment conditions can be
clearly established. Softgoals are typically used to model non-
functional requirements. A task specifies a particular course of
action that produces a desired effect. The execution of a task can
be a means for satisfying a goal or a softgoal. A resource
represents a physical or informational entity. We have also
adopted the graphical notation of these intentional elements.
Dependency between two actors indicates that one actor depends,
on the other (for some reason) in order to attain a goal, execute a
task, satisfy a softgoal, deliver a resource, or provide a service.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

158

The former is called depender and the latter is called the
dependee. The object around which the dependency centers is
called the dependum, which can be a goal, resource or plan.

The graphical notations associated with these concepts are
represented in Figure 5.7.

dependerdepender dependeedependeegoal

dependerdepender dependeedependeeresource

dependerdepender dependeedependeetask

goal, task and resource

dependency

goal resource task softgoal

Figure 5.7 Graphical notation for intentional i* modeling concepts

5.3.6 Actors
In this proposal, the business actor concept models an
independent intentional organizational entity (person, functional
area, department, or enterprise) that uses or offers services.
According to the i* philosophy, the actor has strategic goals and
intentionality within the organizational setting.

A business actor is graphically represented as a circle with the
name of the actor, as defined in the original i* definition.

In the i* framework, the actor could be specialized into agent,
roles and positions (Yu 1995). The agents represent specific
instances of people, machines, or software with concrete physical
manifestations that occupy a specific responsibility within the
enterprise. The agents can play several roles. A role is an abstract
characterization of behavior within some specialized context. In

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

159

a is-a relationship, all specialized sub-roles inherit all properties
of the generalization super-role. A collection of roles describes an
actor’s position.

One of the advantages of this representation of actors in i* is the
possibility to represent actors at the class and instance level in the
same model. Therefore, it is possible to represent classes of actors
(agents), as well as specific instances of these classes (roles). This
is very useful to represent, for example, existing software systems
that support business activities, as well as to represent generic
actors that have a clear role in the business processes. Figure 5.8
shows an example of the representation of agents and roles
following the i* notation.

actor
(generic) agent role position

Legend

employee

Peter

clerk manager

instance

occupies

Figure 5.8 Agent, roles and positions

5.3.5.1 Actor composite structure
The is-a relationship has been used in actor modeling to represent
the specialization of generic actors into specific agents playing
roles in the organizational context. However, this relationship
does not correspond to the hierarchies of organizational structures
for business actors, where the key concept is the subordination of
actors according to actor hierarchies. Therefore, we use the
concept of composite actor structure in order to represent the
hierarchical relationships between the actors.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

160

The composite actor structure associates the actors by
subordination links. The subordinated by link reflects the
hierarchical dependencies that exist in a chain of command (line
of authority and responsibility through which orders are passed
within a social unit) in real enterprises. The key concept about
subordination is that if an actor subordinates another actor, then
the first can delegate activities to the latter. The subordination
implies that if one actor subordinates to another actor, then the
first one is responsible for the behavior of the second and it can
implement monitoring mechanisms to control and evaluate the
subordinated actor’s work (Giorgini 2006).

The subordinated relationship enables the analyst to represent the
capability of an actor to assign responsibilities to its subordinates
(Figure 5.9). One of the implications of the actor composite
model is that “the occupants of superior roles inherit all the
positive access rights of their inferiors, and conversely ensures
that the occupants of inferior positions inherit any prohibitions
that apply to their superiors” (Moffett and Lupu 1999).

actor

actor actor

actor actor actor

subordinate

Composite
actor structure

subordinate
subordinate

authority line authority line

authority
line

authority
line

authority
line

actor

actor actor

actor actor actor

subordinate

Composite
actor structure

subordinate
subordinate

authority line authority line

authority
line

authority
line

authority
line

Figure 5.9 The composite actor structure

The subordination link implies the following control principles
(Moffett and Lupu 1999):

• Delegation: this is one of the main concepts for activity
decentralization. Delegation is based on the fact that it is

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

161

impossible for one person to directly manage all the
activities related to offer certain business functionality.
The delegation of responsibilities enables the delegate
actors to have full authority to carry out their delegated
activities. In this thesis, we argue that delegation can be
done through the definition of subordinate actors.

• Supervision: This is an activity that is carried out on
someone by someone else in an immediate superior
position in the organizational hierarchy. Supervision does
not imply the observance of a specific activity; it implies
the monitoring of subordinates to make sure that the tasks
are being correctly executed. Subordination needs to be
applied because even if the delegator is no longer
responsible for the delegated tasks; this actor is
responsible for the activity and is therefore responsible
for ensuring the execution of the delegated tasks.

• Review: This is the opposite to supervision concept; a
review is carried out on specific activities.

The actor hierarchy based on subordination links can be
equivalent to hierarchical models based on actor aggregation.
This is because, in hierarchies based on actor aggregation and
actor subordination, the aggregated actor is responsible for a
larger number of activities than the subordinated actors. In both
approaches, the rule is that the activities can be delegated from
the aggregated to the parts. Also, both (hierarchical models based
on subordination and hierarchical models based on aggregation)
share similar approaches to define supervision and to review
control principles.

The composite actor structure allows us to represent the situation
where several actors collaborate to provide a service to
customers.

As stated above, the concept of composite actor involves the
representation of organizational actor hierarchies, which allows
us to explicitly analyze the delegation of responsibilities to

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

162

properly provide a service. An example of a composite actor
structure is shown in Figure 5.10 for the car rental case study.

Car rental

Manager

Dept.
Manager 1

Dept.
Manager 2

Process
owner 1

Process
owner 2

Process
owner 3

Process
owner 4

Clerk Employee

subordinate

Composite
actor structure

subordinate

subordinate

subordinate

Figure 5.10 The composite actor structure

An important issue in the representation of actors and services is
the determination of the responsibilities to execute the business
tasks. In this context, an actor can be responsible for the service,
but this actor often does not take an active role in the performance
of the service, which is delegated to other actors. Based on this
knowledge, it is possible to categorize the actors into internal and
offered based on their visibility to service requesters.

5.3.5.2 Actor Types
We have distinguished two kinds of internal actors: those actors
that are responsible for the business service (normally these
actors are the department managers or the directors of the
enterprise); and those that perform the business processes needed
to implement the business service (normally these actors
correspond to the intuitive notion of employees). Normally, actors
of this kind do not have relationships with the final customers of
the offered business service.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

163

The external actors are those that directly interact with the
customers using the interface for offering and requesting the
service (corresponding to the intuitive notion of clerks).

Figure 5.11 shows the representation of the types of actors
involved in a business service. This model uses organizational
actor hierarchies to represent the actor(s) responsible for the
service, the actor(s) that perform the business processes, and the
actor(s) that interact with the customer to offer the service. The
arrows in the model indicate the delegations of responsibilities
based on the organizational hierarchy. The figure represents the
decomposition of services into business processes, and the further
decomposition of the processes into specific organization tasks. It
is important to point out that delegation is defined by following
the formal clauses of the architecture. Thus, the model shown in
Figure 5.11 is not included in our service-oriented approach and
is only used for explanation purposes.

The delegation of the service components to specific
organizational actors is based on the subordination chain
represented in the composite actor structure. The delegation rules
will be explained in detail in section 5.3.11.

Manager

Dept.
Manager

Dept.
manager

Process
owner

Process
owner

Process
owner

Process
owner

Actor
Responsible

Clerk Employee

Business
Service

Service

Process

Task

Composite
actor structure

Internal
service

delegation

delegation

delegation

Figure 5.11 The composite actor structure as basis for delegating services

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

164

The composite actor structure enables us to clearly define how
each business service is associated to a responsible actor, who
will have the responsibility to execute or delegate it to
subordinated actors. This model also makes it clear how the
subordinated actors of the service owner are the actors that are
responsible for the processes needed to perform each business
service (Figure 5.12). It is important to point out that this model
is not included in the service-oriented architecture and it is only
used the explanation of the relationship between the composite
actor structure and the organizational structure.

Enterprise

Business Service

Business process

Enterprise customerEnterprise customer

Business process

Enterprise customerEnterprise customer

Business Service

Business process

Enterprise customerEnterprise customer

Business process

Enterprise customerEnterprise customer

ownerowner
ownerowner

Dept

Manager

Dept.
Manager

Dept.
manager

Process
owner

Process
owner

Process
owner

Process
owner

Employee Clerk

ownerowner

Figure 5.12 The composite actor structure as basis for ownership determination

5.3.7 Business Services
A Business Service is a self-contained, stateless business
functionality that is offered to potential customers through a well-
defined interface. Ideally, business services should not depend on
the context or state of other services. Thus, a business service
should be viewed as an abstract set of business functionalities that
are provided by a specific actor.

It is important to point out that the concept of services that we use
in this thesis concerns functionalities at the organization level and
interactions among organizational actors and companies, rather

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

165

than functionalities offered by software systems and machine-to-
machine interactions (such as web services). Business service
modeling is relevant to accurately determine the kind of
organizational work performed by the organization, which is
independent of any future, concrete implementation. This
implementation could be done using web services, but it is
important to avoid the potential confusion associated with the use
of the term “service”. Business services are high-level
descriptions of basic, cohesive and relevant activities of a given
organization.

The business services have been represented using an extension
of the notation of the i* framework. The concept of dependency
provided by the i* framework has been modified to appropriately
represent the social agreement between customers and providers.

In extension to the i* notation, the goal dependency must be
linked with a business service placed on the boundary of the
service provider. A business service is graphically represented as
a parallelogram that is located on the boundary of the business
actor.

The goal dependency involved in services description indicates
that the customer depends on the provider in order to satisfy a
certain goal through a specific business service. In the graphical
representation, the service has been placed in the boundary of the
provider actor to indicate that the business service is the only
interface between providers and requesters. The arrows of the
dependency must always be directed toward the service provider.
Each actor can provide 0…n services, and each service can be
requested by 1…0 end consumers. This indicates that an
organizational actor is not obligated to offer services; however, if
a service is offered, then, there must be at least one potential
consumer. Figure 5.13 shows the simplified view of the service
notation, where only the business services are presented and the
internal goals of the involved actors are hidden in order to
simplify the model.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

166

ActorActor Goal ActorActorservice

Figure 5.13 The business service notation (simplified model)

It is important to point out that this definition of service based on
the concept of dependency places emphasis on the service as
business functionalities offered to external customers, rather than
considering services only as resources that offer values to the
customer. We argue that physical or informational resources must
be defined in the context of a specific business service; therefore,
the resources are represented in subsequent modeling phases
where the business processes that perform a service as defined.

The business service plays the role of interface between the
provider and the requester. This indicates that all interactions
among these actors must be contained in the definition of the
service. It also indicates that the service is the only mechanism
that is allowed to associate the enterprise and the customer. This
characteristic enables the analysts to encapsulate all business
processes associated with the service in the abstract concept of
service interface.

The abstract definition of business services as interfaces makes it
possible to define a high-level view that represents all the
services offered by an enterprise, hiding all the details of the
implementation of the services. In this sense, it is important to
point out that the view presented in Figure 5.13 is focused on
representing “what” a business service is about, rather than on the
implementation of the offered services. An extended version of
this model (global model) could be used to represent “why” the
services are offered or requested. To do this, the offered services
are explicitly associated with internal goals in the customers and
providers (Figure 5.14).

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

167

service Goal A customercustomer

Goal A

Internal provider
goals

Services and
dependency

Internal
customer goal

Figure 5.14 The business service notation (expanded model)

The modification of the i* notation to represent business services
also offers a solution to a well-known specification problem with
original i* notation for goals and task dependencies.

The original i* task dependency implies the existence of a precise
procedure to accomplish the activities involved in the task. In task
dependency, the depender actor is the actor that must establish
the procedure to execute the plan. In goal dependency, the
dependee actor is the actor responsible for satisfying the goal.
This is why the dependee must take all the needed actions and
decisions in order to satisfy the goal, and the depender actor does
not care about how the goal is fulfilled.

This semantics seems to be enough to solve the possible
ambiguities in defining goal and task dependencies; however, this
is very limited when modeling complex real cases. With the
original i* notation, it is not possible to define “clean”
descriptions of the scenario where there is a precise procedure to
accomplish an activity (task) but where the actor that prescribes
the procedure is the dependee actor and where the vulnerable
actor is the depender actor. Figure 5.15 shows an example of this
situation. In this example, the actor that becomes vulnerable in
the dependency relationship is the depender. Also, the actor that
prescribes the activity is the dependee. This makes the description
incorrect for the original restrictions that define tasks
dependencies in i* (where the actor that prescribes the activity

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

168

must be the depender). However, this is not an isolated example,
and we found this kind of specification to be frequent in real case
studies.

Change car
reservation

Define the procedure

customer clerk

Vulnerable actor

Figure 5.15 An inconsistent task dependency

We argue that there exists an overuse of the goal in i* or Tropos
models. Most non-expert analysts use goal dependencies to
represent activities that could be clearly classified as task
delegation. Therefore, the example in Figure 5.15 would be
represented as a goal dependency, although the dependum clearly
represents a task dependency.

In the specific case of the service orientation, the dependee
(service provider) is the actor that establishes how the activity
must be performed and the depender (customer) is the actor that
becomes vulnerable if the service is not satisfied. This service
description can’t be represented by using the “pure” i* notation.
The proposed notation for business services enables the analyst to
precisely describe this situation by using an extension of the goal
dependency. Three clear differences could be found between the
concept of i* task dependency and the proposed business services
specification:

• Task dependency does not indicate the implication of the
depender actor (user) in the execution of the tasks. In task
dependency the depender (customer) delegates all the
responsibility to the dependee actor. Service
representation indicates the implication of the depender
in the execution of some activities associated with the
service.

• Task dependency does not necessarily imply further
decomposition. Sometimes, it is possible to decompose a
task (in the boundary of the dependee actor) that has been

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

169

delegated, but it is also true that sometimes the delegated
task could be executed without further decomposition.
Service description implies the reification of the service
into more concrete behavior representations. In this case,
service specification always imply that services must be
decomposed into a set of business processes to perform
them.

• Task dependency implies the depender as the actor that
prescribes the activity. Service dependency implies the
dependee as the actor that prescribes the way to perform
the service.

In this proposal, two types of business services are distinguished:
basic and composite business services.

5.3.6.1 Basic and composite business services
A basic business service is an atomic building block that still
represents a service. Therefore, a basic service is decomposed
into processes without further service decomposition.

A composite service aggregates multiple business services and
implements mechanisms that coordinate the aggregated services.
Therefore, a composite business service is a service that is
composed of other composite or basic business services.

The feature model proposed in Czarnecki´s research works
(Czarneki et al. 2000) have been used to manage the variability in
service composition. The four features proposed by Czarnecki
enable the analyst to represent the several possibilities that exist
to combine business services: mandatory, optional, alternative,
and or features. Thus, we found the feature model to be the
appropriate mechanism to represent the aggregation of complex
and basic services. The feature model is detailed in Chapter 6
where the service-oriented method is explained.

Figure 5.16 shows the representation of basic and composed
services.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

170

Service

basic
service

aggregated
service

basic
service

basic
service

basic
service

Goal customer

Composite
servicemandatory

features

or F
ea

ture

basic
service

optional
features

Figure 5.16 Composite and basic service configuration

An example of basic and composite business services is shown in
Figure 5.17 for the running example. In the case of the integrated
travel planning composite business service, it consists of the
aggregation of services to reserve a flight, a hotel and a car for a
specific trip. In the case of the walk-in reservation basic business
service, it is directly implemented by check car availability and
formalize reservation business processes that will be represented
in the process model.

Integrated
Travel

Planning

Flight
Reservation

Hotel
Reservation

Car
Reservation

Walk-in
Reservation

Phone
Reservation

Internet
Reservation

Planning
travel customer

Composite business
service

Travel
insurance

Walk-in
Reservation

Rent a car in
an office customer

Travel
Agency

basic business
service

Figure 5.17 Examples of composite and basic service

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

171

In the case of a basic business service, this needs to be
decomposed into a set of business processes to perform it. Figure
5.18 shows the meta-model for the basic and composed business
services proposed in this thesis.

Composite
service

basic
service

Business
Process

Abstract
process

details

decomposes

aggregates

1:1

2:*1:*

1:*

1:1

0:*

Business
Service

aggregates
1:*

How we do it

what we doimplements

Figure 5.18 The meta-model for composite and basic services

According to this meta-model, the composite and basic business
services are specializations of the class business service
(inheriting the basis characteristics of services, such as stateless,
loosely coupling, modularity, etc). Each basic business service is
an aggregation of abstract processes that must be detailed by
using a business process model. Thus, the concrete business
processes are the means for implementing a specific business
service. This service configuration enables us to consider the
business services as the abstract representation of what to do
while the business process model represents the representation of
how to do it.

Another important classification of services categorizes these in
supporting and offered, depending on whether the services have
visibility only in the boundary of the enterprise or if they are
visible to external actors in the environment.

5.3.6.2 Offered and supporting business services
An offered business service is a functionality that an enterprise
offers to end customers. Therefore, services of this kind are

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

172

requested by a number of external customers that use the service
interface to interact with the service provider.

To provide this functionally, the enterprise publishes a fragment
of a business process as the interface with the potential
customers. The customers interact with business services in a
manner prescribed by the restrictions that are imposed by the
enterprise that offers the corresponding service or by external
entities that regulate the service.

In accordance with this service classification, the offered business
services are those services that offer a certain fragment of the
business functionality to potential customers (persons or
companies) to request and to use the service.

An example of this business service is shown in Figure 5.19. This
figure shows the example of the service Walk-in Car Rental
offered by a Car Rental Company to potential walk-in customers.
We use the concept of dependency to indicate that the customers
depend on the Rental Company to use a service to fulfill their
strategic goals. This dependency also indicates that the Company
offers the service to potential users.

Car Rental
Company

Rent a Car walk-in
customer

service

Walk-in
rental

Car Rental
Company

Rent a Car walk-in
customer

service

Walk-in
rental

Figure 5.19 An example of an offered business service

A supporting business service is a functionality that an
organizational entity (functional area, department, organizational
actor) offers to internal entities of the enterprise. In this case, the
supporting business service represents the means that fulfill the
end (in the sense of the goal represented by the offered business
service). The supporting business services provide support to
business processes or other supporting business services. In the
same way that offered business service can provide a supporting
function to multiple external end customers, supporting services

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

173

can be requested and consumed by multiple business services or
business processes.

It is important to point out that; in most cases there exists a
natural coexistence of offered and supporting business services.
Following the car rental example, we found that one of the
services that is needed to satisfy the service check rates is the
service check car availability. This service that cannot be offered
to end customers and it can only be managed by the clerk of the
renting company, who is an internal actor of the enterprise.

Figure 5.20 shows an example of supporting business services
associated with the offered service Walk-in Rental. In this
example, the organizational unit responsible for offering the
service uses the services offered by other organizational units. A
branch could request a car from another associated branch (of the
same company) if a car is not available in the first one. The
branch can also request an analysis of the customer in order to
approve or deny the rental. In this proposal, an offered business
service could be executed by using a set of supporting business
services. As stated above, only the offered business services are
visible for external customers.

Branch 1

walk-in
customer

Exposed Service Supporting Business Services

rent a car

responsible
actor

Car Rental
Company
boundaryrequest

car

Branch 2

validate
client

Analyze
customer

Financial
Department

Walk in
Rental

rent a car

Car Rental
Company

Branch 1

walk-in
customer

Exposed Service Supporting Business Services

rent a car

responsible
actor

Car Rental
Company
boundaryrequest

car

Branch 2

validate
client

Analyze
customer

Financial
Department

Walk in
Rental

rent a car

Car Rental
Company

Figure 5.20 An example of supporting business services

Figure 5.21 shows the meta-model services for offering and
supporting services proposed in this research work.

The distinction between basic, composite, supporting and offered
services makes it possible to create a consistent organizational

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

174

model made up of the set of business services. This allows us to
encapsulate organizational behaviors in cohesive building blocks.

The meta-model indicates the following: a) the business services
can be specialized into supporting and offered business services,
b) both supporting and offered business services are composed by
a set of abstract processes, and finally, the abstract processes are
refined into business process.

supporting
service

offered
service

Business
Process

Abstract
processdetails

aggregates

1:1

1:*
1:*

1:1

Business
Service

aggregates
1:*

How we do it

what we doimplements

0:* 1:*aggregates

1:*

Figure 5.21 The meta-model for supporting and offered services

5.3.8 Requester(s) and Provider(s)
The objective of an enterprise is to offer services to customers in
order to fulfill its strategic goals and to provide added value to its
customers.

The service provider is the person or organization that offers the
business service to potential customers. The service requester is
the person or organization that wants to use the service in order to
fulfill her/his goals. According to the i* modeling approach, the
requester depends on the service provider to increase its
capabilities.

In our business service-oriented proposal, as in the case of service
at the implementation level, the requester is usually the one that
initiates the service activity.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

175

An enterprise can provide services to other enterprises as well as
consume services from other external entities. Thus, a service
provider can also play the role of service requester in the same
business configuration. Figure 5.1 shows an example of an
enterprise playing the role of requester and provider.

customer Rent a car
in advanced

Car Rental
Company

internet
reservation

Validate
customer

analysis credit
of customer

Bank

customer Rent a car
in advanced

Car Rental
Company

internet
reservation

Validate
customer

analysis credit
of customer

Bank

Figure 5.22 Example of an actor playing the role of requester and provider

In this example, the Car Rental Company plays the role of
provider for the offered business service Internet Reservation; it
also plays the role of requester of the service Analyze credit of
customer offered by the entity Bank. It is important to point out
that this kind of double role can also be found in the specification
of supporting business services.

An advantage of the proposed service-oriented approach is the
support of the social and intentional analysis. Some concepts
must be considered in order to represent the social and intentional
aspects that support the relationship between requester and
provider: ownership, provisioning, request, trust and dependency.
We have adopted these concepts from the works of Serenity
project (Asnar et al. 2006). However, in this thesis, these
concepts have been adapted to the proposed service orientation
for the i* framework:

• Ownership: ownership indicates that the provider is the
legitimate owner of the business service. The service
owner has full authority to perform the service or to
delegate this authority to another subordinated actor. In
our proposed models, ownership is presented graphically
by placing the service on the boundary of the actor
representation.

• Provisioning: provisioning indicates that the provider has
the necessary capabilities to provide the service. It is

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

176

possible to develop an extended version of the global
model to represent the internal behaviors needed to
perform each business service that is provided by the
enterprise. The extended version of the global model
represents the manner in which the abstract goals are
refined into low-level actor’s activities that are required
to satisfy the service.

• Request: This indicates that the requester intends to
achieve its goals by using an offered business service.
The service request is graphically represented by joining
a goal dependency (directed from the requester to the
provider) with the service that is located on the boundary
of the provider.

• Trust: From the requester´s point of view, trust between
two actors indicates the belief that one actor does not
misuse the resource (informational o physical) involved
in the business service execution. The former actor is
called the truster, while the latter is called the trustee.
From the provider´s point of view, trust indicates the
confidence of the provider on the requester to have
visibility about the internal processes needed to perform a
business service. In this thesis, the notation proposed by
(Giorgini et al. 2006) has been adopted to graphically
represent the trust in service models. The graphical
notation corresponding to the Trust notion is represented
in Figure 5.23.

• Delegation: this indicates that one actor delegates the
permissions to carry out a specific activity (a business
service) to another actor. By delegating the provider the
responsibility to perform a business service, the requester
extends its capabilities.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

177

Car Rental
Company Rent a Car walk-in

customer

<offers>
service

Walk-in
rental

Car Rental
Company Rent a Car walk-in

customer

<offers>
service

Walk-in
rental

t t

Figure 5.23 The graphical notation for trust

Delegation and Trust are two closely related concepts. Both
concepts have a direct influence on the vulnerability of the
requester actor. Thus, it is important to point out that requesting a
service increases the capabilities of the requester actor, but it is
also true that this actor becomes vulnerable if the service provider
fails to deliver the service.

Figure 5.24 presents the meta-model that represents the requester
and provider concepts.

Business
Services

Service
Requester

Service
Provider

Actor

is anis an

uses realizes

Figure 5.24 Meta-model for requester and providers

5.3.9 Requesting a service
In order to provide the functionality associated with business
services, the enterprise must offer certain fragments of its
business processes as an interface with potential customers. One
of the fragments that needs to be offered is the mechanism for
requesting the service.

It is necessary to point out that the services of similar contexts
and domains have similar processes for requesting the service.
This is because these services normally share the same
regulations (of external entities) to offer services to customers,
and also because these services share similar internal regulations

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

178

and restrictions to perform their business processes. The
similarities in the definition of protocols make the definition of
organizational patterns for the basic protocols of the enterprise in
similar domains possible. For example, most of the car rental
companies shared the same “terms and conditions” for renting a
car (the users need to have the permitted age, have a valid driver
license and have a valid credit card). The terms and conditions
enable the clerks to validate the authorized users.

As stated above, each business process is implemented through a
business protocol that is represented using the i* notation. Figure
5.25 shows the generic schema we propose to represent the
protocol for requesting business services.

requesting
the service

Enterprise

Business Process Model Business Protocol Model

Analyze the
preconditions
for the Client

Indicate the
acceptation
or rejection

Indicate the
acceptation
or rejection

deliver
data
deliver
data

Wait for the
notification

acceptation/
rejection

requested
data

request
the service
request
the service

Analyze the
own pre-
conditions

Analyze the
own pre-
conditions

Enterprise
Customer

authorize
the service
authorize
the service

use the
service
use the
serviceprovide the

service
provide the
service

service

Figure 5.25 The generic schema for requesting services

An example of the processes needed for requesting a Walk-in
Rental is shown in Figure 5.26 for the Car Rental Management
case study. In this example, the following tasks have been
represented in the protocol model to perform a walk-in rental:
Request data customer, analyze customer information, check the
rental preconditions, check the bank references of the customer
(to do this, the car rental company uses an external business
service provided by a banking institution), and finally, accept or
deny the rental of the car to the walk-in customer. Note that, the
protocol model is represented using the pure i* notation. The
reason for this is that i* is well equipped to represent the behavior
of the organizational actors and the rationalities of this behavior.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

179

Analyze the
preconditions
for the Client

Analyze the
preconditions
for the Client

Indicate the
acceptation
or rejection

Indicate the
acceptation
or rejection

deliver
data
deliver
data

Wait for the
notificationacceptation/

rejection
car rental

customer
data

request
a car rental
request
a car rental

Analyze the
Car rental
preconditions

Analyze the
Car rental
preconditions

Car rental
company Customer

authorize
the car rental

Rent a carRent a carProvides cars
for rental
Provides cars
for rental

Bank
credit card
references

Car Rental
Company

Request
walk-in
rental

Request
walk-in
rental

service

Figure 5.26 The requesting process for a Walk-in Car Rental

5.3.10 Business processes
The main idea of the proposed service approach is the reification
of abstract representation of services into concrete business
processes. A model that provides an abstract representation of the
business processes is proposed (business process model) as an
extension of the i* framework. In this model, a concrete business
process is represented as an abstract building block.

The processes represented in the model can be categorized into
transactional and non-transactional. The definition given in
(OASIS 2007) for transactional processes based on WS-
transactions has been used to characterize processes in our
service-oriented approach. To be considered transactional, a
business service must fulfill the following ACID conditions:

Atomicity: The participants of the business service
(provider and requester) must confirm or cancel the
agreement about the service. The entire sequence of
actions of the process must be either completed or aborted.
The transaction cannot be partially successfully. In the
case where some of the participants reject the service
conditions, all operations of the business services must be
cancelled.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

180

Consistency: A consistent result of the business service
must be obtained every time the service is executed. More
specifically, the business process takes the resources
(physical or informational) from one consistent state to
another.
Isolation: the effects of the business service are not visible
until all participants confirm or cancel. Intermediate stages
of the process are not visible to the external world.
Durability: The effects of the transactions must be stored.

An example of a transactional process for the running example is
the following:

The transaction begins:

• Customer selects a car to rent, and makes a rent request.

• Car rental company quotes price.

• Customer agrees to the price, and gives money to
provider in exchange for object.

• Car rental company delivers receipt and acknowledges
sale. The transaction is committed.

The transaction ends

In the case of non-transactional business processes, not all the
processes that make up the business process need to be executed
in order to perform it. In the case of a non-transactional process,
some of the participants of the service can cancel some of the
activities associated with the service without affecting the final
result of this service. Therefore, no rollback activities are needed
to solve the interruption of the service in an intermediate step.
Also, in a process of this kind, the effects or intermediate stage of
the business service can be visible during the service execution.

The generic schema of the process model is shown in Figure 5.27.
The concept of i* dependency has been adopted in order to
represent the processes associated with a specific business
service. The process dependency indicates that the requester

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

181

delegates to the provider with the responsibility to perform the
process. As in the same case as the service dependency, if the
provider fails to provide the process, then the requester becomes
vulnerable. It is necessary to point out that the main difference
between task and process dependency is the granularity of their
specifications. In the case of task dependency, we refer to a
specific piece of work considered as a basic unit of work. Pre-
and post-conditions can be defined as completion criteria for task
dependencies. In the case of process dependency we refer to
abstract activities that encapsulate a collection of related,
structured activities that produces a specific service or product for
a particular customer. Thus, a process can be broken down into
specific tasks. This is the reason why a new primitive has been
proposed to represent business processes.

process
owner

process
owner

Process TT Process TT

ProcessProcess

ProcessProcess

service

EnterpriseEnterprise

Figure 5.27 The generic schema for the process model

5.3.11 Visibility rules
One of the advantages of modularity is the possibility of using
mechanisms to control visibility between the service requester
and the service provider.

Two different kinds of visibility aspects have been considered in
this work: actor and service visibility.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

182

5.3.10.1 Rules for service visibility
In the most general case, the customers only have visibility of the
offered business services. In this scenario, the customer does not
have visibility of the supporting services needed to perform the
offered services. Only the internal actors of the organization have
visibility of the supporting business services. Three different
scenarios were proposed to represent the different service
visibility schemas: black box, grey box, and white box visibility.

In the case of the black box schema, the requester does not have
visibility of the internal processes needed to perform the service.
In the case of a grey box, the requester can introduce certain
monitoring tasks to control the service, and finally, in the white
box schema, the requester has total visibility of the composite
processes of the service. The visibility schemas are explained in
detail in Chapter 6 where the service-oriented method is
presented.

5.3.10.2 Rules for actor visibility
In almost all cases, the customer of offered services does not have
visibility of the internal actors that execute the task of the
business service. This is because the customers of the services
usually interact with the external actors of the business service
(those playing what we have called the clerk role). However, in
certain cases, the customer does have visibility of other internal
actors of the enterprise.

Figure 5.28 presents an example of the schema for visibility of
services and actors. This figure represents the standard schema
for actor visibility, where the customer has visibility of the
following elements: a) the offered business services, and b) the
actors of the provider that interact with external customers
(clerks). In this standard schema, the customer does not have
visibility of the following business elements: a) the internal
processes and the supporting business services that are needed to
perform the offered business services. b) The customer does not
have visibility on all the actors involved in service execution. c)

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

183

The delegation of services and tasks inside the enterprise
boundary is also hided to the customers.

Based on these characteristics of the schema for visibility, the
business service represents the appropriate interface between the
providers and the service customers.

Figure 5.28 also presents the propagation of visibility of the
actors within the enterprise boundary. In visibility of this kind, an
actor can supervise the services and processes of the actor in the
subordination chain that is defined in the composite actor
structure. In this context, an actor has visibility of the services
and processes of other subordinated actors.

Dept.
manager

Process
owner

Process
owner

Process
owner

Employee Clerk

Business
Service

Service

Process

Task

Internal
service

visibility

visibility

delegation

Process
owner

Manager

visibility

Dept.
Manager

Service
Visibility

Customer

Actor
Visibility

Enterprise
Boundaries

Dept.
manager

Process
owner

Process
owner

Process
owner

Employee Clerk

Business
Service

Service

Process

Task

Internal
service

visibility

visibility

delegation

Process
owner

Manager

visibility

Dept.
Manager

Service
Visibility

Customer

Actor
Visibility

Enterprise
Boundaries

Figure 5.28 Visibility of services and processes

The visibility of services and processes is defined by using
formulas explained in section 5.5. It is important to point out that
the model in Figure 5.28 is not included in our service-oriented
approach and is only used for explanation purposes.

5.3.12 Delegation rules
Based on the hierarchical model defined in the composite actor
structure, the actor responsible for a business service can delegate
it to its subordinate actors based on the hierarchical model
defined in the composite actor structure. In this context, only the

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

184

actor responsible for a business service can delegate the
responsibility to perform the services or part of them (processes,
tasks) to subordinated organizational entities (functional areas,
departments, or internal actors).

The delegation of services allows us to define intentional
relationships between the different entities that make up an
organization in accordance with the i* proposal. The reason is
that delegation describes and identifies the situations where the
actor responsible for the business service becomes vulnerable if
the delegated actor fails to perform the service. The explicit
delegation of responsibilities allows us to make an analysis of
business process reengineering.

Figure 5.29 shows the schema for the delegation of services and
processes based on the composite actor structure and the
organizational structure of the enterprise. This model is used to
exemplify that the Director of the company can delegate the
responsibility to perform a service to his two subordinated
managers. The managers can also delegate the service
responsibility to their department managers. In the normal
delegation schema, that needs to be defined in the composite
actor structure, a manager can not delegate a service to another
actor that is not in its subordination chain.

Director

manager manager

Dept.
Manager

Dept.
Manager

G1

G4G3

G3

G5

G5 G7

service

service

G4

G8

Enterprise
service

service

service

manager manager

Dept.
Manager

Dept.
Manager

Director

subordinate

manager manager

Dept.
Manager

Dept.
Manager

Director

subordinate

Figure 5.29 Delegation based on the composite actor structure

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

185

It is important to point out that delegation schema is defined by
using formulas explained in next sections. In this sense, the
model in right side of Figure 5.29 is not included in our service-
oriented approach and is only used to exemplify the relation
between the composite actor structure and the service delegation
schema.

5.4 Architectural models

The business services approach architecture proposed in this
work is composed of three complementary models: The global
model, which represents the high-level view of the services; the
process model, which represents the processes that compose each
service; and finally, the protocol model, which represents the
behavior of each business process.

5.4.1 The Global Model
The global model represents an abstract view of the services
offered by the enterprise to potential customers (offered services).
In this model, the business services are associated with the
enterprise goals. Thus, it is possible to shows how the services are
used to satisfy the enterprise goals and also to represent how a
business service provides a solution to fulfill the goals of the
service customers.

Two different views of the global model can be used according to
the information that needs to be represented: the abstract view
and the concrete view.

5.4.1.1 Abstract view of the global model
It is possible to provide a simplified representation of the global
model that only shows the actors and their offered business
services. This model hides the internal behaviors needed to
provide the service. Thus, this model only indicates the services

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

186

as black boxes and the goals dependencies associated to the
business services.

Figure 5.30 shows the abstract representation of some external
business services of the Car Rental Management case study. The
abstract representation of the services in the global model enables
analysts to use the global model to create the first agreements
with the enterprise stakeholders.

enterprise
service

customercustomer

Goal A

Goal A

customercustomerGoal A

customercustomer

Goal D

Goal A

customercustomer

Goal D

Goal A

customercustomer Goal A

Goal B

customercustomer

Goal A

Goal A

Goal A

service

service

service

service

service

Figure 5.30 The abstract view of the global mode

5.4.1.2 Concrete view of the global model
In the concrete global model, the offered business services are
linked with the internal goals of the provider actor. To do this, a
goal-refinement tree must be defined to captures the existing
reasons for each business service provided by the enterprise.
Therefore, it is possible to show how the services are the
mechanisms to satisfy the enterprise goals. This characteristic
represents a novel approach for representing services because
most of the current service-oriented approaches only consider the
procedural aspects of the processes involved in the service,
without considering the rationalities that exist behind these
processes. Figure 5.31 presents an example of the concrete view
of the global model.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

187

The concrete view of the global model expands the abstract view
of the global model by defining the goals of the actors and
associating these goals with the services that are offered by the
enterprise to potential customers.

Enterprise

serviceservice

customercustomer
Goal D

Goal A

customercustomer
Goal D

Goal A

Figure 5.31 The concrete view of the global model

The explicit representation of the association between services
and goals enables analysts to use goal analysis mechanisms to
improve the performance of the model. To carry out this process,
we propose the use the formal framework for goal reasoning
proposed by Giorgini (Giorgini et al. 2002).

The formal framework for goal reasoning proposed by Giorgini
allows us to evaluate qualitative and quantitative goal
relationships, and also to detect and solve contradictory situations
in the satisfaction of goals. Contradictory situations can be found,
for example, when we want to allow for multiple decompositions
of a goal G into sets of sub-goals, where some decompositions
suggest satisfaction of G while other suggest denial. Therefore,
different business services generated for goal decomposition
could lead to contradictory situations.

The global model could be used not only for modeling the
choreography of isolated enterprises, but also as a powerful

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

188

mechanism to represent offered business services from different
companies. The global model can be used to define the
choreography between services of different enterprises. The
choreography concerns describe externally observable
interactions between the service provider and requester through a
business service. In this case, the business services will define the
description and semantics of the contracts among different
enterprises, which must be accepted as use conditions.

The service global model is also used to define the relevant
conditions that define a business service, visibility relationships,
and trust policies.

As stated above, it is possible to define three different visibility
schemas (black box, grey box, and white box) depending of the
possibility of the service customer to monitor the activities
associated with the business services.

In order to specify security and trust policies, which constrain the
behavior of the requesters and the providers, we use a semantic
extension of the i* modeling construct proposed in Giorgini´s
works (Giorgini et al. 2006).

 The semantic richness of this proposal allows us to use the
service global model to clearly represent the notions of delegation
and trust for execution, as well as the delegation and trust for
permission. The work of (Giorgini et al. 2006) also offers a well-
founded solution to represent ownership relationships. Thus, it is
possible to explicitly represent the actors that have permission to
execute the business services. It is important to point out that
graphical extensions to the i* modeling concepts have been
proposed in Giorgini´s work to fit the semantics of the security
and trust policy concepts.

The values defined for the global model can be propagated
through the processes that compose the service. In this way, the
visibility rules defined for offered services can be propagated to
provisioning services and business processes.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

189

5.4.2 The Process Model
Once the external business services have been represented in the
global model, each business service is refined into more concrete
processes that are required to perform it using the business
process model.

The process model uses the process dependency to represent the
processes that compose each business service elicited in the
previous modeling step. In this thesis, two types of processes are
defined: a) the external processes which are those in which the
customer plays a role by performing certain actions of the
process. The processes for requesting and finishing the service are
examples of external processes, b) internal processes which are
those that involve only actions of the organizational actors of the
enterprise.

Practical experiences revealed that there are processes that always
need to be represented in a business service specification: the
process for requesting the service and the process for finishing
the service. In the former, it is necessary to represent the group of
activities for initiating the services. In the latter, several actions
must be performed in order to create an agreement about the
finalization of the service. This is the reason why the requesting
and finishing services are always specified in the proposed
service-oriented architecture for the i* framework.

There are several aspects that need to be considered in the
definition of business processes: transactional properties of the
processes, definition of authorized actors, execution order of the
involved processes, delegation, and the visibility policies.

5.4.2.1 Transactional and non-transactional processes
The representation of the business processes in an isolated model
makes it possible to represent transactional processes. Based on
practical experiences, we have determined that there are
processes that fulfill the conditions to be considered as
transactions. As stated in 5.3.9, we adopt the concept of

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

190

transactional process based on WS-transactions (OASIS 2007) to
identify transactions in our service-oriented approach. We have
adopted this specific proposal because the values for atomicity,
consistency, isolation, and durability are more flexible than
values defined in the original definition of transactions for
software execution.

In our approach, a specific notation has been developed in order
to represent the set of processes that compose a business service.
The concept of milestone is also proposed to represent the order
of execution of the business processes.

One of the key differences of our method and current i* approach
is the definition of processes. In our proposal, the processes are
always associated to a specific business service. In current i*
approach, there is no a higher level that business process.

5.4.2.2 Authorized actors
The process model has the appropriate abstraction level to define
the authorized actors to perform the processes of the business
service.

Due to the current characteristics of the i* framework, it is only
possible to represent the authorized actors that fulfill the
conditions to request the services. It is not possible to present
those actors without authorization to use the service. There is also
no mechanism to graphically represent the requirements for the
authorized actors. For this reason, these requirements need to be
represented in the actor’s formal model specification in Formal
Tropos specification (Fuxman et al. 2001).

In the Car Rental case study, the Rental Company establishes the
policies regarding the actors that are authorized to rent a car (the
minimum permitted age, a credit card, and a valid driver license).
These requirements are shown in Figure 5.32. The use of the
service is denied to customers that do not comply with these
service regulations. This is why the regulations are usually used
to specify the process for requesting the business service.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

191

valid
customer

Car rental
company

rent a car
walk-in
rental

customer
without

rented cars
customer

non-
blacklisted

customer
with

valid license
driver

customer
with

credit card
customer

with
permitted

age

is-a

is-a

is-a

is-a

is-a

Figure 5.32 An authorized actor to rent a car

5.4.2.3 Process execution order
The lack of mechanisms for representing the execution order of
the organizational task is one of the more relevant issues of the
current i* framework. We consider that it is necessary to provide
flexible mechanisms to represent the execution order but without
breaking the intentional focus of the i* process model. To do this,
we propose using the concept of milestones to indicate the
execution order. A milestone, which associates two processes,
represents that the execution of a process depends on the
executions of a previous process. The concept of milestone
complies with the concept of dependency of the i* framework.

Figure 5.33 presents the generic schema for the process model. In
this model, the process for requesting and finishing the service
has been represented as a default option for business services.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

192

Business
service

Service
requester

Aggregated processes

Goal

Transactional
process TT Transactional
process TT

Non transactional
process

Non transactional
process

Non transactional
process

Non transactional
process

Non transactional
process

Non transactional
process

Enterprise

process
owner

process
owner

Figure 5.33 The generic schema for the process model

It is important to point out that the delegation and visibility
properties of the process model should be inherited from the
global model policies.

5.4.3 The Protocol Model
The protocol model focuses on describing the organizational
behavior of each business process elicited in the previous step.
The protocol model will constitute the lower level i* specification
of the proposed business services architecture. In order to specify
the organizational behavior, the protocol model is represented
using the revise version of the i* modeling constructs, that were
presented in Chapter 4.

The definition of supporting business services in the protocol
model allows us to generate a simplified view of the semantics of
each business process. The use of business services makes it
possible to reduce the number of modeling elements that compose
the protocol model, facilitating its creation and reuse.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

193

The description of the protocols in an isolated model permits the
definition of patterns for the recurrent cases; this is the case of the
protocol for requesting a service, which represents the act of the
requester and provider to define an agreement for using the
service. In this specific case, we have detected that there is a
generic pattern for representing the group of tasks and resources
needed to request a service.

It is important to point out that the definition of protocols is
constrained by the standards defined by the industry. This
situation also enables the definition of protocol patterns for
specific application domains.

Another advantage of the proposed approach is that the
specification of fragments of processes with precise semantics
opens the possibility to reuse its specification in other similar
projects.

The generic schema for the protocol model is shown in Figure
5.34. This Figure is useful to indicate that each business process
must be refined into a concrete model by using the i* notation.
Business services of external business actors can be represented
to indicate the need of the service provider to use external
business services. As commented before, this model is
represented by using the revisited version of the i* concepts
proposed in Chapter 4.

resource

Enterprise authorized
customer

task

Goal

Enterprise
service

task

task

task

task task
task

task

Goal

task

task

Business Process
Model

Business Protocol Model

Car RentalCar Rental
CompanyCompany

ProcessProcess

WalkWalk--inin
customercustomer

Figure 5.34 The generic schema for the protocol model

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

194

5.5 The formalization of the components of the proposed
service-oriented approach

A formalization of the graphical diagrams of the business service
architecture is proposed in order to fix the semantics of the
components and also to permit the automatic analysis of
organizational requirements. The formalization of the concept
was made in Datalog, a language of logical facts and rules, which
is a subset of Prolog language. The basic concepts of Datalog are
the following: predicate, term, constant, variable, clause, rule,
fact. It is important to point out that several definitions of the
components of the proposed service-oriented architecture have
been adapted from those presented in the work of Zanonne
(Zannone, 2007) for modeling security and privacy models.

5.5.1 Predicates
These predicates enable us to identify the main concepts of the
service-oriented architecture proposed in this thesis: service, goal,
task, resource, process. The predicate service establishes the type
of the business service (st ∈ {offered, supporting}). The predicate
process also indicates the associated type. (pt ∈ { transactional,
nontransactional}). The predicates regarding actor, agent and
roles enable the analyst to define generic actors and instances of
actors (agent) playing specific roles. The unary predicate actor is
introduced for those cases when it is not necessary to distinguish
among agents, roles and positions.
Type Predicates
service (Type: st, Service: s)
goal (Goal: g)
task (Task: t)
resource (Resource: r)
process (Type: pt, Process: p)
actor (Actor: x)
agent (Agent: a)
role (Role: l)

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

195

Following, the formalization of the actor properties is presented.
The properties have been used to establish that an actor can play
the role of provider or requester for a specific service (predicates
provides and requests). The actor that provides the service is the
legitimate service owner, who is responsible for managing the
relationship with the customer (predicate own). The service
owner can delegate the responsibility to perform the service to
another subordinated actor (predicate delegate), So that, the new
owner of the service will be the subordinated actor. Predicate
service_delegatechain represents chains of delegation of service
among the chains of subordinated actors in the enterprise. The
delegation of services to subordinated actors is only permitted if
the service owner trusts in the delegated actor to provide the
service (Predicate trust). These predicates can also be used to
indicate the trust of the requester in the provider to provide a
certain service. Predicate should_perfom is used to indicate actors
who should directly fulfill the service. The service owner must
implement the necessary mechanism to ensure that it can satisfy
the business service (predicate can_satisfy). If the service owner
delegates the responsibility to perform the service, then it is
necessary to indicate whether the new service owner has
authorization to delegate the service (predicate per_delegate); if
not, this actor must directly provide the service. Predicate
monitoring indicates that an actor can execute supervision
activities over the actor that provides the service.

Actor Properties
provides(Actor: x, Service: s)
requests(Actor: x, Service: s)
owns(Actor: a, Service: s)
delegate(Actor: x , Actor: y, Service: s)
service_delegatechain(Actor: x , Actor: y, Service: s)
trust(x: actor, y: actor, s: service)
trustchain(x: actor, y: actor, s: service)
should_perform(Actor: x, Service: s)
can_satisfy(Actor: x, Service: s)
per_delegate_serv(Actor: x, Service: s)

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

196

monitoring(Actor: x, Actor y, Service: s)
monitoringchain(Actor: x, Actor y, Service: s)

The association relations predicates presented below define the
relationships among business actors. Predicate play identifies the
role played by an agent. Predicate is-a is used to model
generalization and specialization hierarchies of actors. Predicates
specialize and instance are used to link the social level of i* with
the individual level. The part-of relationship is useful to describe
how an organizational unit is part of an enterprise, and how a
specific actor is part of a department, which is, in turn, part of an
organizational unit. This flexibility is possible due to the power of
the i* notion of actor for representing abstract concepts and
specific individuals (agent, roles and position). Predicate
subordinates enable us to define the hierarchical relationships of
a chain of command in which an actor dominates another actor.
Predicate subordinatedchain represents chains of subordination
among members of the enterprise.

Actors relations
play(a: agent, p: role)
is_a(p: role, q: role)
specialize(Role:p, Role s)
instance (Agent: a, Role: p)
is_part_of(x: actor, y: actor)
subordinate(x: actor, y: actor)
subordinatedchain (x: actor, y: actor)

As stated above, the feature model has been used to define the
service variability. The variability in defining services enables the
definition of aggregation of high-level services into sub-services.
The formalization of the service properties makes reference to the
four possible relationships among services and sub-services:
mandatory, optional, alternative, and or-decomposition.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

197

Service relations
mandatory_decomposition(s:service, s1:service, . . . , sn : service)
optional_decomposition(s:service, s1 : service, . . . , sn : service)
alternative_decomposition(s:service, s1: service, . . . , sn :
service)
or_decomposition(s : service, s1 : service, . . . , sn : service)

The objective of the provider to offer a business service is to
satisfy its own goals and the goals of the service requester. This is
why the formal definition of the predicate satisfy_ex indicates that
several organizational goals of the requester can be satisfied by
using a specific service. The predicate satisfy_in indicates that
goals of the requester can be satisfied by providing a business
service.

Service Properties
satisfy_ex(s: service, a: actor, g1:goal, ….gn:goal)
satisfy_in(s: service, a: actor, g1:goal, ….gn:goal)

One of the basic mechanisms to associate services with the
strategic enterprise objectives is the decomposition relationship.
In our proposal, a goal can be refined using AND and OR
decomposition. AND_decomposition applies if goal g is
decomposed into sub-goals g1 and g2, whereas
OR_decomposition applies when the goal g is decomposed into
sub-goals g1 or g2.

Goal refinement
AND_decomposition(g : goal, g1 : goal, . . . , gn : goal)
OR_decomposition(g : goal, g1 : goal, . . . , gn : goal)

5.5.2 Axioms for predicates
The axiomatization of predicates that define the semantics
underlying the service-oriented architecture for the i* framework
is presented below. It is important to point out that the letters S,

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

198

G, T and R are used to indicate, respectively, Service, Goal, Task
and Resource. When referring actors we use letters X, Y and Z.
Agents are identified by using A, B and C, and roles are
identified by P,Q and V.

Following, we present the predicates that map the social level
with the individual level.

From social level to individual level
specialize(P,Q) ← is-a(P,Q)
specialize(P,Q) ← specialize (P,V) ∧ is-a(V,Q)
instance(A, P) ← play (A,P)
instance(A,P) ← instance(A,Q) ∧ specialize(Q,P)
provides(A,S) ← provides(P,S) ∧ instance (A,P)
request(A,S) ← request (P,S) ∧ instance(A,P)
owns ← owns (P,S) ∧ instance(A,P)
delegate(A, B, S) ← delegate (P,Q,S) ∧ instance (A,P) ∧
instance(B,Q)
service_delegatechain (A, B, S) ← service_delegatechain (P,Q,S)
∧ instance (A,P) ∧ instance(B,Q)
trust(A, B, S) ← trust (P,Q,S) ∧ instance (A,P) ∧ instance(B,Q)
should_perform(A, S) ← should_perform(P,S) ∧ instance(A,P)
can_satisfy(A, S) ← can_satisfy(P,S) ∧ instance(A,P)
per_delegate_serv(A, S) ← per_delegate(P,S) ∧ instance(A,P)
One of the main reasons to formalize the modeling concepts
presented in this thesis is to attempt to eliminate the ambiguity
that could exist by only providing definitions and examples of the
components of the proposed service-oriented architecture.

5.6 Our business service approach as starting point for
services in the implementation level

One of the main concerns for representing services in the
organizational level is the incompatibility of current approaches

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

199

to map services in the implementation level (web services) with
services in the business model. At the present time, no solutions
have been given to enable the analyst to softly translate an
enterprise model into a set of web services that implement the
business logic. This is because current enterprise models are
mainly focused on representing the semantics of transactional
business processes rather than being focused on considering the
business processes as means to provide services or values to
customers.

Recently, research has been done to attempt to make the
transformational process systematic; however, the main issue of
these efforts is the non-correspondence between business
processes and web services. In this thesis, we have analyzed two
main approaches that consider the transitions between services at
the organizational level and services at the implementation level:
a) The works where i*/Tropos have been used in a service
context, and b) The works that offer a solution for representing
services in the organizational level (e3value, BPEL4WS, Business
State machines).

In the first approach, the i* and Tropos notations have been used
in the organizational context as a starting point for the definitions
of services in the implementation level, mainly web services
(Lau and Mylopoulos 2004), (Colombo, Mylopoulos and
Spoletini 2005), Kazhamiakin (Kazhamiakin, Pistore and Roveri
2004). The main issue of this approach is that, while the resultant
specification must be a set of services that fulfill the properties of
being a loosely coupled set of components with coarse-grained,
well-defined, self-contained and stateless functionalities, the i*
model is the representation of closely-coupled business processes
with non coarse-grained functionalities. This is because in i*
models, all information about business processes is represented in
the same diagram at the same abstraction level, without
granularity among the concepts. Therefore, there is a natural non-
correspondence between these two models (business and
implementation) that makes the transformational process difficult
(Figure 5.35).

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

200

Service
Registry

Service
Requester

Service
Provider

Find Publish

Bind

• Loosely coupled
components

• coarse-grained functionality
• Well-defined and self-

contained functionality
• stateless functionality

…

…
….

…

…

…

…

… …

……

…

…

…

…

…

…

…

…
….

…

…

…

…

… …

……

…

…

…
…

… … …

…

… …

Actor

Actor

Actor

Actor…

…

…

• Closely-coupled
business processes

• Non coarse-grained
functionalities

Figure 5.35 The correspondence between a pure i* model and a web service

description

In the second approach, we can find several notations for
representing services at the organizational levels (Cherbakov et
al. 2005), (Baida 2006). The main disadvantage of these
techniques is that they are basically transactional descriptions,
where the focus is placed on the representation of the processes
and the choreography needed to model the set of services. In this
case, the specification in the organizational model appropriately
matches the description of services in the low level. The main
issue of this approach is that the transactional description of the
business services lacks support for strategic descriptions of
business processes and also lacks mechanisms to determine the
conformance between business processes and strategic objectives.
Therefore, it is not possible to perform organizational
improvement tasks before generating services from business
processes (Figure 5.36).

http://portal.acm.org/results.cfm?query=author%3AP727289&querydisp=author%3AL%2E%20Cherbakov&coll=GUIDE&dl=GUIDE&CFID=2687248&CFTOKEN=11918074

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

201

Service
Registry

Service
Requester

Service
Provider

Find Publish

Bind

• Loosely coupled
components

• coarse-grained functionality
• Well-defined and self-

contained functionality
• stateless functionality

• Loosely business
processes

• Coarse-grained
functionalities

process 1

process 3

process 2

process 4 process 5process 1

process 3

process 2

process 4 process 5

Figure 5.36 The correspondence web services and ad-hoc business models

In our proposal, the i* framework has been adapted in order to
represent services at the organizational level. The abstract
representation of the business service enables the analyst to
manage the complexity of the service implementation in an
incremental way. Therefore, the business services represented in
the model represent well-defined functionalities that encapsulate
a set of self-contained business activities needed to implement the
service. Thus, it is possible to suggest a light transition between
the services represented in the organizational level and the
services represented in the implementation level (Figure 5.37).

Business Service Model

• Well-defined organizational
functionalities

• Self-contained
• stateless functionality
• coarse-grained functionality

ActorActor Goal ActorActorservice

ActorActor

service

service

Goal
Goal

ActorActor Goal ActorActorservice

ActorActor

service

service

Goal
Goal

• Loosely coupled
components

• coarse-grained functionality
• Well-defined and self-

contained functionality
• stateless functionality

Web Service Model

lead

Figure 5.37 The correspondence between services in business and

implementation levels

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

202

5.7 Conclusions

In this Chapter, we propose extending i* in order to address the
weaknesses reported in the empirical evaluation. Specifically, we
offer a solution for the problems of refinement, modularity,
complexity management, reusability and scalability. Our solution
is based on the concept of a business service architecture where
encapsulated organizational units can only participate in actor
dependency networks through well-defined interfaces.

The Chapter presents the main components of the proposed
service-oriented architecture in terms of modeling primitives and
modeling diagrams.

Some formalization is given in order to establish the semantics of
the service components. To do this, Datalog, a language of logical
facts and rules, which is a subset of Prolog language has been
used to represent the formal properties of the service-oriented
architecture.

With the proposed modifications, our intention is to overcome the
current limitations that practitioners face when using i* in its
current state. In fact, these modifications are intended to both,
solve the problems that were detected and to make facilitate
practical application of the method.

203

Chapter 6

6. The Service-Oriented Method for the i*
Framework

This section introduces our method to enhance the process for
creating and representing an organizational model using a
service-oriented approach.

6.1 Introduction

One of the main contributions of the i* framework is the use of
social and intentional concepts in order to represent the complex
semantics of enterprises. These modeling concepts distinguish i*
from rest of modeling techniques that offer process-based
organizational descriptions. The i* concepts offer powerful
semantics for representing the complex structures of enterprises
today. However, the use of i* is limited due to the lack of
mechanisms to incrementally construct an organizational model.
There are several research works that offer well-founded methods
for starting the elicitation process with more conventional
mechanisms, such as business goals. Nonetheless, in almost all
goal-oriented requirement techniques, the low-level goals are
directly translated into requirements for the information system.
Although it is true that this approach is closer to the final users; it
is also true that this approach does not allow us to carry out
analyses (business process reengineering, dependency analysis,
workflow analysis, tasks analysis) that are fundamental for
obtaining a set of requirements that reflect the expected
functionality by the users of the information system.

In this thesis, we propose joining taking advantage of both worlds
by performing the early elicitation process with a service-oriented

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

204

method, which uses the well-founded social and intentional
characteristics of the i* framework to appropriately represent the
enterprise situation.

The proposed method will enable us to describe an enterprise as a
composite of business services that encapsulate a specific
organizational behavior. We introduce the concept of refinement
though the decomposition of the business services into a set of
business processes that represent the detailed view of the
activities needed to perform the service.

We illustrate our approach using the same case study used in the
previous Chapter. The case study (which is an extension of the
rental car case study used in the empirical evaluation of the i*
framework) considers the set of services offered by a company
that is specialized in selling travel packages and car rentals.

The steps of the proposed method for representing an
organizational model using the business service architecture are
presented in detail in the following sections.

6.2 Overview of the proposed method

The main objective of the proposed service-oriented method is to
produce a description of the current way in which the enterprise
offers/uses services in order to fulfill its current needs. The
objective of this stage is to create a simple view of the services
that are used and offered by the enterprise being analyzed. The
details about the reification of business services into business
processes are also presented in this modeling stage.

Most current business modeling techniques have neglected the
representation of the current situation of the enterprise, providing
top-down approaches where the manager’s point of view is used
to obtain the high-level goals of the enterprise. This manager’s
point of view is also used to refine the goals of the enterprise until
the level of tasks needed to satisfy the goals is reached. However,
this approach which is useful in the design of new enterprise

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

205

models usually produces models that are too ideal to correspond
with the current way business processes in an existing enterprise
are performed. Therefore, it is not the appropriate source for
improving the enterprise.

The description of the current situation of the enterprise is
important because it allows us to understand the current goals of
the enterprise and how these goals are achieved through the
involvement of organizational actors’ processes of the enterprise
(Kavakli and Loucopoulos 1999).

Loucopoulos also establishes that “any organizational reform
requires, prior to designing new business processes and support
information systems, a clear understanding of the current
enterprise situation in terms: (a) what are the current enterprise
processes; and (b) what is the purpose that current enterprise
processes aim to fulfill.” (Loucopoulos and Kavakli 1997).

The idea of this thesis is to represent the current enterprise
situation based on the service-oriented architecture. To do this,
four aspects need to be represented:

• What: Definition of the scope of services, this is about
determining what the service actually is.

• Who: Definition of who the external actors that drive the
service are.

• Why: Identification of the reasons to offer services.

• How: Representation of the details about the processes
that coordinate the services and as well as the details on
how a services itself is implemented.

We use the proposed architectural models (defined in Chapter 5)
in order to represent these four key aspects. The global model is
the appropriate means to represent the what, who and why
aspects. The process model gives a high-level view of the
processes that compose each service. Finally, the protocol model
offers a detailed view of the implementation details of each
business process.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

206

The steps to construct the global, process and protocol models are
presented below.

• The first step is to represent the current enterprise
situation which consists of defining a service global
model. The objective of this phase is to define a model
that represents the business services offered and used by
the enterprise to fulfill its current goals. Once the external
business services have been represented in the service
global model, the delegation structure for each business
service must be identified and represented using the
composite actor structure.

• Once the delegation model has been defined, a business
process model for each business service must be created.
The objective of this phase is the identification and
representation of the set of business processes that make
up each one of the business services.

• The last step in the representation of the current
enterprise situation is the definition of a business protocol
model for each business process defined in the previous
steps. Once the process model has been represented at a
high abstraction level using the business process model,
the behavior of each one of the processes that compose
the business service must be identified and represented. A
protocol model, which uses the reviewed version of the i*
modeling language, is generated for each process as a
result of this step (Figure 6.1). The proposed approach
provides the necessary support for managing the
complexity of the modeling activity, allowing the analyst
to represent each fragment of a business service in
isolated diagrams.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

207

The Enterprise
context

1. Defining a service
global model

2. Defining a business
process model

3. Defining the business
protocol model

Enterprise customerEnterprise customer

enterpriseenterprise
service Goal A customercustomer

Goal A

service Goal A customercustomer

Goal A

Process 2 TT Process 2 TT

Process 1Process 1

Process 3Process 3

Enterprise

Figure 6.1The overview of the representation of the current enterprise situation

• Once the current enterprise situation has been defined, it
is possible to use the generated diagrams to produce a
description of the alternative solutions for
offering/implementing business services in order to
satisfy the desired goals of the enterprise. The objective
of this modeling stage is to generate new descriptions of
the business services that enable the enterprise to adapt to
new external conditions. To do this, softgoals need to be
used to evaluate the new services according to the quality
factors desired in the enterprise.

It is important to point out that the description of future enterprise
situation is not always needed. This description is only needed in
situations where business process reengineering is required to
solve enterprise problems or in situations where new market
conditions obligate the enterprise to modify its services or to offer
new services.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

208

Enterprise

Customer

Goal

Goal

Goal Goal Goal

quality
attributes

quality
attributes

quality
attributes

quality
attributes

Service

ActorActor

ActorActor
service

Goal

ActorActor

ActorActor
service

Goal

Current enterprise
situation Future enterprise situation

Figure 6.2 The overview of the representation of the future enterprise situation

6.3 The strategy of the service-oriented method

One of the key points in the service-oriented method is to use an
intermediate model between the information elicited from the
organizational setting and the modeling diagrams that are
proposed in this thesis. The intermediate model uses goals
structures (goal-refinement trees) and composite actor structures
to represent all details of the complex organizational setting.
Thus, the intermediate model is used to generate the diagrams of
our proposal (global, process and protocol models) that offer a
clear and simple view of the organization context. Algorithms
were developed to automatically translate the intermediate model
into the service-oriented diagrams (Figure 6.3).

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

209

The Enterprise
context

Enterprise customerEnterprise customer

enterpriseenterprise
service Goal A customercustomer

Goal A

enterpriseenterprise
service Goal A customercustomer

Goal A

service Goal A customercustomer

Goal A

Process 2 TT

Process 1

Process 3

Enterprise

service Goal A customercustomer

Goal A

Process 2 TT Process 2 TT

Process 1Process 1

Process 3Process 3

Enterprise

manager

manager manager

Dept.
Manager

Dept.
Manager

Dept.
Manager

Dept.
Manager

Missi
on

state
ment

Strat
egic
goal

Strat
egic
goal

Strat
egic
goal

Strat
egic
goal

Strat
egic
goal

Strat
egic
goal

Business
Service

<responsible>

<responsible>

<responsible>

<responsible>

<satisfy>
<satisfy>

<satisfy>

<satisfy>

<satisfy>

Goal Refinement
Tree Actor Model

<owner>

<owner>

<owner><owner>

<owner>

<owner>

<owner><owner>

Enterprise

Business
Service

Business
Service

ExternalExternal
BusinessBusiness
ServiceService

ExternalExternal
BusinessBusiness
ServiceService

ServiceServ ice
ProviderProvider
ServiceServ ice

ProviderProvider

The intermediate model

The global model

The process model

The protocol model

Figure 6.3 The strategy of the service-oriented method

In this sense, we can establish that intermediate model represents
the “working area” of our proposal and the service-oriented
diagrams represent the “clean” models to be reviewed by the final
customers.

The intermediate model allows the analyst to clearly demonstrate
the relationships among goals, business actors, services and the
chain of command of actors in the enterprise. This relationship is
established at three different levels: service level, process level
and protocol level. As stated above, the intermediate model
contains a goal-refinement tree that describes the decomposition
of the goals that support the services/processes/protocols
depending on the level of description of the model. This goal
structure is represented in the left side of the model. The
intermediate model also describes the composite actor structure
that establishes the chain of subordination of the actors in the
enterprise. This structure is represented in the right side of the
model. Finally at the bottom of the model the
services/processes/protocols are represented (Figure 6.4).

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

210

manager

Dept.
Manager

Dept.
Manager

Dept.
Manager

Dept.
Manager

Mission
statement

Strategic
goal

Strategic
goal

Strategic
goal

Strategic
goal

<responsible> Actor ModelGoal Refinement
Tree

… …
… …

Service
Goal

Service
goal

Service
goal

process
goal

process
goal

process
goal

process
goal

Dept.
manager

process
owner

process
owner

<correspond>
<correspond>

<responsible>

<responsible>

<responsible>

Business
process

Business
process

Business
process

<satisfy>

<satisfy>
<satisfy><satisfy>

<satisfy>

<owner>
<owner>

<owner>

Business
Service

Dept
manager

Enterprise

 Figure 6.4 An example of the intermediate model

It is important to point out that only the service diagram, process
diagram and protocol diagram are visible for final users.

The steps of the proposed method for representing an
organizational model using the business service architecture are
presented in detail in the following sections.

6.4 Defining the service global model

The objective of this phase consists of defining a model that
represents the services that the enterprise offers to fulfill its
strategic objectives as well as the services that the enterprise use
in order to fulfill its current goals. To do this, the offered services
are explicitly associated with the enterprise goals of the provider
actor. This characteristic enables the analyst to align the
enterprise goals with the offered business services (Figure 6.5).
As stated in Chapter 5, business services are represented as an
extended i* goal dependency that associates the requesters´ needs
with the offered service. The service is placed in the boundary of

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

211

the actor description in order to indicate that all further
organizational behaviors must be encapsulated in the service as
an interface between enterprise and customers.

The global model allows us to represent a high-level view of the
business services, hiding the details of the service
implementation. Therefore, the global model is a simple and easy
to understand model and it could be used to create the first
agreements among the business participants.

Goal customer

service 3

service 1

service 2

Goal

Goal

Goal 3

Goal 2

Goal 4

Goal 1

Service
Global
Model

enterprise

Figure 6.5 Global model to associate goals and services

Two complementary views of the service global model have been
proposed in this research work.

• Abstract view of the global model. This model is focused
on representing a simple view of the offered business
services.

• Detailed view of the global model. This model is focused
on detailing the goals that are satisfied by the offered
business services.

Subsections 6.3.1.1 and 6.3.1.2 respectively detail the set of steps
to create the abstract and detailed view of the global model.

6.4.1 Defining the abstract view of the global model.
The abstract view of the global model provides a high-level
description of the offered enterprise service. Therefore, the model
only represents what is offered without indicating the reasons
why enterprise delivers the services, and without explaining the
current implementations of the services.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

212

The following algorithm must be applied in order to create the
abstract view of the global model:

1. Elicit the services offered by the enterprise.

2. An i* actor that represents the entire enterprise is created.

3. For each business service elicited, it is necessary to detect
the potential customers for the service. An i* actor is
created for each customer of the business services.

4. A service dependency is created between the enterprise
and the customers.

5. The basic and composite business services are
represented in the model

The steps of the proposed algorithm are presented in detail below.

Step 1: Eliciting business services
In the first step to define the global model, the enterprise
managers must identify the services offered by the enterprise to
potential customers. In this step, the business managers view the
enterprise as a service provider, where the enterprise customers
are viewed as service requesters. As defined in Chapter 5, not all
the business behaviors can be considered as a business service.
These are processes where the enterprise offers a specific
functionality to external customers. From the analyst’s
perspective, it is true that functions are something the
organization cannot exist without; however, not all business
functions offer values to external customers. This obligates the
enterprise to offer business functionalities as service interfaces.
Therefore, those enterprises that do not offer values to customer
through business functionalities cannot be modeled using the
concept of business services.

The appropriate sources for eliciting business services are
personal interviews with enterprise managers, who have a broader
view of the business capabilities.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

213

Step 2: Representing the service provider
Once business services have been elicited, an i* actor that
represents the enterprise is created in the business model. As
stated in previous Chapters, the i* framework offers the
possibility of representing generic actors as well as individuals
(agents). This characteristic enables us to represent the complete
enterprise as a generic actor. It is important to point out that this
is an intermediate representation of the enterprise actor. In the
following steps, we will determine the sub-actors that compose it.
Figure 6.6 shows the services offered by the enterprise that is
analyzed in the running example.

Enterprise

Chauffeur
Reservation

service

Renting
service

Emergency
Roadside
assistance

Car
Reservation

servicePhysically
Challenged

services

One-Way
service

Customer
Assistance

service

Fuel
purchase
service

Car navigation
System service Accident

Insurance
service

Travel
Insurance

service

Integrated
Travel planning

service

Flight
reservation

service

Figure 6.6 Business services for the running example

Step 3: Representing the service requesters
The service requester is the person or organization that wants to
use the service in order to satisfy its needs. According to our
proposed modeling approach, the requester depends on the
service provider to increase its capabilities by using the
functionalities that the business service offers.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

214

The potential customers of the offered services must be detected
for each one of the elicited business services. In this case, the
normal sources for this information are also the personal
interviews with the enterprise managers.

Once the potential customers for the business services have been
detected, they have to be represented as actors in the global
model. To do this, a generic actor must be created in the business
model using the i* notation.

Step 4: Representing the service dependency
The service provider (enterprise) and requester must be associated
through a goal dependency that indicates that the customer
depends on the provider in order to satisfy a certain goal through
a specific business service. In the graphical representation, the
service has been placed in the boundary of the provider actor to
indicate that the business service is the only interface between the
providers and the requesters. The arrows of the dependency must
always be directed toward the service provider. Figure 6.7 shows
the basic schema for the abstract view of the global model.

enterprise
service

customercustomer

Goal F

Goal F

customercustomerGoal E

customercustomer

Goal C

Goal C

customercustomer

Goal D

Goal D

customercustomer Goal B

Goal E

customercustomer

Goal A

Goal A

Goal B

service

service

service

service

service

Figure 6.7 The abstract view of the global model

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

215

The graphical representation of services has advantages ones with
current service representations, where offered and consumed
services are represented as a functional description without
indicating which goals are satisfied by the services. Figure 6.8
shows two examples of the situation explained above. These
representations correspond to the proposals of IBM (Cherbakov
et al. 2005) and e3 value (Baida 2006), in which the services are
directly associated with each other without indicating the needs
that are satisfied by the service execution.

e3 value proposal

IBM proposal
Figure 6.8 Representation of services at the organizational level

In our proposed syntax, the goal of a customer is delegated
towards the service provider (this is the reason why the name of
the internal goal is the same as the goal dependency associated
with the business service). This indicates that the requester
depends on the provider to satisfy its needs through a specific
business service.

The objective of the abstract view of global model is the creation
of initial agreements between the analyst and the customers.

http://portal.acm.org/results.cfm?query=author%3AP727289&querydisp=author%3AL%2E%20Cherbakov&coll=GUIDE&dl=GUIDE&CFID=2687248&CFTOKEN=11918074

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

216

Step 5. Defining composite and basic business services.
One of the main issues in the definition of the global model is the
definition of the composite and basic services. As was stated in
Chapter 5, a composite service aggregates multiple business
services and implements mechanisms that coordinate the
aggregated services. A basic service is decomposed in processes
without further decomposition.

The definition of business service composition raises some issues
related to how to manage the variability of the aggregated
services. There are several possibilities for combining obligatory
and optional services that need to be considered in this modeling
stage. The possibility to represent alternative business services
must also be represented in this stage.

The issues about to combining composed business services have
been managed by using the feature model proposed in Czarnecki
research works (Czarneki et al. 2000). Czarnecki proposed four
features to represent the several possibilities that exist to combine
business services: mandatory, optional, alternative, and or
features. Table 6.1 shows the four Czarnecki features.

Mandatory: the child feature in this relation is always present
when its parent feature is included. For example, if an integrated
travel planning is requested, the flight reservation must be
included.

Optional: the child feature in an optional relation may or may not
be present when its parent feature is present. For example, it is
possible to include a chauffeur in the car reservation if the
customer requests it.

Alternative: a child feature in an alternative relation may be
included if its parent feature is included. In this case, only one
feature of the set of children is included. For example, when an
integrated travel planning is organized, only one means of
transportation must be defined (flight, bus, or car).

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

217

Or–relation: the child feature in an or–relation may be included
if its parent feature is included. Then, at least one feature of the
set of children may be selected. For example, to rent a car, a
customer can hire a GPS localization system or a chauffeur or
both at the same time.

mandatory

A mandatory feature is
included in the
description of a concepts
if its parent is included.

optional

An optional feature may be
included in the description
of a concept if and only if
its parent is included in the
description.

alternative

If the parent of a
set of alternative
features is included,
then exactly one
feature from this
set of alternative
features must be
included.

or

If the parent of a set of
alternative features is
included, then any
nonempty subset from
the set of or-features is
included

Table 6.1 The feature model alternatives

In this research work, the feature model has been used in order to
represent the complex configurations that are found in combining
business services.

Figure 6.9 shows the variability schema in the composition of
business services by using the feature model. This model
indicates that a composite business services is composed by two
mandatory business services (that need to be necessarily
performed if the composite business services is activated) and by
two optional services. One of the aggregated business services is
also refined in four business services where at least (and only)
one of these needs to be selected to accomplish the composite
business service.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

218

aggregated
Service

basic
service

aggregated
service

basic
service

basic
service

basic
service

Goal

customer

Composite
service

Mandatory
features

Or Features
basic

service

optional
feature

basic
service

basic
service

optional
feature

Figure 6.9 Service variability through the feature model

The variability model represents a very powerful mechanism to
represent the several possibilities to decompose a business service
in low-level descriptions.

It is important to point out that only basic business services can
be further decomposed into business processes. This is because
the refinement of a composite service in a set of business
processes would generate a process model that joins all the
processes of the services (basic and composite) that compose the
composite service that is being refined. This situation would
break the concept of modularity that is the key concept of the
proposed method.

Figure 6.10 shows an example of the use of the feature model to
service composition. In this example, the integrated travel
planning composite business service is decomposed into three
mandatory services: flight reservation, hotel reservation, car
reservation. This indicates that wherever an integrated travel
planning business service is defined, these composite services
must be included. The integrated travel planning service is also
decomposed into optional service travel insurance, which
indicates that it is optional for the customer to select this service
along with the other obligatory services. Following this example,

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

219

three alternatives have been defined for the service car
reservation, services: walk-in reservation, phone reservation and
internet reservation. The alternative feature obligates that exactly
one of the alternatives must be selected; therefore, the customer
must select one of these alternatives to make the car reservation.
The feature model represents a powerful mechanism to manage
the variability of composed business services.

Integrated
Travel

Planning

Flight
Reservation

Hotel
Reservation

Car
Reservation

Walk-in
Reservation

Phone
Reservation

Internet
Reservation

Planning
travel customer

Composite
service

Mandatory
features

Or Features
Travel

insurance

optional
feature

Figure 6.10 An example of feature model to service composition

The global model offers the flexibility to represent a) all the
service decompositions or b) a specific business service.
However, as stated above, only the basic business services can be
decomposed into business processes. Therefore, the processes for
a composite business service will be those resulting from the sum
of all the processes of the sub-services.

6.4.2 Defining the detailed view of the global model.
The specific view of the global model focuses on representing the
reasons for delivering business services to potential customers.

In order to create the concrete view of the global model, the
following algorithm must be applied:

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

220

1. Detect the provider’s needs and goals and represent these
in a goal-refinement tree in the intermediate model

2. Define the actor that is responsible for the service’s goals
and represent these in the intermediate model.

3. Detect social dependencies from the intermediate model.

4. Review the schema for service delegation.

5. Define the schema of visibility for services-

The steps of the proposed algorithm are presented in detail below.

Step 1. Defining the provider’s needs and goals
The first step for the creation of the detailed global model is the
identification of the goals that support each one of the offered
services and their representation in the intermediate model. The
objective of this step consists of describing how the business
services contribute to the satisfaction of the strategic goals of the
enterprise. To do this, an abstraction process must be carried out
for each offered service elicited in order to determine the goals
that are satisfied by the service execution.

The enterprise managers identify the strategic enterprise goals
using a goal-refinement tree (GRT) which was proposed in
Estrada works (Estrada, Martinez, and Pastor 2003). In this goal
structure, the general goal represents the mission statement of the
organization, the internal nodes represent the groups of low-level
goals for the satisfaction of a general goals, and finally, the leaf
nodes of the goal-refinement tree represent the strategic goals
(long term goals) of the enterprise that are satisfied by the offered
business services. The main idea of this process is to determine
the reasons (in terms of organizational objectives) that exist in the
enterprise to offer a certain service to potential customers. Figure
6.11 represents the intermediate model that associates enterprise
goals and business services). We consider that an enterprise goal
must exist for each offered service.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

221

Mission
statement

Strategic
goal

Strategic
goal

Strategic
goal

Strategic
goal

Strategic
goal

Strategic
goal

Goal Refinement Tree

Business
Service

<satisfy>

Business
Service

<satisfy>

<satisfy>

Business
Service

<satisfy> <satisfy>

<satisfy>

Enterprise

Mission
statement

Strategic
goal

Strategic
goal

Strategic
goal

Strategic
goal

Strategic
goal

Strategic
goal

Goal Refinement Tree

Business
Service

<satisfy>

Business
Service

<satisfy>

<satisfy>

Business
Service

<satisfy> <satisfy>

<satisfy>

EnterpriseEnterprise

Figure 6.11 Associating strategic goals and business services in the

intermediate model

It is important to point out that in this modeling level, the
enterprise is being represented as a generic actor without
identifying the internal actors that compose the enterprise.

Two complementary approaches can be followed to create the
goal-refinement tree (GRT): refinement strategy and abstraction
strategy.The refinement strategy is useful in the cases where the
analyst elicits the goal from the point of view of the
organizational managers, who tend to express high-level goals.

In the refinement strategy, it is necessary to select some of the
general goals of the organization and determine the subset of
subgoals that permit us to satisfy them until the level of business
services is reached. This information must be elicited using the
mission statement or by interviews with the enterprise managers.
This information is used to construct the high levels of the goal-
refinement tree.

The abstraction strategy is useful in situations where the analyst
elicits the goal from the organizational actors who tend to express
low-level goals or operations.

In the abstraction strategy, it is necessary to take the actors that
make the business services operable as a source for the low-level

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

222

goals of the goal-refinement tree. Later, the general goals that are
satisfied by the specific goals of the enterprise actors must be
determined.

The goal decomposition process ends when all the services
offered by the enterprise have been mapped with a strategic goal
of the goal-refinement tree. However, it is important point out
that not all the strategic goals of the enterprise must be satisfied
by external services. Some goals could be satisfied through
internal process without interaction with final customers.

The next step consists of determining the inconsistencies between
the goals elicited from the manager’s point of view and the goals
detected from the actor that makes the service operable. Once the
inconsistencies have been detected, it is necessary to create a
model that reconciles the different points of view about the goals
satisfied by each business service. Figure 6.12 shows the
representation of the detailed view of the global model that is
generated from the intermediate model.

Enterprise

serviceservice

Goal A

customercustomer

Goal D

Goal A

…… ……

Mission
statement

Strategic
goal

Strategic
goal

Strategic
goal

Strategic
goal

Strategic
goal

Strategic
goal

customercustomer

Goal D
Figure 6.12 The general schema of the detailed global model

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

223

As a final result of this first process, a model is produced that
presents a simple view of the services offered and the reasons
why these services are provided. Figure 6.13 shows a fragment of
the detailed view of the business service global model for the
running example. In this case, the goals of the services offered by
the enterprise (flight reservation, car reservation, hotel reservation
and integrated travel planning business services) have been
mapped with the strategic interests of the enterprise

Integrated
Travel

Planning

rent a
car

customer

Hotel
Reservation

Flight
reservation

Car
Reservation

reserve
a flight

reserve
a hotel

buy a travel
package

extend the car life
for 3 years

cars “ready” to
being rented

350 days to year

maximum performance
of each car

Manage integrated
planning travels

Maximize investment
in car rentals

Manage travel
agency

Manage hotel
reservations

Manage flight
reservations

Manage car
reservations

Manage car
rentals Manage travel

packages

Minimize cost

Offering different
reservations means

provide suitable
travel packages

Figure 6.13 Fragment of the detailed view of the global model for the running

example

Following this goal decomposition schema, it is also necessary to
detail the goals of the composed services. Thus, we need to
represent the composition hierarchy to represent it in the global
model. Once the basic and composed services have been
represented, a goal-refinement tree must be constructed for each
elicited service. Following with the running example, Figure 6.14
shows a fragment of the detailed global model for the composed
service car reservation. In this model, the refinement process

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

224

started taking the goal from the service (Manage car reservation
goal) as the root of the sub-goal-refinement tree.

Figure 6.14 Example of a detailed view of a global model for composed services

ex
te

nd
 th

e
ca

r l
ife

fo
r 3

 y
ea

rs

ca
rs

 “r
ea

dy
”t

o
be

in
g

re
nt

ed

35
0

da
ys

 to
 y

ea
r

m
ax

im
um

 p
er

fo
rm

an
ce

of

 e
ac

h
ca

r

M
an

ag
e

in
te

gr
at

ed
pl

an
ni

ng
 tr

av
el

s

M
ax

im
iz

e
in

ve
st

m
en

t
in

 c
ar

 re
nt

al
s

M
an

ag
e

tra
ve

l
ag

en
cy

M
an

ag
e

ho
te

l
re

se
rv

at
io

ns

M
an

ag
e

fli
gh

t
re

se
rv

at
io

ns

M
an

ag
e

ca
r

re
se

rv
at

io
ns

M
an

ag
e

ca
r

re
nt

al
s

M
an

ag
e

tra
ve

l
pa

ck
ag

es

M
in

im
iz

e
co

st

O
ffe

rin
g

di
ffe

re
nt

re

se
rv

at
io

ns
 m

ea
ns

pr
ov

id
e

su
ita

bl
e

tra
ve

l
pa

ck
ag

es

P
os

iti
on

in
g

in
 th

e
In

te
rn

et
 m

ar
ke

t

po
si

tio
ni

ng
 in

 th
e

di
re

ct
 m

ar
ke

t

D
ea

l c
us

to
m

er
s

re
m

ot
el

y
D

ea
l i

nt
er

ne
t

cu
st

om
er

s

In
te

gr
at

ed
Tr

av
el

P

la
nn

in
g

Fl
ig

ht
R

es
er

va
tio

n

H
ot

el
R

es
er

va
tio

n

C
ar

R
es

er
va

tio
n

W
al

k-
in

R
es

er
va

tio
n

P
ho

ne
R

es
er

va
tio

n

In
te

rn
et

R
es

er
va

tio
n

P
la

nn
in

g
tra

ve
l

cu
st

o
m

e
r

C
om

po
si

te
se

rv
ic

e

M
a
n
d
a
to

ry
fe

a
tu

re
s

O
r

F
e
a
tu

re
s

Tr
av

el
in

su
ra

nc
e

o
p
ti
o
n
a
l

fe
a
tu

re

sa
ve

 m
on

ey
 th

ro
ug

h
O

nl
in

e
to

ol
s

de
al

 r
en

ta
ls

 w
ith

 tr
av

el

ag
en

cy
 re

pr
es

en
ta

tiv
es

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

225

Figure 6.15 shows a simplified view of the detailed view of the
global model that only represents the goal for the Manage car
reservation service.

Positioning in the
Internet market

Deal directly
with customers

positioning in the
direct market

Deal customers
remotelyDeal internet

customers

Manage car
reservations

Integrated
Travel

Planning

Flight
Reservation

Hotel
Reservation

Car
Reservation

Walk-in
Reservation

Phone
Reservation

Internet
Reservation

Planning
travel

customer

Composite
service

Mandatory
features

Or Features
Travel

insurance

optional
features

Figure 6.15 Example of the detailed view of the global model for composed

services

As commented above, not all elicited goals need to have
associated services as a satisfaction mechanism. In many cases,
the enterprise goals are satisfied by executing internal processes
or by requesting services from external entities. Thus, the service
global model enables analysts to represent the enterprise as a
requester and provider of business services.

Step 2. Defining the actors that are responsible for the
service’s goals.
In this step, the enterprise managers identify the stakeholders that
are responsible (goal owners) for the strategic goals detected in
step 1, which support the elicited business services. Until now,
the enterprise has been represented as a generic actor without the
details of internal actors and behaviors that are needed to provide
the business services. The main objective of this step is the

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

226

definition of the organizational actors that participate in the
implementation of each business service. This requires
considering the enterprise as a network of actors with social
relationships whose aim is to provide value to customers.

One of the key points in this proposal is the explicit
representation of the actor that is responsible for satisfying the
goals in the goal-refinement tree. In most of the current goal-
based approaches, the elicited goals are not mapped with specific
actors. This is done in order to provide a more abstract
description of the enterprise goals. However, we consider that in
order to provide a more complete description of the current
enterprise situation, the actor with responsibilities must also be
elicited and represented in the business model.

In this process of identifying of the actors responsible for
achieving the elicited goals, it is possible to find potential
dependency relationships among actors. The dependency
relationship can be detected when the actor responsible for a goal
is different from the actor that is responsible for satisfying some
of its subgoals. This situation indicates some kind of dependency
(to be determined) among the actors for fulfilling their goals.

In this phase of analysis of strategic goals, the actors identified as
being responsible for goals are usually department managers. The
detected stakeholders are represented in the composite actor
structure, which is an organizational chart that represents the lines
of authority of the organizational actors using subordination links
(see section 5.3.5.1). As stated above, the key concept about
subordination is that if a role subordinates another role, then the
first can delegate activities to the latter. The hierarchical goal
structure defined for each service must comply with the
hierarchical structure of the composite actor structure. This is
because in the definition of the internal behavior of the enterprise,
an actor can delegate a goal to another actor only if the first
subordinates to the latter.

The explicit relationship among the goal model and the actor
model allows us to detect the following:

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

227

a) The situations where a goal has been assigned to several
organizational actors, who share the responsibility to satisfy the
strategic goal,

b) The situations where there is not an actor that is clearly
identified as being responsible for the goal.

Based on the relationship between the goal model and the actor
model represented in the intermediate model, it is also possible to
determine the assignations of the responsible stakeholder (service
owner) to assure the correct performance of the business services
(Figure 6.16). In figure, we exemplify the relations among
business goals, the composite actor structure and the business
services in the intermediate model. The managers and department
manager are the actors that are responsible to satisfy the goals of
the enterprise. The business services are satisfied by the offered
business services. This model express that the business actor are
the owners of the business services. This complex configuration

manager

manager manager

Dept.
Manager

Dept.
Manager

Dept.
Manager

Dept.
Manager

Mission
statement

Strategic
goal

Strategic
goal

Strategic
goal

Strategic
goal

Strategic
goal

Strategic
goal

Business
Service

<responsible>

<responsible>

<responsible>

<responsible>

<satisfy>
<satisfy>

<satisfy>

<satisfy>

<satisfy>

Goal Refinement
Tree Actor Model

<owner>

<owner>

<owner><owner>
<owner>

<owner>

<owner><owner>

Enterprise

Business
Service

Business
Service

ExternalExternal
BusinessBusiness
ServiceService

ExternalExternal
BusinessBusiness
ServiceService

ServiceService
ProviderProvider
ServiceService
ProviderProvider

Figure 6.16 The relationship between goals, actors and business services in the

intermediate model

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

228

Step 3. Detecting dependencies from the goal-refinement tree
As stated above, at the moment, the enterprise has been
represented as a generic actor without identifying the internal
actors that compose the enterprise. In this step, the goal-
refinement tree of the intermediate model is used to refine this
monolithic actor and to detail the actors participating in the
services and their dependency relationships. The main idea of this
process is to use the relationships among the actors that satisfy
the goals and their position in the composite actor structure in
order to automatically generate their corresponding global model.
Figure 6.17 shows the approach followed in this modeling stage.

Goal refinement tree
(intermediate model)

Global Model

Goal 4

Actor Actor

ActorActor

Goal 1

Goal 3Goal 2

Goal 1

Actor

Service 3Service 2Service 1

Actor 1

Goal 4

Actor Actor

ActorActor

Goal 1

Goal 3Goal 2

Goal 1

Actor

Service 3Service 2Service 1

Actor 1

Mission
statement

Strategic
goal

Strategic
goal

Strategic
goal

Strategic
goal

Strategic
goal

Strategic
goal

Figure 6.17 From goal structures to dependency models

To make the model transformation automatic, the following goal
classification and dependency generation process must be
applied.

Step 3.1 Goal classifications in the Goal-Refinement Tree (GRT).

A detailed goal classification was proposed to structure the GRT
in order to represent the potential dependencies among the
organizational actors that are responsible for goals in the
refinement tree. Once the organizational context has been elicited
by using the goal-refinement tree, the goals must be classified
according to the proposed classification. This is a critical step to

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

229

ensure the correct translation of the goal structure into the i*
dependency model.

Achievement goals: In this case, the actor responsible for
fulfilling the goal does not depend on another actor to satisfy its
own needs. When analyzing a goal decomposition (goal–
subgoals), goals of this kind can be detected if the actor
responsible for both goals is the same organizational actor. This
indicates that the first actor will execute the main goals as well as
the sub-goals associated with this goal.

Achievement-dependency goals: In this case, the actor
responsible for fulfilling the goal depends on another actor to
fulfill the goal. Goals of this kind can be detected when the actors
needed to satisfy a goal decomposition (goal - subgoals) are
different. This indicates that the actor responsible for a parent
goal has delegated the goal or fragments of this goal to another
actor.

The goals represented in the goal-refinement tree must be
classified according to the proposed classification in order to
perform the generation of the goal dependencies.

Step 3.2 Dependency generation process based on the goal-
refinement tree.

The global model to be generated is focused on representing the
relationships between the enterprise actors involved in the
execution of business services, where the goal dependency is the
focal point of the modeling activity. Therefore, to create this
model, it is necessary to take a subset of the goal-refinement tree
where a dependency between actors exists (Achievement-
dependency goals). It is important to point out that there are goals
in the GRT that could be satisfied by the actor itself without
dependencies with other actors (achievement goals). Goals of this
kind are not represented in the strategic dependency model.
Following, we present the steps to achieve the translation of the
GRT into the SD Model.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

230

The first step consists of using the actors responsible for the goals
of the goal-refinement tree to create the organizational actors of
the dependency model using the i* syntax to define generic actors
in the intermediate model (Figure 6.18).

Enterprise

Director

manager

manager <responsible>

<responsible>

<responsible>
G1G1

G3G2

G4 G5

G6 G7 G8 G9

G5

G4

<responsible>

<responsible>
Dept.

Manager

Dept.
Manager

G6

G9

service

service

Figure 6.18 Generation of the i* actor from the actors responsible for the service

goals

In the process of creating goal dependencies, the actors
responsible for achieving the achievement-dependency goals
must be analyzed in order to determine the actor that plays the
role of depender (the actor responsible for the parent goal) and
the actor playing the role of dependee (the actor responsible for
the delegated goals that appear as leaf goals). The achievement-
dependency goal must be translated into a goal dependency with
the same name between the depender actor and dependee actor (

Figure 6.19).

The identified actors with the responsibility to satisfy goals or
achieve operations in our case study are: Director, reservation
manager, internet reservation manager, manager of representative

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

231

agencies, internet reservation system, phone reservation agency,
and travel agency.

The second step is to use the achievement-dependency goals of
the goal-refinement tree to create the goal dependencies in the
strategic dependency model. As it was previously mentioned, the
achievement-dependency goals are goals that represent
dependency relationships between actors.

In this modeling stage, it is possible to determine that some of the
delegated goals can be better satisfied by specifying internal
business services. In this case, the analyst must determine if the
business activities associated with the fulfillment of the delegated
goal have the behavioral conditions to be considered as a business
service. If so, the internal business service must be associated
with the elicited business goal.

Enterprise

Director

manager

manager

Dept.
Manager

Dept.
Manager

G1

G1

G3G2

G4 G5

G6 G7 G8 G9

G5

G4

G5G4

G6
G9

G6

G9

service

service

Figure 6.19 Generation of dependencies from goal-refinement tree

In Figure 6.19 the Director of the company is the actor that is
responsible for the mission statement and the high-level
enterprise goals (G1,G2,G3). Goal G4 and G5 of the goal-
refinement tree have been assigned to actors that are different

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

232

from the Director; therefore, we can determine a dependency
among the Director and the business managers. In the case of
goals G4 and G7, the same actor is responsible for fulfilling the
goals; this is why no dependency relationship needs to be created
in this case.

Figure 6.20 shows an example of the dependency generation
process for the car rental business services of the running
example. This figure represents three offered business services:
internet reservation, phone reservation and walk-in reservation.
The goals that are supported by the business services are also
represented in the model. Based on this goal structure, a chain of
dependencies is created to represent how the goals have been
delegated. In the model, the Director depends on the reservation
manager to manage the reservations. The reservation manager
depends on the manager on internet reservation to save money by
using online reservations. The reservation manager depends on
the representative agency manager to manage the direct market.
The internet reservation manager depends on the internet
reservation system to provide the internet reservation service. The
representative agency manager depends on the phone reservation
agency to provide the phone reservation and finally, the
representative agency manager depends of the travel agency to
provide the walk-in reservation service.

It is important to point out that this generation process is an
intermediate step to define a final model that represents the future
situation of the enterprise.

Step 4. Reviewing the delegation schema
One of the main advantages of the explicit representation of the
actor responsible for performing the service goals is the
possibility to analyze the goal delegation chain among these
actors.

The following formula defines the delegation chains of the
services inside the organization.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

233

goal_delegatechain (X,Y,S) ← delegate(X,Y,S)
goal_delegatechain (X,Y,S) ← delegate (X,Z,S) ∧
goal_delegatechain (Z,Y,S)

Figure 6.20 Example of dependencies generated for the running example

D
ire

ct
or

M
an

ag
e

ca
r

re
se

rv
at

io
ns

de
al

 r
en

ta
ls

 w
ith

 tr
av

el

ag
en

cy
 re

pr
es

en
ta

tiv
es

in
te

rn
et

re
se

rv
at

io
n

m
an

ag
er

R
ep

re
se

nt
at

iv
es

ag
en

cy
m

an
ag

er

Tr
av

el

ag
en

cy

In
te

rn
et

re
se

rv
at

io
n

sy
st

em

po
si

tio
ni

ng
 in

 th
e

di
re

ct
 m

ar
ke

t

D
ea

l c
us

to
m

er
s

re
m

ot
el

y

P
os

iti
on

in
g

in
 th

e
In

te
rn

et
 m

ar
ke

t

D
ea

l i
nt

er
ne

t
cu

st
om

er
ssa

ve
 m

on
ey

 th
ro

ug
h

O
nl

in
e

to
ol

s

P
ho

ne

re
se

rv
ar

tio
n

ag
en

cy
W

al
k-

in
R

es
er

va
tio

n
P

ho
ne

R
es

er
va

tio
n

In
te

rn
et

R
es

er
va

tio
n

re
se

rv
at

io
n

m
an

ag
er

M
an

ag
e

ca
r

re
se

rv
at

io
ns

de
al

 r
en

ta
ls

 w
ith

 tr
av

el

ag
en

cy
 re

pr
es

en
ta

tiv
es

po
si

tio
ni

ng
 in

 th
e

di
re

ct
 m

ar
ke

t

D
ea

l c
us

to
m

er
s

re
m

ot
el

y
P

os
iti

on
in

g
in

 th
e

In
te

rn
et

 m
ar

ke
t

D
ea

l i
nt

er
ne

t
cu

st
om

er
s

sa
ve

 m
on

ey
 th

ro
ug

h
O

nl
in

e
to

ol
s

W
al

k-
in

R
es

er
va

tio
n

P
ho

ne
R

es
er

va
tio

n
In

te
rn

et
R

es
er

va
tio

n

E
n
te

rp
ri

se

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

234

We consider two different scenarios for the satisfaction of the
enterprise goals.

In the first scenario, an actor must satisfy the goal directly if
he/she is the service owner or if another actor has delegated the
goal to him/her. The actor has to satisfy the goal without further
delegation. The formula that describes this scenario is the
following:

should_perform_goal(X,S) ← owns(X,S) ∧ satisfy (X,S)
should_perform_goal(X,S) ← goal_delegatechain (Y,X,S) ∧
owns(X,S) ∧ satisfy (X,S)
In the second scenario, an actor can satisfy the goal by itself or by
delegating the goal to another actor. The formula that describes
this scenario is the following:

Can_satisfy_goal(X,S) ← should_perform_goal(X,S)
can_satisfy_goal(X,S) ← goal_delegatechain(X,Y,S) ∧
can_satisfy_goal(Y,S)

An actor can delegate a goal to another actor if the actor is the
owner of the goal. The following formula indicates direct and
indirect subordination.

per_delegate_goal(X,S) ← owns(X,S)
per_delegate_goal(X,S) ← goal_delegatechain (X,Y,S) ∧
can_satisfy(Y,S)

The following formula indicates no further goal delegation.

Per_delegate_goal(X,S) ← owns(X,S)
per_delegate_goal(X,S) ← goal_delegatechain (X,Y,S) ∧
should_perform (Y,S)
In goal decomposition, the role of the composite actor structure is
not relevant in defining the delegation schema. Goal delegation
can apply between two actors, although a subordination
relationship does not exist between them. Thus, a requester
depends on the provider to use a certain service, and the provider
depends on the provider to pay for the service. In this case, there

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

235

is a cyclic dependency where no subordination exists among
requester and provider.

As a result of this set of steps, we obtain a global model that
represents the current enterprise situation, where the modeling
activity is focused on representing all the services that the
enterprise offers and the services that the service uses at a high
abstraction level, hiding the details to perform this. This model
represents the enterprise actor involved in satisfying the
organizational objectives through the offered business services
(Figure 6.21).

Director

manager manager

Dept.
Manager

Dept.
Manager

G1

G4G3

G3

G5

G5 G7

G4

G8

Goal customercustomerGoalservice servicecustomercustomer

Figure 6.21 The global model resulting from the generation process

Step 5. Defining the visibility schema.
Once a global model that represents the offered business services
has been created, it is necessary to define the visibility schema
that answers the following questions: can the customer see the
internal services? What about task monitoring? What about trust
between the service provider and the requester?. In the proposed
service-oriented architecture, the business services represent the
appropriate interface between the requester and provider, so that
all interactions among both actors must be done through the
service. Therefore, we consider the offered services as the

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

236

appropriate source to define the visibility schemas that could be
propagated to the process that make up each business service.

The visibility schema associates two correlated concepts:
monitoring and trust. Monitoring can be defined as the set of
tasks needed for an actor to carry out supervision over the actor
that executes tasks. In our case, monitoring refers to activities that
enable the requester to supervise the activities of the business
services providers. Trust indicates the belief that one actor does
not misuse the resource (informational o physical) involved in the
business service execution. The former actor is called the truster,
while the latter is called the trustee. From the provider’s point of
view, trust indicates the confidence of the requester to have
visibility about the internal processes that are needed to perform a
business service.

Three different scenarios were proposed to represent the different
service visibility schemas: black box, grey box and white box
visibility. We define monitoring and trust values for each one of
the proposed visibility schemas. We adopt the notation proposed
in (Zannone 2007) for indicating the white, grey and black box
visibility schemas (WB, GB and BB respectively), monitoring
(ME) and Trust (TE). The indication of the kind of visibility
schema is placed on the arrow of the goal dependency that is
linked with the business service.

White box is the less restrictive visibility schema where the
provider trusts the requester. In the white box schema there are
intermediate checks (public view of the private production
process) during service composition, and the enterprise trusts in
the customer (Figure 6.22). In this schema, the customer can
introduce controls at different times during the service execution
to monitor the service. Regarding with trust, the enterprise trusts
in well-known customers.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

237

Car rentalCar rental
companycompany

car
reservation Rent a car VIPVIP

customercustomer

Goal A

WB WB

enterpriseenterprise
service Goal A customercustomer

Goal A

ME ME

enterpriseenterprise
service Goal A customercustomer

Goal A

TE TE

==

++

Figure 6.22 White box visibility schema

In the grey box visibility schema there are intermediate checks
during service composition, but the enterprise does not trust the
customer.

In this schema, the customer can introduce controls at different
times during service execution to monitor the service. About
trust, the enterprise does not trust in infrequent customers (Figure
6.23).

==
enterpriseenterprise

service Goal A customercustomer

Goal A

ME ME

enterpriseenterprise
service Goal A customercustomer

Goal A

TE TE

Car rentalCar rental
companycompany

car
reservation Rent a car WalkWalk--inin

customercustomer

Goal A

GB GB

Figure 6.23 Grey box visibility schema

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

238

Finally, in the black box schema, there are no intermediate checks
during service composition, and the enterprise does not trust in
the customer. In this schema, the customer can only see the
service's outputs. Regarding with trust, this schema implies no
trust in the requester actor. It must be used for unknown
customers (Figure 6.24).

enterpriseenterprise
service Goal A customercustomer

Goal A

ME ME

enterpriseenterprise
service Goal A customercustomer

Goal A

TE TE

==

Car rentalCar rental
companycompany

car
reservation Rent a Car

internetinternet
customercustomer

Goal A

BB BB

Figure 6.24 Black box visibility schema

The axiom for general monitoring was presented in Chapter 5.
The specific formulas for the visibility schemas are presented
below.

Whitebox visibility:

• Blackbox_visibility(X,S) ← depends(X, Y,S) ∧
monitoring (X,S) ∧ trust (Y,X)

Greybox visibility:

• Blackbox_visibility(X,S) ← depends(X, Y,S)
∧monitoring (X,S) ∧ ¬trust (Y,X)

Blackbox visibility:

• Blackbox_visibility(X,S) ← depends(X, Y,S) ∧ ¬
monitoring (X,S) ∧ ¬trust (Y,X)

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

239

Figure 6.25 shows an example of the simplified view of the
global model for the services Internet reservation, Phone
reservation and Walking-in reservation. In this model, The
Director of the enterprise depends on the Reservation Manager to
manage all of the reservations. The reservation manager depends
on the Internet reservation manager to save money using internet
resources. The reservation manager also depends on other actors
to manage the direct reservation. Finally, the goals deal with
internet customers, deal with customers remotely and deal with
rental with travel agency representatives have been delegated to
the Internet reservation system, the Phone reservation agency and
the Travel agency, respectively. This model could be used to
create the first agreements with the stakeholders.

Director

Manage car
reservations

deal rentals with travel
agency representatives

internet
reservation
manager

Representatives
agency

manager

Travel
agency

Internet
reservation

system

positioning in the
direct market

Deal customers
remotely

Positioning in the
Internet market

Deal internet
customers

save money through
Online tools

Phone
reservartion

agency
Walk-in

Reservation
Phone

Reservation
Internet

Reservation

reservation

manager

Figure 6.25 An fragment of the simplified view of the global model

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

240

6.5 Defining the process model

Once the business services have been represented at a high
abstraction level using the service global model, then it is
necessary to identify and to represent the business processes that
compose each one of the business services. To do this, the
intermediate model, that is used to generate the global model,
must be extended to represent the goals of the processes and the
actors responsible for performing them. The approach followed to
carry out this stage is the same one used to generate the global
model, but applying this method to the description of each
business service as follow: a) obtain the service’s goals, b) refine
its until the level of concrete processes is reached, and c) identify
the actors that are responsible to perform them. The main
objective of this process is to align the goals that support the
business services with the goals that support the business
processes (Figure 6.26). We consider that each business process
must be justified in terms of business services to be offered to
potential customers.

Process 1Process 1

Process 2Process 2

Process 3Process 3
Goal 6

Goal 5

Goal 7

Goal 4

service 3 Goal
Process
Modelcustomer

enterprise

Goal customer

service 3

service 1

service 2

Goal

Goal

Goal 3

Goal 2

Goal 4

Goal 1

Service
Global
Model

enterprise

Figure 6.26 Aligning service goals and process goals

Once the offered business services, the goals that support the
services and the responsible actors for goals have been elicited,
the delegation of these services among the organizational actors

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

241

must be analyzed. To do this, we need to determine how the
original service owner (the actor responsible for the service)
delegates it to another subordinate actor in the composite actor
structure. This propagation of service delegations ends when the
level of goals that are satisfied by specific processes is reached
(Figure 6.26).

Step 1. Determining business processes by refinement
The first step of this phase consists in representing the internal
goals associated to each business service using the goal-
refinement tree in the intermediate model. To do this, the main
goal of each business service is placed as the root of the goal-
refinement structure. Then, the subgoals needed to satisfy this
goal must be elicited and placed in the goal structure. This
refinement process ends when the elicited goals can be satisfied
by the business processes of each business service.

Step 2. Determining process goals by abstraction
In this step, the service owners identify the business processes
needed to satisfy the business services, and then relate these
processes to the goals detected in the first phase. In the practical
application of this approach, we have detected that there are
certain processes that recurrently appear in the specification of
business services, e.g. the processes for requesting and ending the
services. Therefore, we consider that these processes can be
defined as default business processes in the process model.

Step 3. Linking goals and processes with organization actors
The next step consists of mapping the goal structure elicited in
Step 1 with the composite actor structure. This is done to assign
the responsibilities for satisfying the process goals to the
responsible actors. It is also necessary to relate the elicited
processes with the composite actor structure. This is done to
determine the process owners, who are the actors responsible for
performing some processes of the business service

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

242

As a result of these phases, an expanded intermediate model is
created (Figure 6.27).

manager

Dept.
Manager

Dept.
Manager

Dept.
Manager

Dept.
Manager

Mission
statement

Strategic
goal

Strategic
goal

Strategic
goal

Strategic
goal

<responsible> Actor ModelGoal Refinement
Tree

… …
… …

Service
Goal

Service
goal

Service
goal

process
goal

process
goal

process
goal

process
goal

Dept.
manager

process
owner

process
owner

<correspond>
<correspond>

<responsible>

<responsible>

<responsible>

Business
process

Business
process

Business
process

<satisfy>

<satisfy>
<satisfy><satisfy>

<satisfy>

<owner>
<owner>

<owner>

Business
Service

Dept
manager

Enterprise

Figure 6.27 The expanded intermediate model

Step 4. Reviewing the delegation schema
With regard to the delegation of services, it implies that the
delegatee actor (the actor on whom the services is delegated) is
the new service owner and it can directly provide the service or
delegate it to another subordinated actor. The delegation also
implies the possibility of the delegater actor (the actor that
delegates the service) to monitor the performance of the delegated
service.

As mentioned in Chapter 5, the delegation is a concept that is
closely correlated with the hierarchical structure of actors in the
enterprise. In the service decomposition context, an actor can
delegate the responsibility to perform a service to a subordinated
actor. Figure 6.28 represents the needs to consider the composite
actor structure for delegating goals. This model is used to

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

243

exemplify that the Director of the company can delegate the
responsibility to satisfy goals to his two subordinated managers.
The managers can also delegate the goal responsibility to their
department managers. In the normal delegation schema, that
needs to be defined in the composite actor structure, a manager
can not delegate a goal to another actor that is not in its
subordination chain.

manager manager

Dept.
Manager

Dept.
Manager

Director

subordinate

subordinate subordinate

Director

manager manager

Dept.
Manager

Dept.
Manager

G1

G5G4

G4

G6

G6 G9

service service

G5

G9

Enterprise

Figure 6.28 The composite actor structure as the basis for delegation

We consider two different scenarios for the satisfaction of the
enterprise services.

In the first scenario, an actor must perform the service directly if
he/she provides the services and if either actor has delegated the
service to him/her, and if the services have been delegated by an
actor in an upper level in the line of authority. The actor has to
execute the service without further delegation. The predicate
should_perform has been defined to describe this scenario.

should_perform(X,S) ← provides (X,S)
should_perform(X,S) ← provides (X,S) ∧ service_delegatechain
(Y,X,S) ∧ subordinatedchain(Y,X)

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

244

In the second scenario, an actor can satisfy the service by itself or
by delegating the service to another actor in the authority line.
The predicate can_satisfy specifies this delegation situation.

can_satisfy(X,S) ← should_perform(X,S)
can_satisfy(X,S) ← servicedelegatechain(X,Y,S) ∧
can_satisfy(Y,S) ∧ subordinatedchain(X,Y)
The predicate per_delegate_serv indicates that an actor can
delegate the service to another actor if the actor is the owner of
the service and if the delegate actor is a subordinate.

per_delegate_serv(X,S) ← owns(X,S)
per_delegate_serv(X,S) ← service_delegatechain (Y,X,S) ∧
subordinatedchain(Y, X,) ∧ per_delegate_serv (Y,S)
The delegation of services can be performed in two basic schemas
according to the service execution predicates: the chain
delegation schema and delegation without further delegation. In
both schemas, it is possible for the delegater to monitor the
performance of the service delegated to the delegatee.

delegate(A,B,S) ← own (B,S) ∧ monitoring (A,B,S) ∧
can_satisfy (B,S) ∧ subordinate(A,B)
delegate(A,B,S) ← own (B,S) ∧ monitoring (A,B,S) ∧
should_perform (B,S) ∧ subordinate(A,B)
The predicate service_delegatechain defines the delegation chains
of the services in organizational actor structure. One of the key
issues for delegation of services is to determine the chain of
subordination because it is the structure that restricts the
delegation.

Predicate trustchain defines the chain of trust in the delegation
schema. As stated above, the visibility schema defined in the
global model (which defines the level of trust between the
requester and the provider) is propagated towards the process and
protocol models.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

245

service_delegatechain(A,B,S) ← delegate(A,B,S)
service_delegatechain(A,C,S) ← delegate (A,B,S) ∧
service_delegatechain(B,C,S)

trustchain(A,B,S) ← trust(A,B,S)
trustchain(A,C,S) ← trust(A,B,S) ∧ trustchain(B,C,S)
The predicate Subordinatedchain, specifies the chain of
subordination that defines the composite actor structure. As stated
above, the composite actor structure is based on the subordination
relationships among organizational actors.

subordinatedchain(A,B) ← subordinate(A,B)
subordinatedchain(A,C) ← subordinate(A,B) ∧
subordinatedchain(B,C)
The proposed formalization captures the alternative paths that
exist to perform a service: either directly perform it or delegate it
to another subordinated actor.

Figure 6.28 represents the scenario where the Director of the
company can not provide the service directly, thus delegating it to
the subordinated manager (predicate can_satisfy). The manager
can not provide the service and delegate it to the department
manager. In this case, the department manager can not delegate
the service and must execute it without further delegation
(predicate should_perform).

Step 5. Detecting dependencies from the goal-refinement tree
In this step, the goal-refinement tree is used to create the
dependencies among the elicited organizational actors. The main
idea of this process is to use the relationship among the actors
that satisfy the goals and their position in the composite actor
structure in order to automatically generate their corresponding
process model. To do this, we need to apply the same goal
classification and dependency generation process proposed in the
global model in order to obtain the dependencies among the
organizational actors to fulfill the process associated with each
business service.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

246

To create the graphical representation of the process model, the
following algorithm must be applied:

• For each one of the processes needed to provide the
business service, an internal process that is linked with
the business service must be created. It represents the
abstract functionality of the service. We use the notation
explained in Chapter 5 to represent the business
processes.

• The actors responsible for implementing the services are
used to create i* sub-actors inside the organizational actor
that represents the whole enterprise.

Figure 6.29 shows the schema that enables us to associate
business processes and business goals regarding a specific
business service. The main objective of this schema is to align
the goals of the process with the goals that the enterprise wants to
fulfill in order to provide a certain business service.

Business
service

Service
requester

Aggregated processes

Goal

Transactional
process TT Transactional
process TT

Non transactional
process

Non transactional
process

Non transactional
process

Non transactional
process

Non transactional
process

Non transactional
process

Enterprise

process
owner

process
owner

Figure 6.29 Linking business goals and business process

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

247

A detailed view can be also obtained that show the dependences
among actor to provide the processes associated to the business
service Figure 6.30. In this model, the processes have been
assigned to their responsible actors and the dependencies have
been also generated from the intermediate model.

Non-transactional
process

Non-transactional
process

process
owner

transactional
process

transactional
process

process
owner

Goal

transactional
process

transactional
process

process
owner

Manager

Goal

Goal

 Figure 6.30 The detailed view of the process model

Step 6. Defining the visibility schema.
The visibility schema defined in the global model is propagated
towards the process model. In the typical case (Figure 6.31), the
service requester has visibility of the offered service. It can only
see the processes that are offered by the organizational actors that
interact with the final customer without visibility of the internal
business processes that compose the service (black box visibility
schema). However, scenarios where the customers have visibility
of the internal process (white and grey schemas) can also occur in
practice.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

248

With respect to actor visibility, the service requesters can usually
see the actor playing the role of basic employee, as in the case of
clerks. In a more general schema, the service customer does not
have visibility of enterprise managers.

Walk-in
reservation

customer

Aggregated process

Rent a car
in a branch

Formalize the rent TT Formalize the rent TT

Request walk-in rentalRequest walk-in rental

Analyze car availabilityAnalyze car availability

Finish walk-in rentalFinish walk-in rental

Manager

Dept.
Manager

Dept.
manager

Dept
Manager

Dept
Manager

ClerkEmployee

Service
visibility

Actor visibility

Figure 6.31 Service and Actor visibility

Step 7. Specifying process execution order
The next step of this phase consists of representing the process
execution order. To do this, we use a flexible definition of the
execution order based on milestone concept. Milestones denote
logical checkpoints in the normal flow of the process. Thus, a
milestone denotes the completion of a phase of work within the
business process. In this thesis, we use the concept of milestone
to indicate the dependency to execute the processes. A milestone
associates two processes where the arrow indicates the process
dependency. Figure 6.32 shows the syntax of milestones.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

249

“Process 2 depends of the completion of process 1 to be executed”

process 1 process 2

Figure 6.32 Execution order based on milestones

A simplified process model (one that does not present the
business goals associated with business processes and the actors
responsible for performing the processes) can be represented,
showing only the abstract definition of the processes that
compose a business service (Figure 6.33).

Business
service

Service
requester

Aggregated processes

Goal

Transactional
process TT Transactional
process TT

Non transactional
process

Non transactional
process

Non transactional
process

Non transactional
process

Non transactional
process

Non transactional
process

Enterprise

Figure 6.33 Simplified view of the process model

Figure 6.34 shows an example of the simplified view of the
process model for the walk-in rental car case study. In this
model, milestones indicate the execution order as follows: to
request a walk-in rental it is necessary to first analyze the car
availability. To formalize the car rental, the request is needed, and
finally, to finish the business service, the service should be
formalized in a previous time.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

250

Walk-in
reservation customer

Aggregated processes

Rent a car in
the branch

Formalize the rent TT Formalize the rent TT

Request walk-in rentalRequest walk-in rental

Analyze car availabilityAnalyze car availability

Finish walk-in rentalFinish walk-in rental

service

Enterprise

Figure 6.34 Example of the process model for the running example

The business process model provides a high-level view of the
process that makes up each one of the Business services offered
by the enterprise.

6.6 Defining the protocol model

Once the processes that compose a business service have been
represented at a high abstraction level using the business process
model, then it is necessary to identify and represent the behavior
of each one of the processes that compose the business service.
With this approach, the business modeling process can be
defining by reducing the complexity of the enterprise analyzing
specific fragments of the service (those that represent a specific
business process). The main objective of the protocol model is to
align the goals that support the business processes with the goals
of the organizational actors that perform the process (Figure
6.35). The protocol model, which is the lower-level description of
the business service architecture, is represented using the
revisited concepts of the i* framework.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

251

Process 1Process 1

Process 2Process 2

Process 3Process 3
Goal 6

Goal 5

Goal 7

Goal 4

service 3 Goal
Process
Model

resource

Plan

enterprise

customer

enterprise

Plan
Plan

Plan

Plan

Plan

Plan

plan

Service 4

customer

Goal 7 Goal

Goal

Protocol
Model

enterprise

Process 3

Figure 6.35 Aligning process goals and actor goals

It is important to point out that the protocol model is specified
using the revisited version of the i* modeling concepts; therefore,
no new primitives have been added in this modeling stage.

The method required to create the protocol model is similar to the
process to create the detailed view of the global model and the
process model: use the intermediate model as elicitation
mechanism and then, translating this model in a protocol model
that represents the behaviors needed to perform each business
process. However, a more complete goal classification was
proposed to capture the organizational setting.

We propose using the goal-refinement tree to create an
organizational model that allows us to carry out these business
analyses (business process reengineering analysis, dependency
analysis, and task analysis) before taking decisions on the
functionality of the information system. This allows us to have an
improved organizational model that could be used to take design
decisions. We consider that the i* framework provides enough
semantic richness to represent the complex social structures in the
enterprise. The transformation process to generate i* models from

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

252

goal structures has been presented in detail in (Estrada, Martinez,
and Pastor 2003). Following, the steps to create the protocol
model are defined:

Step 1. Determining business tasks by refinement
The first step of this phase consists of representing the internal
goals associated with each business process using the goal-
refinement tree in the intermediate model. To do this, the main
goal of each business process is place as a root of the goal-
refinement structure. Then, the subgoals needed to satisfy this
goal must be elicited and placed in the goal structure. The
intermediate nodes represent the groups of low-level goals for the
satisfaction of a more general goal. Finally, all the leaves
represent operational goals that satisfy the low-level goals. This
refinement process ends when the level of specific business tasks
is reached.

Step 2. Determining process goals by abstraction
The process owners identify the business tasks needed to satisfy
each business process, and then associate these tasks with the
goals elicited by goal-refinement.

Step 3. Linking the goals and process with organization actors
This step consists of associating the elicited goals and tasks with
the composite actor structure. This is done to assign the
responsibilities to achieve the process goals and tasks.

As a result of these phases, an expanded intermediate model is
created (Figure 6.36) that associates the business service and the
processes. As stated above, the goal of each process detected in
the previous steps must the root of the goal-refinement tree.

Step 4. Detecting dependencies from the goal-refinement tree
In this step, the goal-refinement tree in the intermediate model is
used to create the dependencies among actors that are needed to
perform the processes that make up each business service.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

253

manager

Process
owner

Process
owner

Process
Owner

Process
owner

Service
goal

Process
goal

Process
goal

Process
goal

Process
goal

<responsible> Actor ModelGoal Refinement
Tree

… …
… …

Process
goal

Process
goal

Process
goal

tasks task tasks task
process
owner

process
owner

<correspond><correspond>

<responsible>

<responsible>

<responsible>

Business
process

Process
owner

Business
Service

Figure 6.36 The expanded intermediate model

In the goal transformations proposed to generate the global and
the process model, we only consider two types of elements: goals
and services. However in the generation of the protocol model,
task and resource dependencies need to be also represented to
capture the organizational behavior for each process. To do this, a
more complex goal classification was developed to represent not
only the internal goals or operations of the business actors, but
also to represent the cases where there are relationships among
actors. Relations of this kind imply that the actors depend on
other actors to satisfy their goals or perform their operations.
These relations are fundamental for creating the strategic models
of the i* Framework that represent each protocol model. For this
reason, the goal classification is not exhaustive; we classify only
the goals necessary to create an i* business model.

Operational Goals: They are performed by the correct state
transition of one of the business actors and change the state of
one or more objects (Dardene et al. 1993). They are characterized

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

254

by pre-, post- and trigger- conditions. There are two types of
Operational Goals:

Operation-Dependency. In this case, the actor responsible for
completing the operation depends on another actor to provide a
resource or execute another operation. This kind of Operational
Goal is represented in the GRT as OP-Dep.

Operation Without-Dependency. In this case, the actor
responsible for completing the operation does not depend on
another actor to complete the operational goal. This kind of
Operational Goal is represented in the GRT as OP-WDep.

Achievement Goals: These goals are refined in Operations
Without-Dependency or in other Achievement Goals. They are
represented in the GRT as AG.

Achievement-Dependency Goals: These goals are refined in
Operational Goals, where at least one of these is an Operations-
Dependency or in they are defined in another Achievement-
Dependency Goal. They are represented in the GRT as ADG.

General Goals: These are high-level goals that are used to
express the business manager’s point of view. Goals of this type
lead directly to General Goals, Achievement Goals or
Achievement-Dependency Goals.

This classification (Figure 6.37) will be the basis to transform the
goal-refinement tree into the strategic dependency and rational
model for the protocol model.

Step 5. Generating dependencies from the goal structure
The goal-refinement tree is the starting point for the generation of
a protocol model represented in the i* framework. The process
begins with the creation of a strategic dependency model (SD
model). The SD model is focused on representing the dependency
relationships that exist among the organizational actors. For this
reason, this model must be constructed using a subset of the GRT
(the goals in which a dependency exists between the actors).

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

255

OP-WDep
Actor

OP-Dep
Actor1- Actor2

OP-WDep
Actor

ADG

ADG

AG

AG

GG

OP-Dep
Actor1- Actor2

OP-WDep
Actor

OP-WDep
Actor

OP-WDep
Actor

OP-WDep
Actor

GG: General Goal
ADG: Achievement-Dependency Goal
AG: Achievement Goal
OP-WDep: Operations Without-Dependency
OP-Dep: Operation-Dependency

GG: General Goal
ADG: Achievement-Dependency Goal
AG: Achievement Goal
OP-WDep: Operations Without-Dependency
OP-Dep: Operation-Dependency

Figure 6.37 The classification in the goal-refinement tree

The first step is to use the organizational actors of the GRT to
create the actors of the SD model.

The second step is to use the Achievement-Dependency Goals of
the GRT to create the goal dependencies in the strategic
dependency model. As mentioned above, the Achievement-
Dependency Goals are goals that are refined Operational Goals
where at least one of these is an Operation-Dependency.
Therefore, these kinds of goals represent dependency
relationships between actors.

The third step is to use the Operation-Dependency of the GRT to
create the resource and task dependencies of the strategic
dependency model. As mentioned above, the Operation-
Dependencies are goals that involve more than one actor for their
execution. The Operational Goals performed by a single actor
represent the internal actions of each actor in the strategic
rationale model. An Operation-Dependency must be translated
into a task dependency if the actor that depends on the execution

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

256

of the operation specifies a particular way of doing it. An
Operation-Dependency must be translated into a resource
dependency if the depender actor depends on the delivery of a
resource to complete the operation.

The SD model is useful for detecting potential problems with the
performance of the business model for finding: actors with a large
number of dependencies, actors that represent bottlenecks,
redundant dependency relationships, etc. This information can be
used to improve the business model.

 Once the SD model is created, the strategic rationale model must
be created in order to detail the internal tasks that accomplish the
dependencies.

Step 6. Generating a rationale model from goal structure
The construction of the strategic rationale model (SR model)
consists in defining the internal operations that all actors carry out
in order to reach their dependencies. To do this, the Achievement
Goals of the goal-refinement tree are translated into internal goals
or internal tasks in the strategic rationale model. This is done
using task decomposition to create internal task-refinement trees
in each business actor. Some of these internal goals or tasks will
be connected with the task dependencies or resource
dependencies defined in the strategic dependency model.

In the case of operations of the GRT that have been derived in
resource dependencies, it is necessary to indicate the delivery of
the resource in the depender actor. To do this, an internal task
must be created in the depender actor to indicate the delivery of
the resource and link it to the resource dependency. As result of
the process, a business model is generated that represents the
rationalities behind the business processes (Figure 6.38).

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

257

resource

Enterprise authorized
customer

task

Goal

task

task

task

task task

task

task

Goal

task

task

requesting
the service

Business
Process

Business Protocol Model

enterprise
ServiceGoal

Figure 6.38 Strategic model generated for business processes

Step 7. Determining transactional business processes
The next step consists of the determination of the transactional
process. To do this, each one of the processes is analyzed in order
to determine the processes that comply with the ACID properties
of the business transactions: a) Atomicity - The entire sequence
of actions must be either completed or aborted. The transaction
cannot be partially successful, b) Consistency - The transaction
takes the resources from one consistent state to another, c)
Isolation - A transaction's effect is not visible to other
transactions until the transaction is committed, d) Durability -
Changes made by the committed transaction are permanent and
must survive system failure. The transactional process must be
indicated in the process model by placing an indication in the box
that represents the process (Figure 6.34). In our case study, the
formalize the rent of a car process can be considered as a
transactional process. When the rent is formalized, all operations
that compose the process must be executed; therefore it is not
possible to only perform the payment without receiving the car
rental contract, or it is not possible to receive the car without the
previous payment. All operations must be successfully performed
to have a car rented. This is why this process is marked as
transactional in Figure 6.34.

Figure 6.39 presents an example of the protocol model for the
running example. It is important to point out that the definition of

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

258

business protocol enables the analysts to represent the enterprise
as a service requester. In this model, the enterprise depends on the
customer to obtain her/his personal data and the customer
depends on the car rental company to obtain acceptance of
rejection of the request to rent a car. In our case study, the
analyzed enterprise uses an external business service provided by
a bank entity to validate the credit of the customer that requested
a walk-in rental.

Analyze the
preconditions
for the Client

Indicate the
acceptation
or rejection

Indicate the
acceptation
or rejection

deliver
data

deliver
data

Wait for the
notification

acceptation/
rejection

requested
data

request
the service
request

the service

Analyze the
own pre-
conditions

Analyze the
own pre-
conditions

Enterprise Customer

authorize
the service
authorize

the service

use the
service
use the
serviceprovide the

service
provide the
service

Validate
credit

Validate the
customer credit

Request walk-in
car rental

Request walk-in
car rental

Bank

Figure 6.39 The protocol model for requesting walk-in rental

6.7 The service-oriented method as a mechanism to align
business goals

One of the advantages of the service-oriented method proposed in
this thesis is the explicit capability of the method to align the
goals among the service refinement levels. In the global model,
the objective is to align the goals of customers with business
services and then, associate the enterprise objective with the

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

259

offered business services (Figure 6.40). In the process model, the
objective is to align the service goal with process goals by
abstraction and refinement. Finally, in the protocol model, the
process goals are aligned with the goals of the actors that are
involved in performing the business processes. This approach
enables the analysts to trace a specific goal through service
decomposition, and it also permits justifying each business
activity with the elicited enterprise goals.

We consider that although exhaustive goal analyses are needed to
accomplish the proposed method, the result of the process is a
consistent business model

Process 1Process 1

Process 2Process 2

Process 3Process 3
Goal 6

Goal 5

Goal 7

Goal 4

service 3 Goal
Process
Model

resource

Plan

enterprise

customer

enterprise

Plan
Plan

Plan

Plan

Plan

Plan

plan

Service 4

customer

Goal 7 Goal

Goal

Protocol
Model

enterprise

Goal customer

service 3

service 1

service 2

Goal

Goal

Goal 3

Goal 2

Goal 4

Goal 1

Service
Global
Model

enterprise

Process 3

Figure 6.40 The strategy for aligning service, process and protocol goals

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

260

6.8 Analyzing the future enterprise situation

The objective of analyzing the future enterprise situation is to
produce a description of the alternative solutions for
offering/implementing business services in order to satisfy the
desired goals of the enterprise. To do this, two different
approaches can be selected: a) propose new business services that
enable the enterprise to adapt to new external conditions, and b)
adapt the existing business services to fit new market conditions.

6.8.1 Analyzing the market conditions
An analysis of the current business process model with the new
market conditions must be performed in order to detect the
needed modifications.

Several conditions can affect business services, such as policies,
new market restrictions, the economic situation of the enterprise,
etc. These conditions obligate the enterprise to consider
eliminating or changing the current business services, or these
conditions can obligate the enterprise to define new business
services.

6.8.2 Defining objectives to be satisfied
The definition of the goals to be achieved by the inclusion or
modification of current business services is the first stage in
representing the future enterprise situation. The global model
offers appropriate means to represent these goals to be satisfied.

The alternative solutions to resolve the challenges of the
enterprise are represented using the concept of goal. However, it
is also necessary to determine how the proposed alternative
solutions influence the quality attributes predefined in the
enterprise. The quality attributes are represented as non-
functional attributes (softgoals) that qualify the set of alternative
solutions to the new market conditions. Using softgoals, it is
possible to evaluate the positive and negative contributions of the

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

261

alternative solutions with the desired goals to be achieved. Figure
6.41 shows the schema for using softgoals in the context of the
proposed service-oriented approach.

Enterprise

Goal

Goal Goal Goal

quality
attributes

quality
attributes

Service

++ ++-

--+

+

Service

Figure 6.41 Softgoals to represent the desired goals in the future enterprise

situation

Softgoal analysis applies to the different refinement levels of the
proposed service-oriented approach: global, process and protocol
models.

In our case study, the goal defined to represent the desired future
enterprise situation in car rentals was to increase the customer
satisfaction in checking out the rented car. Alternative solutions
must be proposed in order to achieve this objective. The
alternatives evaluated are: a) increasing the associated branches
b) providing express check out and c) delivering the car directly
to the customers. The analysis of contribution is applied to
evaluate the impact of the proposed solution onin the following
attributes: cost, security, and effort.

The contribution analysis permits us to determine that even
express check out can be convenient for customers, this solution
increases the risk in security due to fraudulent users. In the case
of increasing the number of associated branches, it implies

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

262

increasing cost. Finally, the option of delivering the car directly
to the customer seems to be best option because the costs are
smaller than the option of opening new branches (Figure 6.42).

Enterprise
Increase customer

satisfaction in check out

cost
+

Increase associated
branches

Provides express
Check out

Deliver car to
customers

security
effort++

+
+ --

++
-- +

+

Figure 6.42The softgoal as mechanism to evaluate alternative solutions

6.8.3 Adapting the enterprise to the selected alternative
Consider the situation where the enterprise has decided to modify
the way it currently delivers the rented car based on the analysis
of contribution and softgoals. In this case, the current process for
delivering cars to customers must change: instead of performing
the checkout of the car in the branch, the car rental company
decides to deliver the car to the customer. This modification
implies changes in the car rental business service in order to add
the process of delivering the car. In the modified service, when
the reservation is formalized, the company assigns a driver and a
vehicle as required in the service contract. Therefore, the process
select driver and deliver process are included in the process
model of the car rental business service (Figure 6.43).

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

263

Internet
reservation customerRent a carFormalize the rent TT Formalize the rent TT

Request walk-in rentalRequest walk-in rental

Analyze car availabilityAnalyze car availability

service

Enterprise

Select driver TT Select driver TT

Deliver car TT Deliver car TT

Figure 6.43 New process model for the car rental business service

The following step is to generate new processes to select car
drivers and to deliver cars to customers, the rest of the processes
remain the same. With the proposed business service architecture,
it is possible to add or remove processes or services without
affecting the entire business model. The approach enables the
analyst to reuse entire processes to modify current services or to
add new services to the business model.

The powerful semantics of softgoals and contributions analysis
enables the analyst to carry out several performance analyses to
be sure that the business model appropriately fits the market
conditions.

6.9 Summary

As a solution to the issues detected in the experimental
evaluation, a method to represent an organizational model as a
composition of business services has been proposed. In this
method, the services represent the functionalities that the

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

264

enterprise offers to potential customers. Thus, the business
services are the building blocks that allow us to represent a
business model in a three-tier architecture: business services,
business processes and business protocols. The organizational
modeling process starts with the definition of a high-level view of
the services offered and used by the enterprise. Later, each
business service is refined into more concrete process models,
according to the business service method proposed in this thesis.
Finally, business protocols are represented using the revised
version of the modeling concepts of the i* framework proposed in
Chapter 4.

The proposed method is composed of two main steps: a) define
the current enterprise situation, which reflects the current
business processes required to satisfy the current business goals,
and b) define goals to be satisfied in the future situation of the
enterprise, and adapt the current enterprise model to fit the
desired goals.

This method to elicit the current situation of the enterprise group
several techniques such as goal modeling and organizational chart
modeling to construct a business service model that is represented
using the proposed architectural diagrams. The main advantage of
this proposal is that it provides a solution for the problems of
refinement and granularity. It is important to point out that many
of the negative results in the evaluation of i* are related to the
lack of mechanisms for controlling the refinement and the
granularity of the information represented in the organizational
model.

The proposed guidelines for determining the future enterprise
situation are based on the analysis on the softgoals and
contributions links in order to represent how the alternative
solutions influence the quality attributes of the enterprise. The
analysis of contributions represents the appropriate mechanism to
help managers in taking decisions about the future of the
enterprise.

265

Chapter 7

7. The Service-Oriented Method: a case
study

In this Chapter, we illustrate the service-oriented method using a
real project as a case study in the domain of education
institutions.

7.1 Introduction

We validate the method proposed in this thesis by developing a
case study in the domain of education institutions. The case study
consists of a real project to model the processes of a postgraduate
institution (www.cenidet.edu.mx) that offers Master and PhD
programs in the following areas: computer science, mechanics
and electronics

The objective of the analysis was to determine if the business
processes of this education institution meet the requirements
needed for the certification in the quality management standard
ISO 9001:2000. This standard helps to evaluate if a service-
oriented organization achieves standards of quality that are
recognized throughout the world.

The objective of the case study was to use the service-oriented
method to model the specific process to register students in the
academic semesters of the postgraduate programs. The case study
was implemented by students of a Master program in computer
science of the institution being analyzed.

http://www.cenidet.edu.mx/

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

266

7.2 Applying the service-oriented method

The first step in achieving the objective of the proposed method is
to develop a strategic dependency model using the “pure” i*
notation (Yu, 2003). This model represents the dependencies
among the organizational actors, making it explicit the social
behaviors of the actors in the business model.

The actors involved in the process to register students in the
educational company are the following: vigilance agent, students,
professors, faculty advisors, student control department, studies
control department, department chair, finance department, and
planning department. This information was elicited by using the
manuals of processes of the institution and by personal interviews
with Directors and department managers.

Figure 7.1 presents the i* dependency model for the registering
student’s case study. The model represents the dependencies of
the actors that are needed to accomplish the student registration.
In this model, the student is the actor that is responsible for a
large number of actor dependencies with all the actors in the
model. Thus, if the student fails to perform some goal, the entire
process will fail. The dependency model makes explicit the issues
in the model; however, this model becomes to be difficult to
manage if it grows in size and complexity.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

267

Figure 7.1 Strategic dependency model for the register students’ case study

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

268

Figure 7.2 presents a fragment of the strategic dependency model
that shows the dependencies of the student with the rest of the
business actors in the model.

In this model, the student is involved on the following
dependencies as the depender actor (The student depending on
other business actors):

• The student depends on the bank to pay the fees of the
registration.

• The student depends on the Vigilance Agent to obtain a
number of turn to register (the turn establishes the order
to register students).

• The student depends on the Finance Department to obtain
the official payment receipt

• The student depends on the Student Control Department
to make the registration

• The student depends on Student Control Department to
obtain the list of available courses.

• The student depends on the Student Control Department
to obtain the authorized schedule.

• The student depends on the Department Chair to
authorize the schedule.

• The student depends on the Thesis Advisor to make the
selection of courses.

• The student depends on the Thesis Advisor to obtain the
course catalogue.

In all this dependencies the student becomes vulnerable if the
other actors fail to deliver a resource or satisfy a goal.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

269

Figure 7.2 Fragment of the strategic dependency model

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

270

Once the dependencies among actors have been detected in the
previous stage, a rationale model needs to be created that
represents the rationalities of the organizational actors.

The rationale model is focused on describing the internal
behaviors needed for the actor to fulfill its dependencies with
other actors in the enterprise process. To determine this
information, personal interviews with organizational actors were
done in order to specify the role of each actor in the processes
that are needed to register students in the Master and PhD
programs.

Figure 7.3 illustrates the rationale model for registering student’s
case study. In this model, the analyst must represent the internal
goals and tasks that are needed to satisfy the actor dependencies.
One of the issues the strategic rationale model is that all the
elements in the model are represented in the same abstraction
level, without indications of the hierarchy of objectives and tasks.
In this current modeling scenario, the model generated as a result
of this process is a composite of a large number of elements. This
situation makes it difficult to determine which fragments of the
business model correspond to the business processes that help to
fulfill the organizational objective of the educational institution. It
is also very complicated to try to follow the chain of events and
objective associated to the satisfaction of a specific actor goal.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

271

Figure 7.3 The strategic rationale model for the case study

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

272

Figure 7.4 illustrates a fragment of the strategic dependency
model which is focuses on the dependencies of the students. In
this model, the student performs the following actions to register
in the master or PhD program: a) Pay fees in the bank, b) Take
position in queue, c) Exchange bank receipt, d) Request courses
to take, and e) Register in the Student Control Department.

The task decomposition tree for each high-level goal is presented
below.

• Pay fees
* pay fees in the bank

 * receive bank receipt

• Take position in queue
* register entrance

 * request turn

• Exchange bank receipt
* deliver bank receipt

* receipt official receipt

• Request courses to take
* request courses

 * request authorization

• Register in the Student Control Department
* deliver turn

 * request courses to follow
 * deliver official receipt

 * receive final schedule

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

273

Figure 7.4 Fragment of the strategic rational model for the case study

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

274

The conventional dependency and rationale models were
generated in order to demonstrate the differences between the
current i* approach and the service-oriented approach proposed in
this thesis.

The first step of our service-oriented method is to define a global
model that represents the enterprise being analyzed as a service
provider (Figure 7.5). As a result of the analysis of the academic
institution, a set of offered services have been detected:
innovative products development, development projects,
industrial courses, PhD programs, Master programs, and research
projects development. It is important to point out that this model
represents a more abstract level that that dependency model
shown in Figure 7.1 because the service model represents all the
services of the enterprise in a simple and clear view while the
dependency model represents only a process of the enterprise
been analyzed.

The association between the offered business services and the
potential customers is represented below:

• The innovative industry requests to develop research
projects.

• The student requests to follow a master degree program.

• The student request to follow a PhD degree program.

• The industry requests to develop innovative products.

• The industry requests to develop application projects.

• The industry requests to take industrial courses.
Each one of the potential customer has specific objectives to
request a service. As stated above, the global model has the
appropriate abstraction level to make the first agreements with the
final customers.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

275

National
Research

and development
Center

Industrial
courses

Application
projects

development
Innovative
products

development

Industry

D

Generation of
products

D

Master
degree

programs

Study a
master

D

PhD
degree

programs

Study a
PhD

D

student

Research
Projects

development

Develop
new

products

Innovative
industry

Receive state of
the art courses

Solutions for
Industrial
problems

Figure 7.5 the global model for the scholar institution

The formulas that represent the global model for the case study
are presented below:

Type Predicates
actor(innovative_industry)
actor(student)
actor(industry)
agent (CENIDET)

service (offered, research_projects_development)
service (offered, master_degree_programs)
service (offered, PhD_degree_programs)
service (offered, innovative_products_development)
service (offered, application_projects_development)
service (offered, industrial_courses)

owns(CENIDET, research_projects_development)
 owns(CENIDET, master_degree_programs)

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

276

owns(CENIDET, PhD_degree_programs)
owns(CENIDET, innovative_products_development)
owns(CENIDET, application_projects_development)
owns(CENIDET, industrial_courses)

provide(CENIDET, research_projects_development)
provide (CENIDET, master_degree_programs)
provide (CENIDET, PhD_degree_programs)
provide (CENIDET, innovative_products_development)
provide (CENIDET, application_projects_development)
provide (CENIDET, industrial_courses)

satisfy_ex(research_projects_developmen, innovative_industry,
develop_new_products)
satisfy_ex(master_degree_programs, student, study_a_master)
satisfy_ex(PhD degree programs, student, study_a_PhD)
satisfy_ex(innovative_products_development, industry,
generation of products)
satisfy_ex(application_projects_development, industry,
solution_for_industrial_projects)
satisfy_ex(industrial_courses, industry, receive_stateart_courses)

requests(innovative industry, research_projects_development)
requests(student, master_degree programs)
requests(student, PhD degree programs)
requests(industry, innovative_products_development)
requests(industry, application projects development)
requests(industry, industrial courses)

Once a high level view of the enterprise has been generated
through the global model, the next step is the definition of the
internal structure of each of the services elicited. We select the
Master degree program business service offered by the academic
institution as the example to be illustrated in this thesis. This
service is the composite of register student, teaching course and
student advisory business services (Figure 7.6). Thus, the Master

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

277

degree program business service is graphically associated to its
corresponding services using the global model. The services
teaching course and student advisory are considered as
supporting services because they can only be requested by
students of the master program. In the case of the service register
student, it can be requested by new students of the program.

Figure 7.6 Service decomposition for business service

The clauses that formally represent the decomposition of the
offered service into aggregated business services are presented
below:

Service relations
service (offered, master_program)
service (offered, register_students)
service (supporting, teaching_courses)
service (supporting, student_advisory)

mandatory_decomposition(master_program, register_students,
teaching_courses, student_advisory)

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

278

The next step in the proposed method is to determine the relation
among the high-level goals of the enterprise and the offered
business services. This is done by determining how the offered
services help to fulfill the general goals of the enterprise (Figure
7.7). We have selected the register students business services for
an in-depth analysis.

The goals that have been elicited need to be represented in the
expanded view of the service global model. It is important to
point out that all services represented in this model have
influence on the satisfaction of the goals of the enterprise.

The global model in Figure 7.7 indicates that in order to provide
the service register students business services, the following
goals need to be fulfilled: a) offer appropriate courses, b) register
students in the master/PhD program, c) manage fee payments,
and d) manage the courses of the program.

Each of the elicited goals has been refined in a goal-refinement
tree in order to determine how the goals need to be satisfied. For
example, to satisfy the goal offer appropriate courses, the
academic institution must fulfill the following sub-goals: a)
obtain a list of courses of the professors, b) select courses for a
specific semester, and c) authorize the courses.

As stated above, the objective of this phase is the determination
of the map between the strategic objectives of the enterprise and
the offered business services. This is one of the contributions of
this work because other proposals to consider services at the
business level (Cherbakov et al. 2005) (Baida 2006) do not
consider the association between goals and services.

http://portal.acm.org/results.cfm?query=author%3AP727289&querydisp=author%3AL%2E%20Cherbakov&coll=GUIDE&dl=GUIDE&CFID=2687248&CFTOKEN=11918074

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

279

Figure 7.7 Goal model associate to register students business service

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

280

The clauses that represent the goal decomposition of the actors
involved in our case study are presented below:

Goal refinement
AND_decomposition(manage_registration_in master:program,
offer_appropriated_courses, register_students,
manage_fee_payments, courses:management)
AND_decomposition(offer_appropriated_courses,
obtain_list_of_courses, select_courses, authorize_courses)
AND_decomposition(register_students,
fulfilling_requirements_for_registering,
register_in_control_student_depatment)
AND_decomposition(Manage_fee_payments,
automate_manage_revenues)
AND_decomposition(courses_management,
generate_final_course_schedule)

Once the relationship between business services and enterprise
goals were detected, the actors that are responsible for each
business goal must be detected to create the expanded global
model. It represents how the offered business services are
decomposed in a set of goal delegations, where some of these
delegations are satisfied through internal business services
(Figure 7.8).

The next step of the proposed method is the determination of the
actors that are responsible to satisfy the elicited business goals.
To do this, the name of the actor that is responsible for the goal
must be associated with the elicited goal.

This is one of the main differences of our approach with other
goal-based techniques where no actors are identified to be
responsible to satisfy the business goals. In our approach, we
need to detected goals owners in order to create the associated
business service model.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

281

Figure 7.8 The identification of responsible for elicited goals

M
an

ag
e

re
gi

st
ra

tio
ns

 in
m

as
te

r p
ro

gr
am

R
eg

is
te

r i
n

co
nt

ro
l s

tu
de

nt

de
pa

rtm
en

M
an

ag
e

G
ra

ns
 p

ay
m

en
ts

R
eg

is
te

r
co

ur
se

s
in

 s
ys

te
m

R
eg

is
te

r
st

ud
en

ts
 in

sy

st
em

A
ut

om
at

e
m

an
ag

e
re

ve
nu

es
Au

th
or

iz
e

co
ur

se
s

Se
le

ct

co
ur

se
s

O
ffe

r
ap

pr
op

ria
te

d
co

ur
se

s

O
bt

ai
n

lis
t o

f
co

ur
se

s
G

en
er

at
e

fin
al

co

ur
se

sc

he
du

le

O
bt

ai
n

co
ur

se
s

fo
r r

es
ea

rc
h

ar
eaC

ou
rs

es

m
an

ag
em

en
t

O
bt

ai
n

co
ur

se

fo
r d

ep
ar

tm
en

t
G

en
er

at
e

sc
he

du
le

C
ha

ng
e

ba
nk

re

ce
ip

t

R
eg

is
te

r
en

tra
nc

e

Fu
lfi

llin
g

re
qu

ire
m

en
t f

or

re
gi

st
er

in
g

Pa
ym

en
t i

n
ba

nk

R
eg

is
te

r

R
eg

is
te

r
st

ud
en

ts

N
at

io
na

l r
es

ea
rc

h
an

d
de

ve
lo

pm
en

t c
en

te
r

S
tu

dy
 a

m

as
te

r

st
ud

en
t

St
ud

en
t

B
an

k

Vi
gi

la
nc

e
en

tr
an

ceFi
na

nc
e

D
ep

ar
tm

en
t

pr
of

fe
so

rsco
or

di
na

to
rs

C
ha

ir
D

ep
ar

tm
en

t

O
rg

an
iz

at
io

n
an

d
 tr

ac
ki

ng

O
rg

an
iz

at
io

n
an

d
 tr

ac
ki

ng O
rg

an
iz

at
io

n
an

d
 tr

ac
ki

ng

St
ud

en
t

C
on

tr
ol

 s
ys

te
m

St
ud

en
t

C
on

tr
ol

 s
ys

te
m

St
ud

en
t c

on
tr

ol

de
pa

rt
m

en
t

St
ud

en
t

St
ud

en
t c

on
tr

ol

sy
st

em

St
ud

en
t c

on
tr

ol

de
pa

rt
m

en
t

D
ep

ar
tm

en
t

C
ha

ir

D
ep

ar
tm

en
t

C
ha

ir
D

ep
ar

tm
en

t
C

ha
ir

D
ep

ar
tm

en
t

C
ha

ir

D
ep

ar
tm

en
t

C
ha

ir

O
bt

ai
n

co
ur

se
s

of

pr
of

es
so

rs

O
bt

ai
n

co
ur

se
s

of

ad
vi

so
rsSt
ud

en
t

ad
vi

so
rs

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

282

Once the actors with responsibilities to satisfy goals have been
identified, the algorithm proposed in this thesis must be used in
order to obtain a global model that represents the social structure
of the actors involved in the analyzed business service (Figure
7.9).

The proposed method uses the goal structure defined in Figure
7.8 in order to detect the potential dependencies among actors. To
do this, each element of the goal structure is used to create an
element in the global model.

The result of this process is a global model is created that
represents the internal and supporting business services that are
needed to satisfy the offered service register student. In this
model the complete list of stakeholders is generated and the
dependencies among these actors can be correctly elicited.

Figure 7.9 represents the global model for the services associated
to the registration of students in a master/PhD program. The
student uses the services offered by the Vigilance Agent, Bank,
Finance Department, Student Control Department, Department
Chair and Thesis Advisory. As stated above, these services will
be further refined into process and protocols.

In our case study, the students do not offer services to other actors
participating in the business model. This indicates that student
only plays the role of requester of business services.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

283

Figure 7.9 The service global model for the analyzed case study

S
tu

de
nt

St
ud

en
t

co
nt

ro
l

D
ep

ar
tm

en
t

B
an

k

V
ig

ila
nc

e
ag

en
t

Th
es

is

ad
vi

so
r

Fi
na

nc
e

D
ep

ar
tm

en
t

D
ire

ct
io

n

S
tu

de
nt

co
nt

ro
l

sy
st

em O
rg

an
iz

at
io

n
an

d
Tr

ac
ki

ng
D

ep
ar

tm
en

t

D
ep

ar
tm

en
t

C
ha

ir

fin
an

ce
S

ys
te

m

G
ro

up
co

or
di

na
tio

n

P
ro

fe
ss

or Pl
an

ni
ng

D
ep

ar
tm

en
t

D

Su
pp

or
t i

n
th

e
re

gi
st

ra
tio

n
pr

oc
es

s
R

eg
is

te
r

en
tra

nc
e

P
ay

 fe
es

re
gi

st
er

E
la

bo
ra

te

ec
on

om
ic

al
st

ru
ct

ur
e

R
eg

is
te

r
st

ud
en

ts

R
eg

is
te

r
co

ur
se

s

Pu
bl

is
h

ru
le

s
fo

r r
eg

is
tra

tio
n

D

O
bt

ai
n

fin
al

sc
he

du
le

C
ha

ng
e

re
ce

ip
t

M
an

ag
e

re
ve

nu
es

C
ho

os
e

co
ur

se
s

A
ut

ho
riz

e
sc

he
du

leau
th

or
iz

e
sc

he
du

le

P
ro

po
se

co

ur
se

s
Pr

op
os

e
co

ur
se

s

P
ro

po
se

 c
ou

rs
es

P
ub

lis
h

lis
t o

f
su

bj
ec

ts

O
bt

ai
n

fin
al

 li
st

of

 c
ou

rs
es

Pr
op

os
e

co
ur

se
s

 P
ro

po
se

 c
ou

rs
es

fo

r g
ro

up

Au
th

or
iz

e
sc

he
du

le

P
ro

po
se

co
ur

se
s

An
al

yz
e

co
ur

se
s

Fi
na

nc
ia

l
M

an
ag

em
en

t

 O

ffi
ci

al
 re

ce
ip

t
ge

ne
ra

tio
n

pa
ym

en
t

of
 s

er
vi

ce
s

re
gi

st
er

st

ud
en

t e
nt

ra
nc

e

G
en

er
at

io
n

of

fin
al

 s
ch

ed
ul

e

Pu
bl

is
h

re
gi

st
ra

tio
n

pr
oc

es
s

St
ud

en
t

re
gi

st
ra

tio
n

S
ub

je
ct

re
gi

st
ra

tio
n

R
eg

is
te

r
st

ud
en

ts

Au
th

or
iz

e
sc

he
du

le

G
en

er
at

e
fin

al

lis
t o

f c
ou

rs
es

 P
ro

po
se

 c
ou

rs
es

fo

r d
ep

ar
tm

en
t

P
ro

po
se

 c
ou

rs
es

D

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

284

As stated in previous Chapter, one of the basic analyses in this
modeling stage is the determination of hierarchical relationships
of subordination among actors.

The subordination, which is a key factor in business delegation
process, can only be applied to actors that work in the same
functional area. In our case study, the department chair, the
student’s advisor and the professor actors are part of the same
academic department. This is why the service propose courses
can only be delegated following the command chain defined by
this hierarchical structure (Figure 7.10).

The analysis of the chain of subordination in the enterprise is
useful to validate the chain of dependencies among the actors. In
this sense, within a organization unit, an actor can delegates a
service to another actor if they are associated through a
subordination relationship

Figure 7.10 Service delegation based on actor subordination relationships

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

285

The clauses for defining the service delegation are the following:

Service delegation
actor(Department_Chair)
actor(Group_Coordination)
actor(Thesis_Advisor)
actor(Professor)

service (supporting, Propose courses for department)
service (offered, Propose_courses)
owns(Department Chair, Propose courses for department)
provide(Department Chair, Propose courses for department)
requests(Organization_tracking_department, Propose_courses)

subordinate(Department_Chair, Group_Coordination)
subordinate(Group_Coordination, Thesis_Advisor)
subordinate(Group_Coordination, Professor)

delegate(Department_Chair, Group_Coordination,
Propose_courses_department) ← own (Group_Coordination,
Propose_courses_department) ∧ monitoring (Department_Chair,
Group_Coordination, Propose_courses_department) ∧
can_satisfy (Group_Coordination, Propose_courses_department)
∧ subordinatedchain(Department_Chair, Group_Coordination)

can_satisfy(X,S) ← servicedelegatechain(Department_Chair,
Group_Coordination, Propose_courses_department) ∧
can_satisfy(Group_Coordination, Propose_courses_department)
∧ subordinatedchain(Department_Chair, Group_Coordination)

delegate(Group_Coordination, Thesis_Advisor, Propose_courses)
← own (Thesis_Advisor, Propose_courses) ∧ monitoring
(Group_Coordination, Thesis_Advisor, Propose_courses) ∧
should_satisfy (Thesis_Advisor, Propose_courses) ∧
subordinatedchain (Group_Coordination, Thesis_Advisor)

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

286

should_perform(Thesis_Advisor, Propose_courses) ← provides
(Thesis_Advisor,Propose_courses) ∧ service_delegatechain
(Group_Coordination, Thesis_Advisor, Propose_courses) ∧
subordinatedchain(Group_Coordination, Thesis_Advisor)

delegate(Group_Coordination, Professor, Propose_courses) ←
own (Professor, Propose_courses) ∧ monitoring
(Group_Coordination, Professor, Propose_courses) ∧
should_satisfy (Professor, Propose_courses) ∧ subordinatedchain
(Group_Coordination, Professor)

should_perform(Professor, Propose_courses) ← provides
(Professor, Propose_courses) ∧ service_delegatechain
(Group_Coordination, Professor, Propose_courses) ∧
subordinatedchain(Group_Coordination, Professor)

The next step in the service-oriented method is the determination
of the goals that are supported by the business services offered by
the enterprise. The objective of this step is to refine the service’s
goals until the level where goals can be satisfied by business
processes is reached. To do this, the refinement process initiates
with the analysis of the general goal of the business service.
Then, it is necessary to refine this goal until business processes
can be detected.

As stated above, a goal-refinement tree must be constructed
where the root of the tree is links with a specific service that is
offered by the organizational actor. Figure 7.11 shows the
association of enterprise goals with the register students business
service of the actor student control department.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

287

Figure 7.11 The association of enterprise goals and business services

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

288

The clauses for defining the decomposition of the service’s goal
are the following:

Goal refinement
AND_decomposition(manage_student_records,
manage_active_student, manage_graduated_student)
AND_decomposition(manage_active_student, register_students,
manage_school_register)
AND_decomposition(register_students,
publish_infomation_about_registration,
capture_courses_information, Control_registration, register)
AND_decomposition(register, receive_official_receipt,
capture_student_data, deliver_proposed_schedule,
authorize_schedule)

satisfy_in(register_student, register)

The models that are generated from these steps enable the analyst
to explicitly represent the reasons of the enterprise to offer a
specific business service in a specific manner. The next step of
the proposed method consists of defining the businesses
processes that permit to implement the business services and also
permit to satisfy the business goals.

As commented above, the objective of this modeling stage is the
determination of high-level processes that implement the business
services. To do this, we propose to represent the processes that
make operational the goals identified in Figure 7.11. It is
important to point out that only the leaves goals of the goal
structure need to be refined into business processes.

The relationship among business goals and their corresponding
business process is presented below. The order of execution of
the processes represented in the model is also indicated using a
consecutive number.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

289

Goal: Publish information about registration

Process: Obtain information about registration (1)

Goal: Capture course information

Process: Register courses schedule of the professors (2)

Process: Obtain final list of courses (3)

Goal: Control the registration

Process: Request support to vigilance agent (4)

Process: Deliver turns to vigilance (5)

Process: Obtain turns from students (6)

Goal: Capture student data

Process: Request control number (7)

Process: Request courses to be taken (8)

Goal: Authorize schedule

Process: Receive signed schedule (9)

Process: Seal schedule (10)

Process: Deliver final schedule (11)

The model generated from this step uses the proposed notation to
indicate the relation among goals and business processes. This
model also enables the analyst to graphically represent the
business processes that are needed to provide a business service
to potential customers.

The concept of milestone is used in this model to represent the
execution order of the processes. The model represents that, for
example, in order to provide a signed schedule to the student, the
student must determine first the courses to follow.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

290

Figure 7.12 The process model for the register students business service

D

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

291

Finally, the last step of the method is the definition of the
protocol model for the elicited processes. To do this, the actors
responsible for the process must be selected and represented in an
isolated business model. As stated above, the protocol model
represents the low-level specification in our service-oriented
approach. This model is used to present the organization behavior
needed to satisfy a specific business process.

As stated above, the protocol model is represented by using the
“pure” i* notation. Thus, the interaction among business actors is
based on the concept of dependency. The advantage of this model
is the use of i* concepts to represent a very specific
organizational unit. Similarly to previous models, the source for
the generation of the protocol model is the goal structure that
associates goals and processes.

Figure 7.13 represents the protocol model for the request support
to registration process. In this model the following business
behavior is represent:

The main objective of the student is to make the registration. To
do this, the student must: a) register his/her entrance in the
institution, b) request a turn to make the registration, and c)
deliver the turn in the Student Control Department. The student
depends on the Student Control Department to deliver the turn,
and also depends on the Vigilance Agent to make the entrance
register and to obtain the turn to make the registration. The
Student Control Department depends on the Vigilance Agent to
provide support to the registration process and to deliver the turns
to the students to be registered. To achieve its dependencies, the
Student Control Department must perform following tasks:
request support to vigilance, obtain turns from students and send
turns to Vigilance Agent. The student depends on the Vigilance
Agent to register the entrance in the institution and to obtain the
turns. The Vigilance Agent must request registration, delivers
turns and receives turns from the Student Control Department.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

292

The model has been generated using a goal-refinement tree to
capture the goals of the process and then, translating the goal-
structure into a strategic rationale model using the proposed
algorithm.

Figure 7.13 Protocol model for process request support to registration process

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

293

7.3 Analyzing the proposed service-oriented method

Some of the conclusions obtained from the application of the
service-oriented method in a real case study are the following:

The proposed method enables the analyst to manage the business
modeling process in an incremental way, where the business
services are the building blocks. To give preliminary results about
the evaluation of the proposed method we use the same
evaluation features used in the empirical evaluation (Chapter 3).
The students involved in developing the case study gave
preliminary analysis about the evaluated features.

Refinement: This is one of the features that were improved over
the original definition of the i* framework. The method permits
to start the modeling process with a high level view of the
business model. This model, which is make up of a few modeling
elements is simpler to be analyzed that current strategic rational
model.

Each fragment of the model (represented as a business service) is
refined into abstract processes that are detailed in a more concrete
protocol model. However, in spite of the advantages of the
proposed approach, novel analysts might find it difficult to use
the several refinement steps of the method.

Modularity: In the method, the business services play the role of
building blocks that encapsulate internal structures of the model.
A similar approach is used to define abstract processes that
encapsulate a specific organizational behavior represented with
the i* framework. One of the advantages of the service-oriented
strategy is that changes for building blocks can be done without
affecting other parts of the business model

Repeatability: In this approach, two solutions have been
proposed to manage repeatability: revisiting the i* modeling
concepts and providing a method to incrementally develop
business models. However, despite the methodological
improvements, the repeatability rate is still low. Thus, it could

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

294

sometimes be difficult for novel analysts to determine whether to
consider a specific set of activities as a business process or as a
business service. With the proposed method, the definition of the
modeling primitives has been improved; however, problems of
ensuring repeatability still exist.

Complexity Management: This feature measures the capability
of the modeling method to provide a hierarchical structure for its
models, its constructs and its concepts. Complexity management
has been improved by using a refinement approach. The service-
oriented method obligates the analyst to hierarchically construct a
business model. The process starts with an abstract model that
hides the implementation details and the process ends with the
definition of low-level descriptions of business activities.

Expressiveness: This approach adopts the well-founded
capability of the i* framework to represent the social and
intentional aspects of a business model.

Traceability: One of the advantages of the service-oriented
approach is the possibility to trace a specific business goal
through the refinement chain. Our approach enables the analyst to
move back and forth between refinement models corresponding
to different development stages. The alignment of goals along the
different modeling stages is one of the contributions of this work.

Reusability: the possibility to isolate specific business activities
in building blocks permits the analyst to reuse building blocks to
construct or redefine an existing business model.

Scalability: the problems of scalability have been reduced with
the proposed approach; however, it does not offer a definitive
solution to the scalability problems. One of the scalability
problems was detected in the definition of the global model,
where the services are represented in the frontier of the actor.
This is useful to indicate that services are the interface between
the requester and the providers, however, this approach has
limitations when a business model contains organizational actor

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

295

that offers a large number of business services. A new service
representation is needed in order to solve this scalability problem.

Domain Applicability: Our approach adopts the well-founded
capability of the i* framework as an appropriate representation
means to represent several application domains.

7.4 Summary

Preliminary results of the application of the service-oriented
method permit to determine its advantages to represent a business
model in an increasing way. However, more research efforts are
needed in order to provide more concrete solutions to
repeatability and scalability problems. Intensive and exhaustive
empirical evaluations of the proposed approach are needed to
precisely detect the weak points of the proposal.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

296

297

Chapter 8

8. Conclusions and further work
The i* modeling framework is widely used for organizational
modeling. The framework focuses on strategic relationships
between actors in order to capture the social and intentional
context of an enterprise. This thesis presents our work on
improving i* as a business modeling technique based on a
service-oriented approach.

Nowadays, there are many research projects that use the i*
framework in different application domains. In all these
applications, i* concepts have been used to capture the social and
intentional elements of each specific domain, thereby supporting
software development. However, despite the well-known
theoretical advantages of the i* modeling approach, there are
certain issues that still need to be improved to assure their
effectiveness in practice. The first part of the thesis discuss an in-
depth analysis of the i* framework that confirms its usefulness
and identifies potential weak spots.

8.1 The empirical evaluation of the i* Framework

One of the main contribution of this first thesis section consists of
an empirical evaluation of i*, using a feature-based evaluation
framework and three industrial case studies. The case studies
were conducted in collaboration with a software company that
has adopted the OO-Method for software development. This is a
model transformation method that relies on a CASE tool ([7]) to
automatically generate complete information systems from
object-oriented conceptual models. The OO-Method can be
viewed as a computer-aided requirements engineering (CARE)

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

298

method where the focus is on properly capturing system
requirements in order to manage the complete software
production process. Thus, the evaluation framework has been
designed keeping in mind that it is to be used within model-based
software development environments.

The features that were evaluated (refinement, modularity,
repeatability, complexity management, expressiveness,
traceability, reusability, scalability and domain applicability)
were selected from well-established research works where agent-
oriented techniques have been evaluated. In the evaluation
framework, the analysts assigned a qualification to indicate how
well or badly each feature was supported by i* framework.

The evaluation has demonstrated that there is a set of issues that
needs to be addressed by the i* modeling framework to ensure its
successful application within industrial software development
projects. These issues boil down to a lack of modularization
mechanisms for creating and structuring organizational models.

Finally, the last contribution of the first thesis section is the
definition of a set of conclusions to be considered in the
definition of future versions of i*.

8.2 The definition of the modeling language

In the second part of the thesis, we extended i* in order to address
the weaknesses reported in this paper. Specifically, two
complementary solutions were proposed in this thesis to solve the
detected issues of refinement, modularity, complexity
management, reusability and scalability: the first one is revisiting
the i* modeling concepts and the second one is proposing a
business service architecture as an extension of the i* framework.

With respect to the analysis of the i* modeling concepts, we
presents a proposal to formally characterize i* modeling
primitives based on a multi-property framework.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

299

The main idea of using a multi-property framework to
characterize the conceptual primitives of i* was to define a set of
properties that defines each modeling element. Our research was
focused on the characterization of the i* relationships. This is
because the empirical evaluation demonstrated that i*
relationships (decomposition, means-end, contribution,
dependencies and is-a) are the source of most of the repeatability
problems found in using i* in industrial case studies. Therefore,
one of the contributions of second section of this thesis was to
review the semantics of i* relationships to ensure that they fit the
analysis’s needs in practical case studies. This was done instead
of following the criteria of using the semantics of the modeling
constructs according to a specific methodological technique
(Tropos, Grl or i*).

To perform the characterization, we have classified the i*
relationships according to the standard abstraction mechanisms
found in literature: association, aggregation, generalization, and
classification. Once each i* concept was mapped with a specific
abstraction mechanism, we defined a multi-property for each
modeling category. We selected a set of properties that clearly
restricted the way in which the elements associated through the
relationship could be associated. Therefore, the framework
captured relevant constraints that are expressive enough to ensure
that modeling concepts can be properly distinguished.

Formalisms to define the constraints were imposed in order to
reduce the possible ambiguity of giving only plain explanations
for the proposed constraints. Several meetings were held with
designers and users of i* and Tropos in order to make a
consensual judgment about the relevant properties for the
modeling concepts. In these meetings, the ambiguities that were
detected in practical case studies were presented and discussed.
Additionally, we carried out an exhaustive review and analysis of
the i*/Tropos bibliography. By doing this, we were able to reach
a consensus about the values for the proposed properties.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

300

As result of revisiting the i* concepts, we have obtained a stable
version of the modeling elements for our business service
approach. This version makes possible to clearly differentiate the
modeling primitives of i* so that modelers will have better
guidance on what primitives to use in different situations.

8.3 The service-oriented architecture

The last section of the thesis concerns the definition of the
service-oriented architecture and the service-oriented method
associated with this architecture. Our solution is based on the
concept of a Business Service Architecture, where encapsulated
organizational units can only participate in actor dependency
networks through well-defined interfaces. Our research work is
based on the hypothesis that it is possible to focus the
organizational modeling activity on the business services offered
by the enterprise to their customers. As a consequence of this
hypothesis, the proposed method provides mechanisms to guide
the organizational modeling process from the business service
viewpoint. The proposed service-oriented architecture for the i*
framework allows that the monolithic structure of the i* strategic
rationale model to be broken down into several business services.

Another contribution of this research work is that the focus of the
modeling activity has been changed from the actor’s viewpoint to
the service’s viewpoint. In the current state of i* and Tropos, the
modeling process is focused on how to discover the actors´ tasks
that are needed to satisfy the actors´ goals and objectives. As a
result of this analysis, the delegation of responsibilities to other
actors must also be detected. The current mechanisms for
decomposition, refinement, and modularity in i* are limited only
to the actors´ boundaries. In our business service approach, the
services are considered the focal point for the modeling process.
Therefore, the proposed approach provides methods to determine
how the business services are implemented through a specific
organizational behavior. As a result of this new approach, the

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

301

mechanisms for decomposition, refinement, and modularity are
focused on business services.

The proposed architecture distinguishes three abstractions levels
(services, process and protocols) and describes a methodological
approach to align the business models produces at these
abstraction levels. This enables the analyst to trace a specific
business goal through the modeling process. The architecture,
which is composed by three modeling diagrams, captures the
relevant aspects in service modeling: the service composition,
service variability, service objectives, services resources and
service behaviors.

All modeling elements and modeling diagrams introduced in the
service-oriented architecture for the i* framework have been
detailed in the third thesis section.

8.4 The service-oriented method

The modeling method associated with the service-oriented
architecture is also presented; which enables the analyst to
construct a business model in incrementally way. The proposed
method will enable the analyst to describe an enterprise as a
composition of business services that encapsulate a specific
organizational behavior. We introduce the concept of refinement
though the decomposition of business services into a set of
business processes that represent the detailed view of the
activities needed to perform the service.

One of the contributions of the last thesis section is the definition
of an elicitation process that combines the advantages of goal-
refinement structures with service-oriented diagrams that use the
well-founded social and intentional characteristics of the i*
framework to appropriately represent the enterprise situation. One
of the objectives of eliciting the organizational context using
goal-refinement structures is to attempt to hide the intentional

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

302

concepts of the i* framework for the analysts. To do this, a
specific goal category has been proposed in this research work.

In the current goal-based elicitation methods, the low-level goals
are used to obtain the requirements of the information system.
However, in this approach, the design decisions are taken too
early, and the requirements are generated without knowledge of
the performance of the organization. This approach focuses on
generating software specifications rather than on supporting
reasoning and analysis about the performance of the business
process.

Using only a goal-based structure for elicitation, it is not possible
to show: the order of execution of the operations, the work
product flow, the workflow, the summarization of responsibilities
of each business actor, etc. Therefore, it is not possible to
improve the organization before generating the requirements of
the information system.

We propose using the goal structure to automatically create a
business model that allows us to carry out this business analysis
(business process reengineering analysis, dependency analysis,
and task analysis) before making decisions on the future situation
of the enterprise. We have also proposed a method to
automatically transform the elements of goal-refinement structure
into the diagrams of the proposed service-oriented architecture.

We define a set of steps to generate organizational models that
reflect how the goals of each actor as well as the general goals of
the organization can be satisfied through the offered business
services. The method generates a high level view of the services
requested and offered by the enterprise. Then, each business
service is analyzed in-depth in order to determine its associated
business processes. Finally, each process is detailed using the
revisited version of the i* framework.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

303

8.5 Summary of main contributions

Several contributions have been made in this thesis:

• An empirical evaluation of the i* Framework in a real
software development environment was carried out that
provides information about the strengths and weaknesses
of the i* framework in practice.

• A modeling language for the service-oriented method
was proposed. The modeling language is the result of
revisiting the i* modeling constructs and proposing new
semantics for these constructs.

• A service-oriented architecture was developed that
considers the modeling diagrams and the analysis needed
to represent services at the organizational level. New
modeling diagrams based on i* have been proposed that
overcome some of the problems detected in the empirical
evaluation.

• A service-oriented method that provides a procedure to
elicit the organizational setting using a service orientation
is presented as a relevant contribution in this thesis. The
proposed method uses new modeling elements based on
the social dependencies of i*.

• A transformation method to translate goal structures
into i* models is presented that isolate the intentional
elements of the i* framework to novel i* analyst.

8.6 Related Publications
The contributions of this thesis are supported by the set of
publications carried out throughout this research work. These
have been published in several international journals, book
chapters, conferences and workshops.

8.6.1 International Journals

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

304

• Alicia Martínez, Oscar Pastor, Hugo Estrada. “A pattern
language to join early and late requirements”. Journal of
Computer Science and Technology (JCS&T), special issue
on Software Requirements Engineering. Vol. 5, No. 2.
July 2005. ISSN 1666-6038.

• Alicia Martínez, Hugo Estrada, Oscar Pastor. “Generation
of requirements model from business models: a pattern-
based approach”, Informatics Technology Management
Journal Num. 7, Vol. 2. December 2004. ISSN 1657-8236
pp. 11-21, (published in Spanish).

• Oscar Pastor, Alicia Martinez Rebollar, Hugo Estrada.
“Generation of Software Requirements Specifications
from Business Models”, Informatics Technology
Management Journal, Num. 1, Vol. 1. 2002. ISSN 657-
82364. pp. 53-65, (published in Spanish).

8.6.2 Book Chapters
• Oscar Pastor, Hugo Estrada, Alicia Martínez. i*, its

applications, variations, and extensions. The strengths and
weaknesses of the i* Framework: an experimental
evaluation. Editors: (Accepted for its publications by MIT
Press)

• J. Sanchez Diaz, O. Pastor Lopez, H. Estrada Esquivel, A.
Martinez Rebollar, J. Belenguer Fáguas, “9. Semi
Automatic Generation of User Interface Prototypes from
Early Requirements Model”, Perspectives on Software
Requirements Editors: Julio Cesar Sampaio do Prado
Leite, Jorge Horacio Doorn. Kluwer Academic Publishers,
Boston Hardbound, ISBN 1-4020-7625-8. USA 2004.

8.6.3 International Conferences and Workshops
• Hugo Estrada, Alicia Martínez, Oscar Pastor, John

Mylopoulos, “An experimental evaluation of the i*
Framework in a Model-based Software Generation

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

305

Environment”, in 18th Conference on Advanced
Information Systems Engineering (CAISE 06).
Luxembourg, Grand-Duchy of Luxembourg. June 2006.
Lecture Notes in Computer Science, Vol. 4001, ISSN:
0302-9743. 2006. Pp. 513-527.

• Alicia Martínez, Oscar Pastor, Hugo Estrada. “A pattern
language to join early and late requirements”, in VII
Workshop on Requirements Engineering (WER 04),
Tandil Argentina 2004. pp 51-64.

• Alicia Martinez, Oscar Pastor, Hugo Estrada. “Isolating
and specifying the relevant information of an
organizational model: a process oriented toward
information system generation”, in International
Conference on Computational Science and its
Applications (ICSSA 2004). Perugia, Italy Springer LNCS
3046, pp. 783-790.

• Hugo Estrada, Oscar Pastor, Alicia Martinez and Jose
Torres-Jimenez. “Using a Goal-Refinement Trees to
obtain and refine organizational requirements”, in
International Conference on Computational Science and
its Applications (ICSSA 2004). Perugia, Italy, Springer
LNCS 3046, pp. 506-513.

• Hugo Estrada, Alicia Martinez, Oscar Pastor. “Goal-based
business modeling oriented towards late requirements
generation”, in 22nd International Conference on
Conceptual Modeling (ER 2003) October 2003, Chicago,
Illinois, USA. ISBN 3-540-20-299-4, Springer LNCS
2813, pp. 277-290, 2003.

• Alicia Martinez, Jaelson Castro, Oscar Pastor, Hugo
Estrada. “Closing the gap between Organizational
Modeling and Information System Modeling”, in VI
Workshop on Requirements Engineering (WER 2003).
Piracicaba SP, Brazil, 2003. pp 93-108.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

306

• Hugo Estrada, Jaelson Castro, Oscar Pastor, Alicia
Martínez. “Goal-based organizational modeling oriented
towards late requirements generation”, in 17th Brazilian
Symposium on Software Engineering - SBES'2003.

• Hugo Estrada, Alicia Martinez, Oscar Pastor, Juan
Sanchez. “Generation of Software Requirements
Specifications from Business Models: a goal-based
approach”, in V Workshop on Requirements Engineering
(WER 2002). Valencia, Spain November 11-12, 2002, pp.
177-193, (published in Spanish).

• Alicia Martinez, Hugo Estrada, Oscar Pastor. “The
Business Model as starting point of the software
requirements: a methodological approach”, in 9°
International Congress on Computer Science Research
(CIICC´02). Puebla, Mexico. October 2002, pp. 197-208,
(published in Spanish).

• Alicia Martinez, Hugo Estrada, Juan Sanchez, Oscar
Pastor. “From Early Requirements to User Interface
Prototyping: A methodological approach”, in 17th IEEE
International Conference Automated Software
Engineering (ASE2002). Edinburgh, UK. September
2002, pp. 257-260.

• Hugo Estrada, Alicia Martinez, Oscar Pastor, Javier Ortiz,
Erika Nieto. “Automatic generation of an Executable
Conceptual Schema from a organizational model”, in V
Iberoamerican Workshop Requirements Engineering and
Software Environments (Ideas2002), La Habana, Cuba,
April 2002, pp. 281-292, (published in Spanish).

• Hugo Estrada E., Alicia Martinez R., Oscar Pastor L.,
Javier Ortiz H., Octavio A. Rios T. “Automatic generation
of a OO Conceptual Schema from a Work flow product
model”, in IV Workshop on Requirements Engineering
(WER2001). National Technological University, Buenos
Aires Argentina, November 2001, pp. 223-245, (published
in Spanish).

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

307

8.7 Future research directions

With the modifications proposed in this thesis, our intention is to
overcome the current limitations that practitioners face when
using i* in its current state. In fact, these modifications are
intended to both, solve the problems that were detected, and to
make the practical application of the method easier. Our future
work will be dedicated to evaluating whether these conclusions
can be generalized in practice.

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

308

9. References

Aart, C., Wielinga, B., Schreiber G. (2004). Organizational building blocks for

design of distributed intelligent system, International of Journal Human-
Computer Studies, 61(5):567-599

Albert, M., Pelechado, V., Fons, J., Ruiz, M., Pastor, O. (2003). Implementing

UML Association, Aggregation, and Composition: A Particular
Interpretation Based on a Multidimensional Framework, Proceedings of the
15th International Conference on Advanced Information Systems
Engineering (CAISE 03), Klagenfurt, Austria: Springer Verlag: 143-158.

Albert, M. (2006). Tratamiento de Relaciones de Asociación en Entornos de

Producción Automática de Código, PhD Thesis, Valencia University of
Technology, Valencia, Spain.

Ambler, S. (2005). The elements UML 2.0 Style, New York, NY, USA

Cambridge University Press.

Amsden J. (2005), Business services modeling. From: http://www-

128.ibm.com/developerworks/rational/library/05/1227_amsden/

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,

K., Roller, D., Smith, D., Trickovic, I. and Weerawarana, S. (2005). Business
Process Execution Language for Web Services Version 1.1. From
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

Anton, Annie (1996). Goal Based Requirements Analysis, Proceedings of the

Second International Conference on Requirements Engineering (ICRE 1996),
Colorado, USA: 136-44.

Asnar Y., Bonato R., Bryl V., Compagna L., Dolinar K., Giorgini P., Holtmanns

S., Klobucar T., Lanzi P., Latanicki J., Massacci F., MeduriV., Porekar J.,
Riccucci C., Saidane A., Seguran M., YautsiukhinA. and Zannone N. (2006).
Security and privacy requirements at organizational level. From:
http://www.serenity-
forum.org/IMG/pdf/A1.D2.1__Security_and_privacy_requirements_at_organ
izational_level_v1.9_final.pdf

Baida Ziv (2006), Software-aided Service Bundling - Intelligent Methods &

Tools for Graphical Service Modeling, PhD thesis, Vrije Universiteit
Amsterdam, The Netherlands.

http://www-128.ibm.com/developerworks/rational/library/05/1227_amsden/
http://www-128.ibm.com/developerworks/rational/library/05/1227_amsden/
http://www.baida.nl/research/serviguration.html

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

309

Bastos, L. & Castro J. (2003). Enhancing Requirements to derive Multi-Agent

Architectures. Proceedings of the VII Workshop on Requirements
Engineering (WER 2004), Tandil, Argentina: University of Buenos Aires
Press: 127-139.

Bergenti, F., Gleizes., & Zambonelli, F. (2004). Methodologies and Software

Engineering for Agent Systems, New York: Kluwer Academic Publishing.

Bolchini, D. and Paolini P. (2002). Capturing Web Application Requirements

through Goal-Oriented Analysis, Proceedings of the Workshop on
Requirements Engineering (WER 02), Valencia, Spain: 16-28.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and Mylopoulos, J.

(2004). TROPOS: an agent-oriented software development methodology.
Journal of Autonomous agents and Multiagent Systems, 8: 203-236.

Bubenko, J. A., Jr and M. Kirikova (1995), Worlds in Requirements Acquisition

and Modelling, Information Modelling and Knowledge Bases VI.
H.Kangassalo et al. (Eds.), IOS Press: 159– 174.

Carvallo, J., Franch, X., Quer, C. & Rodriguez, N. (2004). A Framework for

Selecting Workflow Tools in the Context of Composite Information Systems,
Proceedings of the 15th International Conference on Database and Expert
Systems Applications (DEXA 2004), Zaragoza, Spain: Springer Verlag: 109-
119.

Castro, J., Alencar, F., Filho, G. and Mylopoulos J. (2001). Integrating

organizational requirements and object oriented modeling, Proceedings of
the IEEE Joint International Conference on Requirements Engineering (RE
2001), Toronto, Canada: IEEE Press: 146-153.

Cherbakov, L., G. Galambos, R. Harishankar, S. Kalyana, and G. Rackham

(2005). Impact of service orientation at the business level. IBM Systems
Journal, Volume 44, Issue 4: pp 653 – 668.

Chung, L., Nixon, B., Yu, E. & Mylopoulos, J. (2000). Non-Functional

Requirements in Software Engineering. Boston, Hardbound: Kluwer
Academic Publishers.

Colombo, E., Mylopoulos, J., and Spoletini, P. (2005). Modeling and Analyzing

Context-aware Composition of Services, Proceedings of Third International
Conference on Service-Oriented Computing (ICSOC 2005), Amsterdam, The
Netherlands: Springer Verlag: 198-213.

http://portal.acm.org/results.cfm?query=author%3AP727289&querydisp=author%3AL%2E%20Cherbakov&coll=GUIDE&dl=GUIDE&CFID=2687248&CFTOKEN=11918074
http://portal.acm.org/results.cfm?query=author%3AP89803&querydisp=author%3AG%2E%20Galambos&coll=GUIDE&dl=GUIDE&CFID=2687248&CFTOKEN=11918074
http://portal.acm.org/results.cfm?query=author%3AP784669&querydisp=author%3AR%2E%20Harishankar&coll=GUIDE&dl=GUIDE&CFID=2687248&CFTOKEN=11918074
http://portal.acm.org/results.cfm?query=author%3AP784672&querydisp=author%3AS%2E%20Kalyana&coll=GUIDE&dl=GUIDE&CFID=2687248&CFTOKEN=11918074
http://portal.acm.org/results.cfm?query=author%3AP784652&querydisp=author%3AG%2E%20Rackham&coll=GUIDE&dl=GUIDE&CFID=2687248&CFTOKEN=11918074

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

310

Cossentino, M., Sabatucci L. (2003). Modeling Notation Source – PASSI,
Version 28. From: http://auml.org/auml/documents/PASSI.doc

Czarnecki K., Eisenecker U. (2000). Generative Programming. Addison Wesley

Eds.

Dam, K. (2003). Evaluating and Comparing Agent-Oriented Software

Engineering Methodologies. Published master thesis, RMIT University,
Austria.

Dam, K., Winikoff, M. (2003). Comparing Agent-Oriented Methodologies,

Proceedings of the Fifth International Bi-Conference Workshop on Agent-
Oriented Information System (AOIS 2003), Melbourne, Australia: Springer
Verlag: 78-93.

Dardenne, A. Van Lamsweerde and S. Fickas (1993). Goal Directed

Requirements Acquisition. Science of Computer Programming, vol. 20,
North Holland: 3-50

Decker, S.; Erdman, M.; Studer, R. (1996). A Unifying View on Business

Process Modeling And Knowledge Engineering. Proceedings of the 10th
Kew (Kaw96), Banff, Canada: 1-16.

Estrada, H., Martinez, A., Pastor, O. (2003). Goal-based business modeling

oriented towards late requirements generation, Proceedings of the 22nd
International Conference on Conceptual Modeling (ER 2003), Chicago,
USA: Springer Verlag: 277-290.

Elsmasri, R. and Navathe, S. (2004), Fundamentals on Database Systems,

Addison-Wesley Publisher.

Erl Thomas (2006), Service-oriented architecture: concepts, technology and

design. Prentice Hall, first edition.

Fuxman A., Pistore M., Mylopoulos J., and P. Traverso (2001). Model checking

early requirements specifications in Tropos, Proceedings of the Fifth IEEE
International Symposium on Requirements Engineering (RE’01), Toronto,
Canada, IEEE Press: 174–181.

Giorgini, P., Mylopoulos, J., Nicchiarelli E., and Sebastiani R. (2002).

Reasoning with goal models. Technical report, Department of Information
and Communication Technologies, University of Trento, Italy.

Giorgini, P., Massacci, F., Mylopoulos, J. & Zannone, N. (2005). Modelling

Social and Individual Trust in Requirements Engineering Methodologies,

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

311

Proceedings of the 3rd International Conference on Trust Management
(iTrust 2005), Paris, France: Springer Verlag: 161-176.

Giorgini P., Massacci F., Mylopoulos J., Zannone N. (2006) Requirements

engineering for trust management: model, methodology and reasoning. The
International Journal of Information Security, 5(4): 257-274.

Gordijn, J. and Akkermans, H. (2001). E3-value: Design and evaluation of e-

business models. IEEE Intelligent Systems, 16(4):11–17.

Gordijn J. and Akkermans, H. (2003). Value based requirements engineering:

Exploring innovative e-commerce idea. Requirements Engineering Journal,
8(2):114–134.

Grau G., Horkoff J., Yu E. (2006) IStarQuickGuide. From: http://istar.rwth-

aachen.de/tiki-index.php?page=iStarQuickGuide.

Jones, Steve (2005), A methodology for service oriented architectures. From:

http://www.oasis-
open.org/committees/download.php/15071/A%20methodology%20for%20Se
rvice%20Architectures%201%202%204%20-
%20OASIS%20Contribution.pdf

Kavakli V.and Loucopoulos P. (1999) Modelling of Organizational Change

using the EKD Framework, Communications of Association for Information
Systmes (CAIS), Volume 2 Article 6.

Kazhamiakin, R., Pistore, M., and Roveri, M. (2004). A Framework for

Integrating Business Processes and Business Requirements, Proceeding of
the Enterprise Distributed Object Computing Conference, California, USA:
IEEE Computer Society Press: 9-20.

Keith, Mantell (2005). From UML to BPEL. Model Driven Architecture in a

Web services world. From http://www-
128.ibm.com/developerworks/webservices/library/ws-uml2bpel/

Kolp, M., Giorgini, P. & Mylopoulos, J. (2003). Organizational Patterns for

Early Requirements Analysis, Proceedings of the 15th International
Conference on Advanced Information Systems Engineering (CAiSE'03),
Velden, Austria: Springer Verlag: 617-632

http://istar.rwth-aachen.de/tiki-index.php?page=iStarQuickGuide
http://istar.rwth-aachen.de/tiki-index.php?page=iStarQuickGuide
http://www.oasis-open.org/committees/download.php/15071/A methodology for Service Architectures 1 2 4 - OASIS Contribution.pdf
http://www.oasis-open.org/committees/download.php/15071/A methodology for Service Architectures 1 2 4 - OASIS Contribution.pdf
http://www.oasis-open.org/committees/download.php/15071/A methodology for Service Architectures 1 2 4 - OASIS Contribution.pdf
http://www.oasis-open.org/committees/download.php/15071/A methodology for Service Architectures 1 2 4 - OASIS Contribution.pdf
http://www-128.ibm.com/developerworks/webservices/library/ws-uml2bpel/#author#author

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

312

Lau, D., Mylopoulos, J. (2004). Designing Web Services with Tropos,
Proceedings of the IEEE International Conference on Web Services
(ICSWS´04), San Diego, USA: IEEE Computer Society Press: 306-314.

Liu, L., and Yu, E. (2003). Designing Information Systems in Social Context: A

Goal and Scenario Modelling Approach. Information Systems Journal, 29(2):
87-203.

Loucopoulos, P. and Kavakli, E. (1995). Enterprise Modelling and the

Teleological Approach to Requirements Engineering, International Journal
of Intelligent and Cooperative Information Systems, Vol. 4, No. 1: 45-79

Loucopoullos P. and Kavakli E. (1997) Enterprise Knowledge Management and

Conceptual Modeling, Conceptual Modeling, Current Issues and Future
Directions, Selected Papers from the International Symposium on Conceptual
Modeling (ER 97), Los Angeles, USA: Springer Verlag: 123-143.

Maiden, N., Jones, S., Manning, S., Greenwood, J. & Renou, L. (2004). Model-

Driven Requirements Engineering: Synchronising Models in an Air Traffic
Management Case Study, 16th International Conference on Advanced
Information Systems Engineering (CAiSE'04). Riga, Latvia: Springer Verlag:
368-383.

Martinez, A., Castro, J., Pastor, O. and Estrada. H. (2003). Closing the gap

between Organizational Modeling and Information System Modeling,
Proceedings of the VI Workshop on Requirements Engineering (WER 2003),
Piracicaba, Brazil: University Piracicaba Press: 93-108.

McDermid, J..A, (1994). Software Engineer´s Reference Book. Edit.

Butterworth-Heinenmann,

Moffett J., Lupu E. (1999). The use of Role Hierarchies in Access Control,

Proceedings of the ACM Workshop on Role-Based Access Control, Fairfax,
USA: 153-160.

Mylopoulos J., (1998). Information Modeling in the Time of the Revolution.

Information System, 23(3-4): 127-155.

OASIS (2007). Web Services Atomic Transactions. From: http://docs.oasis-

open.org

Padgham, L., Shehory, O., Sterling, L. & Sturm, A. (2005). Methodologies for

Agent-Oriented Software Engineering, Proceedings of the Seventh European

http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3084&spage=368
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3084&spage=368
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3084&spage=368
http://www.agentlink.org/happenings/easss/2005/abstracts.html#Sturm
http://www.agentlink.org/happenings/easss/2005/abstracts.html#Sturm

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

313

Agent System Summer School (EASSS 2005), Utrecht, the Netherlands:
Springer Verlag.

Pastor, O., Gómez, J., Infrán, E. &. Pelechado, V. (2001). The OO-Method

approach for information systems modeling: from object-oriented conceptual
modeling to automated programming. Information Systems, 26(7): 507-534.

Pardedel, E., Wenny R., and David T. (2004). Preserving Constraints for

Aggregation Relationship Type Update in XML Documents, Proceedings of
the 2004 International Conference on Intelligent Agents, Web Technology
and Internet Commerce (IAWTIC 2004), Gold Coast, Australia: 494-501.

Rust, R. T. & Kannan, P. K. (2002). e-Service: New Direction in Theory and

Practice. Armonk, N.Y.M.E. Sharpe Inc.

Ruyter, K., M. Wetzels, and M. Kleijnen (2001), Customer Adoption of E-

Service: An Experimental Study, International Journal of Service Industry
Management, Vol. 12, No. 2: 184-207.

Sannicolo, F., Perini, A., and Giunchiglia, F. (2001). The Tropos modeling

language, a User Guide. Technical report, ITC-irst.

Saksena, M., France, R., Larrondo-Petrie, M. (1999). A characterization of

Aggregation. International Journal on Computer Systems Science & Eng.,
14(6): 363-371.

Sanjiva, W., and Curbera, F. (2002). Business processes: Understanding

BPEL4WS, Part 1. Concepts in business processes. From
https://www.cs.tcd.ie/research_groups/kdeg/docs/presentations/IBM%20BPE
LWS_2423067fb7f9ef3a3e13aad29e20b85c.pdf#search=%22bpel4ws%2C%
20description%22

Shehory, O. & Sturm, A. (2001). Evaluation of modeling techniques for agent-

based systems, Proceedings of the Fifth International Conference on
Autonomous Agents, Montreal, Canada: ACM Press: 624-631.

Sinan, S. (2003). Understanding the Model Driven Architecture (MDA). From

http://home.comcast.net/~salhir/UnderstandingTheMDA.PDF

Stencil Group (2001). Defining Web Services. The Stencil Group. From:

http://www.stencilgroup.com/ideas_scope_ 200106wsdefined.pdf

Sturm, A. & Shehory, O. (2003). A Framework for Evaluating Agent-Oriented

Methodologies, Proceedings of the Fifth International Bi-Conference

http://www.ise.canberra.edu.au/conferences/iawtic04/
https://www.cs.tcd.ie/research_groups/kdeg/docs/presentations/IBM BPELWS_2423067fb7f9ef3a3e13aad29e20b85c.pdf#search=%22bpel4ws%2C%20description%22
https://www.cs.tcd.ie/research_groups/kdeg/docs/presentations/IBM BPELWS_2423067fb7f9ef3a3e13aad29e20b85c.pdf#search=%22bpel4ws%2C%20description%22
https://www.cs.tcd.ie/research_groups/kdeg/docs/presentations/IBM BPELWS_2423067fb7f9ef3a3e13aad29e20b85c.pdf#search=%22bpel4ws%2C%20description%22
http://home.comcast.net/~salhir/UnderstandingTheMDA.PDF
http://www.stencilgroup.com/ideas_scope_ 200106wsdefined.pdf

THE SERVICE-ORIENTED ARCHITECTURE FOR THE I* FRAMEWORK

314

Workshop on Agent-Oriented Information System (AOIS 2003), Melbourne,
Australia: Springer Verlag: 94-109.

Sturm, A., Dori, D. & Shehory, O. (2005). A Comparative Evaluation of Agent-

Oriented Methodologies, to appear in Methodologies and Software
Engineering for Agent Systems, Federico Bergenti, Marie-Pierre Gleizes,
Franco Zambonelli (eds): Kluwer Academic Publishers.

Sudeikat, J., and Braubach, L., and Pokahr, A and Lamersdorf, W. (2004).

Evaluation of Agent-Oriented Software Methodologies Examination of the
Gap between Modeling and Platform. Proceedings of the Workshop on
Agent-Oriented Software Engineering (AOSE-2004). New York, USA:
Springer Verlag: 126-141.

Terry, H. (1998). UML data models from an ORM perspective, Journal of

Conceptual Modeling (http://www.inconcept.com/jcm).

Van Welie, M., Van der Veer, G.C., Eliëns, A., An Ontology for Task World

Models. Proceedings of DSV-IS’98. Abingdon, UK: Springer-Verlag: 57-70.

W3C Working Group (2004). Web Services Architecture. From

http://www.w3.org/TR/ws-arch/

Yu, Eric (1995). Modelling Strategic Relationships for Process Reengineering,

Published Doctoral dissertation, University of Toronto, Canada.

Yu, E. & Liu, L. (2001). Modelling Trust for System Design Using the i*

Strategic Actors Framework, Proceedings of the Workshop on Deception,
Fraud, and Trust in Agent Societies held during the Autonomous Agents
Conference: Trust in Cyber-societies, Integrating the Human and Artificial
Perspectives. London, UK: Springer Verlag: 175-194.

Zannone N. (2007). A Requirements Engineering Methodology for Trust,

Security, and Privacy, PhD Thesis, Department of Information and
Communication Technology, University of Trento, Italia-

http://www.inconcept.com/jcm
http://www.w3.org/TR/ws-arch/
http://portal.acm.org/citation.cfm?id=759473
http://portal.acm.org/citation.cfm?id=759473

	Introduction
	The Context
	The Problem
	The lack of evaluations of the i* framework
	The lack of methodological extensions to improve the i* fram

	The Solution
	The lack of evaluations of the i* framework
	The lack of methodological extensions to improve the i* fram

	Innovative Aspects
	Structure of the Thesis

	The State of the Art
	Evaluations of the i* framework
	Shehory and Sturm research works
	Dam and Winikoff research works
	Sudeikat research works
	Summary of issues in the evaluation of i*

	Goal modeling proposals
	The Teleological approach for business modeling (Loucopoulos
	The GBRAM approach for requirements analysis (Anton 1996)
	KAOS: Goal-based requirements elicitation Dardenne, Lamsweerde and Fickas 1993)
	EKD: Enterprise Modeling (Bubenko and Kirikova 1995)
	Goal reasoning with Tropos

	The service-oriented proposals
	Services at the implementation level
	Services at the conceptual modeling level
	Services at the organizational modeling level:
	The i* proposals for representing services

	Conclusions

	The Empirical Evaluation of the i* Framework
	Introduction
	An overview of the i* Framework
	The i* modeling primitives
	The i* modeling diagrams

	The context of the empirical evaluation
	Object Model
	Dynamic Model
	Functional Model
	Presentation Model

	The contribution of the empirical evaluation
	Type of empirical evaluation
	The population background
	Evaluation design
	The selected case studies
	The evaluation framework
	The evaluation results
	Feature: Refinement
	Feature: Modularity
	Feature: Repeatability:
	Feature Complexity Management:
	Feature Expressiveness:
	Feature: Traceability:
	Feature: Reusability:
	Feature: Scalability:
	Feature: Domain applicability:

	Discussion

	The Modeling Language definition
	Introduction
	The i* primitive concepts
	The i* abstraction mechanisms
	The strategy to characterize abstraction mechanisms
	Aggregation (part-of) relationship
	A multi-property framework to characterize aggregation in i*
	Decomposition links as an aggregation mechanism
	The characterization of the decomposition based on the propo
	4.5.3.1 The partAND relationship:
	4.5.3.2 The partOR relationship:

	Summary of decomposition as an aggregation relationship

	The association (member-of) relationships
	A multi-property framework for characterizing the associatio
	Means-End links as an association mechanism
	The characterization of the means-end link based on the prop
	Summary of means-end as an association relation
	Contribution links as an association mechanism
	The characterization of the contributions link based on the
	Summary of contribution link as an association relation
	Dependency as an association mechanism
	The characterization of dependency based on the proposed fra
	Summary of dependency as an association relationship

	The generalization (is-a) relationship
	A multi-property framework for characterizing the generaliza
	The i* is-a relationship
	The characterization of generalization based on the proposed
	Summary of is-a as a classification relationship

	The classification (instance-of) relationship
	A multi-property framework for characterizing the classifica
	The instance-of relationship as classification mechanism
	The characterization of classification based on the proposed

	Conclusions

	The Service-Oriented Architecture for the i* Framework
	Introduction
	The proposed solution: a business service approach for the i
	What is a service?
	Our conceptualization about business service
	Why a service orientation?
	The characteristics of business service orientation

	A Business Service Architecture for the i* Framework
	The service-oriented strategy
	Overview of engaging a business service
	Implications of the service-oriented strategy
	The service-oriented components
	Intentional elements
	Actors
	5.3.5.1 Actor composite structure
	5.3.5.2 Actor Types

	Business Services
	5.3.6.1 Basic and composite business services
	5.3.6.2 Offered and supporting business services

	Requester(s) and Provider(s)
	Requesting a service
	Business processes
	Visibility rules
	5.3.10.1 Rules for service visibility
	5.3.10.2 Rules for actor visibility

	Delegation rules

	Architectural models
	The Global Model
	5.4.1.1 Abstract view of the global model
	5.4.1.2 Concrete view of the global model

	The Process Model
	5.4.2.1 Transactional and non-transactional processes
	5.4.2.2 Authorized actors
	5.4.2.3 Process execution order

	The Protocol Model

	The formalization of the components of the proposed service-
	Predicates
	Axioms for predicates

	Our business service approach as starting point for services
	Conclusions

	The Service-Oriented Method for the i* Framework
	Introduction
	Overview of the proposed method
	The strategy of the service-oriented method
	Defining the service global model
	Defining the abstract view of the global model.
	Step 1: Eliciting business services
	Step 2: Representing the service provider
	Step 3: Representing the service requesters
	Step 4: Representing the service dependency
	Step 5. Defining composite and basic business services.

	Defining the detailed view of the global model.
	Step 1. Defining the provider’s needs and goals
	Step 2. Defining the actors that are responsible for the se
	Step 3. Detecting dependencies from the goal-refinement tree
	Step 4. Reviewing the delegation schema
	Step 5. Defining the visibility schema.

	Defining the process model
	Step 1. Determining business processes by refinement
	Step 2. Determining process goals by abstraction
	Step 3. Linking goals and processes with organization actors
	Step 4. Reviewing the delegation schema
	Step 5. Detecting dependencies from the goal-refinement tree
	Step 6. Defining the visibility schema.
	Step 7. Specifying process execution order

	Defining the protocol model
	Step 1. Determining business tasks by refinement
	Step 2. Determining process goals by abstraction
	Step 3. Linking the goals and process with organization acto
	Step 4. Detecting dependencies from the goal-refinement tree
	Step 5. Generating dependencies from the goal structure
	Step 6. Generating a rationale model from goal structure
	Step 7. Determining transactional business processes

	The service-oriented method as a mechanism to align business
	Analyzing the future enterprise situation
	Analyzing the market conditions
	Defining objectives to be satisfied
	Adapting the enterprise to the selected alternative

	Summary

	The Service-Oriented Method: a case study
	Introduction
	Applying the service-oriented method
	Analyzing the proposed service-oriented method
	Summary

	Conclusions and further work
	The empirical evaluation of the i* Framework
	The definition of the modeling language
	The service-oriented architecture
	The service-oriented method
	Summary of main contributions
	Related Publications
	International Journals
	Book Chapters
	International Conferences and Workshops

	Future research directions

	References

