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$EVWUDFW�� �We examine the adaptation of classical machine learning selection criteria to ensure or improve the
predictiveness of specifications. Moreover, inspired in incremental learning, software construction is also seen as an
incremental process which must generate and revise the specification with the main goal of being predictive to
requirements evolution. The new goal is not necessarily to achieve the highest accuracy at the end of a first prototype
or version, but to maximise the cumulative benefits obtained throughout the entire software life-cycle. This suggests
a new software life-cycle, whose main characteristic is to move modifications earlier, by using more eager inductive
techniques, and reducing overall modification probability. This new predictive software life-cycle is particularised
for the case of (functional) logic programming, placing the deductive/inductive techniques necessary for each stage
of the life-cycle. The maturity of each stage and the practical possibilities for a (semi-)automation of the cycle based
on declarative techniques are also discussed.

.H\ZRUGV� Software Development, Machine Learning (ML), Inductive (Logic) Programming (ILP), Predictive
Modelling, Data-Mining, Software Life-cycles, Hypotheses Selection Criteria.

�� ,QWURGXFWLRQ

The software process defines the way in which software development is organised, managed,
measured, supported and improved. Nowadays it is widely accepted that the key to successful
development lies in the effective management of the software process. This emphasis on process
and the initiatives to measure their maturity (Humphrey 1990, Kuvaja 1994) reflects an evolution
of the concept of software quality from the traditional YHULILFDWLRQ and YDOLGDWLRQ approach
towards process-focused environments.

The development process is supported by the construction of explicit models. A process
model is a special kind of process representation in a suitable notation or formalism. During the
last three decades, the study of software production processes has led to the development of
various software life-cycle models that have been employed to some extent in software
engineering (stage-wise, waterfall, transformational, evolutionary and spiral models, Pressman
1997).

The main functions of a software life-cycle are to determine the dependencies between the
stages involved in software development and evolution, and to establish the transition criteria for
progressing from one stage to the next. These life-cycle models help engineers to determine the
order of global activities in the production of software. However, in our opinion, the main
drawbacks of these models (including those based on formal methods) are due to a
misconception of the nature of software and its evolution. It is still not infrequent to read

                                                          
* This work has been partially supported by CICYT under grant TIC 98-0445-C03-C1 and Generalitat Valenciana
under grant GV00-092-14.
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conceptions of software “from specification to final product”, which do not take maintenance or
generation of that specification into account.

Fortunately, there is an increasing interest in requirements elicitation and evolution as the
most important topics in software engineering. The following words, written by Fred Brooks
more than a decade ago, have been used elsewhere (Berry and Lawrence 1998) to illustrate the
point: “7KH�KDUGHVW�VLQJOH�SDUW�RI�EXLOGLQJ�D�VRIWZDUH�V\VWHP�LV�GHFLGLQJ�SUHFLVHO\�ZKDW�WR�EXLOG�
1R� RWKHU� SDUW� RI� WKH� FRQFHSWXDO� ZRUN� LV� VR� GLIILFXOW� DV� HVWDEOLVKLQJ� WKH� GHWDLOHG� WHFKQLFDO
UHTXLUHPHQWV� ����1R�RWKHU�SDUW�RI� WKH�ZRUN� VR�FULSSOHV� WKH� UHVXOWLQJ� V\VWHP� LI� GRQH�ZURQJ��1R
RWKHU�SDUW�LV�PRUH�GLIILFXOW�WR�UHFWLI\�ODWHU�”

Therefore, a more suitable approach to software development should emphasise the
construction of a JRRG� requirements model. The term ‘good’ means a model which minimises
software modification probability, particularly in the later stages. The idea is to ‘predict’
requirement evolution as much as possible in order to minimise the ‘remake’ of software as a
trace of this evolution. It should be explicitly stated that this predictive character of the model
must be preserved throughout the remainder of the life-cycle: the design must be conceived to
maintain the generality of the model, validation must be made according to this general model,
and, more importantly, future modifications must consist of coherent revisions, not extensional
‘patches’ to the model. The reason is clear: the later the modification the costlier it is.

It seems that specific models should be avoided, in order to decrease future changes and in
order to favour reusability (software development is expensive, time-consuming and a highly
repetitive process). The study and development of inductive techniques for generalising the
requirements to make them more predictive looks highly suitable. Before designing new
techniques and languages for further generalisation, an empirical and theoretical study on when
this generalisation of the model is useful and how it should be done would be necessary.
Predictive modelling and machine learning (ML), in particular, and the philosophy of science, in
general, provide us with very useful and corroborated tools (and terminology) for selecting the
most likely model or the most informative one.

In (Hernández and Ramírez 2000) we showed the benefits of adapting the paradigm of
scientific theory construction to software. An analogy between software development and theory
construction is presented. It suggests many equivalences to be worked on.
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Many results from one field could be usefully applied to the other; in particular, when and
how different reasoning techniques (induction, abduction1, deduction) should be used.

Philosophy of science and software engineering are complementary in experience and
techniques because they have focused primarily on different stages. Hence, the generation and
evaluation of hypotheses (phases 1 and 2) have been traditionally addressed by the former,
whereas design, coding, testing and debugging (phases 3, 4 and 5) have until now been priority
phases for software development. Only recently have the generation and evaluation of hypotheses
been included in the software construction paradigm, under the banner of “requirement
engineering”. However, it is usually not recognised in the literature that the techniques should be
mainly inductive. The information transmitted from the user to the developer is incomplete and
inexact and the developer must complete and explain it by inductive methods. The relevance of
this inference process has recently given rise to a different approach to software engineering:
inductive programming (Partridge 1997).

In this paper, we examine the adaptation of classical ML selection criteria to software systems
to distinguish predictive models (or specifications) from non-predictive ones. Moreover, inspired
by incremental learning, software construction is also seen as an incremental generation process.
The new goal is to minimise the maintenance cost of a software system by selecting a predictive
model of requirements, with a much more long-term view of the entire software process. This
suggests a new software life-cycle, whose main characteristic is to move modification probability
earlier, by using more eager inductive techniques. The induction of software specifications can
be carried out for simple cases only in a declarative environment. In particular, we will show that
it is suitable for classification problems. We must clarify that with regard to automation we show
that the evaluation/selection stage can be automated for large-scale problems but that the
“predictive software” claim is not exclusively an automated paradigm. It is a motivation for using
HDJHU induction methodologies (which can be automated) in software engineering.

The rest of the paper is organised as follows. First, in Section 2, we recall previous
applications of ML to software engineering and highlight some other issues that still have not
been applied, introducing some additional concepts and ML features. Next, in Section 3, we
define predictive software and relate it to adaptive software and intelligent software, and discuss
the convenience of either eager or lazy methods. Two examples are shown to illustrate the
(automated) selection of the most predictive model. Section 4 defines the predictive software
life-cycle and specialises it for declarative programming, discussing the stages which are mature
for automation. Section 5 includes an example of the automation of the whole cycle and a
discussion of partial automation of more complex problems. Section 6 presents other ML
techniques which can be applied to other kinds of software systems. Finally, Section 7 closes the
paper with an overall discussion of the benefits of accepting the “predictive software” paradigm,
even though some stages would still be manual or semi-automated.

�� 0DFKLQH�/HDUQLQJ�DQG�6RIWZDUH�(QJLQHHULQJ

Several learning or inductive techniques have been applied in software engineering, either in
CASE tools or in operative parts of full systems. From time to time, the idea has been revived,

                                                          
1 In what follows, abduction will be considered a special case of induction when the learning process is more related
to the assumption of factual hypotheses than the construction of general ones. In some cases, revision can also be
more abductive than inductive, when the revision consists of a simple patch or the assumption of extensional facts
(see e.g. Flach and Kakas 2000).
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but efforts on real applications run into the problem that induction is computationally much
harder than deduction.

�����3UHYLRXV�ZRUN

At present, there is already an incipient and productive (although not explicit) transfer between
ML and software engineering of VHYHUDO software systems. This has been done by comparing the
construction of past theories or systems and using this experience. As an example, experienced
software engineers use analogy as a very powerful method to translate previous situations,
problems, decisions and results into a situation which is different but somewhat similar. The idea
of automation dates back to the ‘Programmer’s Apprentice’, an automated programming system
designed by Rich and Shrobe (Rich and Shrobe 1978), where some analogical reasoning was
used from previous programming experiences. Some more recent approaches have also
attempted to use automated analogy for helping to reuse specifications (Tessem et al 1994).

However, the generation and evaluation of hypotheses in full programming languages from
extensional or partially intensional data have been successfully undertaken in the field of
Inductive Logic Programming (ILP). ILP is a framework of supervised learning in first order
logic (Muggleton 1991, Lavrac and Dzeroski 1994, Muggleton and De Raedt 1994). ILP has
been applied to different kinds of software engineering problems (Bratko and Dzeroski 1995):
program development from high level specifications through data reification and the construction
of invariants that can be used for proving correctness of procedural programs. With regard to the
testing phase, ILP techniques can also be used to generate an adequate set of test data for a logic
program.

The use of ILP for automatic program synthesis has been suggested elsewhere (Bergadano and
Gunetti 1995) but it is only at the present time that it can be considered able to cope with non-toy
problems. To apply the paradigm to complex problems, strong constraints on the clauses that
could possibly be generated must first be established. Then, inductive inference selects a target
(Prolog) program that is consistent with the constraints and the examples. In other words, the
basic skeleton of the target program is given, and the induction system will fill in the missing
details on the basis of the given examples (inductive program completion). One of the great
advantages of this approach is that if the application schema does not change completely, the
program can be revised for a new goal problem by modifying only the examples (software
maintenance and reusability).

Nonetheless, the applicability of ILP techniques to automatically obtain correct programs from
FRPSOH[ specifications consisting of a IHZ examples of their input/output behaviour is
questionable. (Flener and Yilmaz 1999) claim that at the current state of the research in this area,
the above objective can only be achieved for very specific or small problems.

�����,VVXHV�IURP�0DFKLQH�/HDUQLQJ

As has been commented on in the previous subsection, in the last two decades many ML
applications have emerged in the field of software engineering, adapting ML techniques to
improve specific parts of the software life-cycle. However, most of the techniques, paradigms
and theoretical results produced in ML have not been fully exploited to date for the whole
process of software development.

In particular, we will review the most important learning paradigms which have appeared in
the ML literature. We will centre on the problem of hypothesis selection in induction, and finally,
we will highlight the distinction of character between eager and lazy methods. Since we only
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briefly discuss those issues that will be used in subsequent sections, we refer to (Mitchell 1997)
for a complete view of the field.

The issues discussed below will allow us to define a new software quality factor,
predictiveness, according to the selection criterion that would minimise hypothesis (or program)
changes. It will also allow the introduction of a clear characterisation between eager and lazy
software systems and the introduction of a new life-cycle, which is inspired by ML paradigms.

�������/HDUQLQJ�3DUDGLJPV
The first and most important learning paradigm was introduced by Gold in his seminal paper
(Gold 1967). In an LQFUHPHQWDO� OHDUQLQJ session, where an infinite sample is gradually given
example by example, the goal of the learner is to obtain a hypothesis at a certain point that will
not change for future examples (i.e. will predict all of them correctly). Since this point of
convergence is not pre-determined, the paradigm is called LGHQWLILFDWLRQ�LQ�WKH�OLPLW.

Initially, very strict requirements were assumed (exact identification, lack of interactivity and
worst-case consideration). Consequently, the learnability results obtained were negative for many
families of languages. In order to allow more positive results, other paradigms have been
proposed. The 3$&�OHDUQDELOLW\� PRGHO (Valiant 1984) was a reaction to bringing ML to
tractability by relaxing the exact character of the identification. In order to do this, the
identification should not be exact but Probably Approximately Correct (PAC). The model has
also been modified to consider the efficient learning of universal representations such as logic
programs, as represented by the U-learnability model by (Muggleton and Page 1999).

Another approach is based on the interaction between the learner and the environment. This
allows the introduction of new examples that the learner generates and are not present in the
given evidence (sample). This paradigm is called 4XHU\� /HDUQLQJ and was introduced by
(Angluin 1987). The key issue of query learning is how the learner is able to make good
questions in order to optimise the learning process.

However, it is not until recently that the paradigm of identification in the limit has been
questioned. The new goal is not necessarily to achieve the highest possible accuracy at the end of
a learning session, but rather to maximise the cumulative benefits obtained throughout the
learning session (Abe 1997). Now, it is not only whether and when the final model or hypothesis
(if it exists) is found which is important but how many times the model has been changed.
Moreover, it is also important how much it has been changed. This has generated an LQFUHPHQWDO�
UHYLVLRQLVW trend in ML and knowledge acquisition (Katsuno and Mendelzon 1991). When new
observations are received, three situations are possible: SUHGLFWLRQ�KLW, QRYHOW\ and DQRPDO\. The
first situation, prediction hit, is the clearest one. The theory is more validated than before and no
revision to it is necessary. The last situation, anomaly, is also quite clear. The new evidence is
inconsistent with the theory2. Consequently, it must be revised. However, this revision can be
done in many ways: by a simple patch or by a coherent (general) revision. Finally, in the same
way, a novelty (i.e., an equation which is not covered by the hypothesis but it is consistent) can
be incorporated into the theory by a simple extension (a patch) or by a coherent extension, which
may motivate the revision of the theory.

The following subsections discuss the two factors which influence the frequency and character
of revisions, the selection criteria (conservative or explanatory) and the inductive method (lazy or
eager).

                                                          
2 For classification problems, we have not addressed the case of having different misclassification costs.
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�������6HOHFWLRQ�&ULWHULD
A fundamental question for the learning task is whether there is any way to know, a priori, when
a given hypothesis will be satisfied by future experiences in a given context.

If we know the initial distribution of hypotheses in that context, the plausibility of the
hypothesis can be obtained in a direct way under a Bayesian framework. Since this initial
distribution is generally unknown, many different measures of quality of theories have been
proposed in order to use them as criteria for theory selection.  From these, there are two main
trends: GHVFULSWLRQDO� RU� FRQVHUYDWLYH� LQGXFWLRQ, which is usually related to the simplicity
criterion or Occam’s Razor, and, H[SODQDWRU\� LQGXFWLRQ, which is more closely related to
coherence, cohesion or ‘consilience’ criteria. Although they are not exclusive trends, the
literature is full of discussions and support for each of them (Barker 1957, Solomonoff 1964,
Harman 1965, Hempel 1965, Ernis 1968, Thagard 1989, Sharger and Langley 1990, van den
Bosch 1994, Li and Vitányi 1997).

The first trend can be associated to the view of learning as information compression3, which
was first formalised by (Solomonoff 1964). The principle of simplicity was revived when, later
on, Rissanen introduced the popular Minimum Description Length (MDL) principle (Rissanen
1978). In its later formulation (Barron et al. 1998), the MDL principle advocates that the best
description for a given data is the shortest one (summing up the model and the exceptions). Apart
from all the methodological advantages of simplicity, and keeping in mind that the principle is
not computable in general (it can only be used if we restrict the descriptive mechanism), the
major reason for using the MDL principle is that it usually avoids over-specialisation (under-
fitting) and over-generalisation (over-fitting). From here it is usually argued that “WKH�VKRUWHU�WKH
K\SRWKHVLV�WKH�PRUH�SUHGLFWLYH�LW�LV”. However, some parts of the model cannot be compressed at
all, as they are extensional parts with no predictive character. This is even more frequent in
incremental learning, because the hypothesis gets patched repeatedly until the length of coding
the exceptions forces the appearance of a new radical hypothesis.

On the other hand, explanatory or intensional models are characterised by a well-balanced
compression ratio, i.e. no intrinsic exceptions (patches) are allowed in the theory. In other words,
all the data must be explained. In order to justifiably state that a theory that has been tested is
robust and reliable it must be LQWULQVLFDOO\�UHIXWDEOH. Only in this case, if experimentation fails to
refute it, can the theory be considered as confirmed or ‘validated’.

In a similar way, consilience, as coined by (Whewell 1847), comprises the relevant basics in
scientific theories: prediction, explanation and unification of fields. Consilience refers to the idea
that the data must be covered by the same general rule, i.e., the evidence is unified by the theory.
In this sense, consilience turns out to be stricter than intensionality.

Since a minimal revision (see e.g. Mooney 1997) is usually less costly than a deep revision,
the trade-off between both paradigms is clear. While the conservative paradigm is usually less
costly in the short term because it reduces the scope of revisions, the explanatory paradigm has
advantages in the long term because it reduces the number of revisions.

                                                          
3 It is important to clarify that maximum compression (represented by the MDL principle) is not the same thing as
elimination of internal redundancy. The rationale is that different equivalent models can have very different sizes,
which are exactly equally predictive. A model has no redundancy if the same theory cannot be expressed in a shorter
way. In this way, intensional or consilient models are compatible with the maxim of elimination of redundancy. The
MDL principle should be better understood as “it is sufficient [...] to pick a hypothesis that is asymptotically shorter
than the examples rather than pick the simplest hypothesis” (Natarajan 1991, p. 198).
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�������/D]\�DQG�(DJHU�/HDUQLQJ�0HWKRGV
A second important question in induction is when and how the computational investment is to be
made in the generation of the hypotheses. That is, the theories can be constructed either when
new problems require new predictions or whenever possible. This difference has characterised
the two most important families of inductive methods in ML: lazy methods and eager methods. A
quite up to date comparison of both approaches can be found in (López and Armengol 1998).

The paradigms discussed in the previous subsection can be considered as belonging to the
group of HDJHU learning methods, just differing in their degree of eagerness. Eager learning
extracts all the regularity from the data in order to work with intensional knowledge, i.e., a
model. Examples of eager learning are Model Based Reasoning (MBR) and ILP.

However, very important and productive research has taken place for OD]\ learning methods
(Aha 1997). Examples of lazy learning methods are: N-neighbouring or distance-based
techniques, case-based reasoning (CBR) or instance-based reasoning and analogical reasoning
(AR). Lazy methods usually PHPRULVH the examples as extensional knowledge with some
information about their results (or class) and other characteristics. Whenever a query or a new
problem appears, the system works hard to extract which previous experiences are more
appropriate/similar to the new problem by making the most plausible analogy.

The advantages of lazy methods are their flexibility and the economy of resources in the short
and mid terms, because a reasoning effort is only done when a new problem appears. Another
important advantage is that revision is unnecessary, because no model of reality is constructed.

In contrast, the great advantage of eager methods is that, since they are constantly pre-
processing all the received information, they can take advantage of idle time resources. If the
model is accurate, the answer to a new problem is immediate. Moreover, most of the given
examples can be forgotten, when their model is reliable enough, reducing storage and improving
manageability in the large.

�� 3UHGLFWLYH�6RIWZDUH

Under the LQFUHPHQWDO�UHYLVLRQLVW view of learning seen before, a predictive model attempts to
minimise the number (and possibly the scope) of both anomalies and novelties. In the software
engineering terminology, anomalies generate corrections to the specification, and novelties
generate extensions to it. Both corrections and extensions are known as modifications.

Consequently, one way to improve the economics of software (Boehm 1981) is the reduction
of modifications4. In this way, the goal of a software developer team is to devise software that
does not need to be modified frequently. More precisely,

DEFINITION 3.1 PREDICTIVE SOFTWARE

A software system is SUHGLFWLYH�if it is stable for evolving requirements in the same context
where the specifications originated. The term ‘stable’ means that the frequency of
modifications is minimised.

The notion is not new, since it is often said that a good software developer should predict future
requirement changes, devising more general (and easily adaptable) specifications. The concept of

                                                          
4 The other way is to reduce the scope of each modification. Whether and how this is compatible with the reduction
of the number of modifications is not considered in this paper. Programming languages and techniques have evolved
towards paradigms, such as polymorphism, that avoid the use of cases (extensional parts or patches), in order to
minimise the scope of each modification.
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predictive software differs from other VLPLODU concepts that have recently appeared, such as
adaptable, smart or intelligent software.
$GDSWDEOH� 6RIWZDUH (Lieberherr 1996), understood as modifiable software, is unmistakably

distinguished from predictive software in the sense that a software can be very adaptable, usually
in a manual way, but it is constantly being revised/modified due to prediction failures5.
,QWHOOLJHQW�6RIWZDUH�V\VWHPV are usually characterised by the use of AI techniques (knowledge

representation, modal logics, knowledge-based system tools, automated theorem proving, reverse
engineering, etc.) to assist software development or to be included in the system itself. In this
sense, expert systems can be considered intelligent software, but from the ML perspective, they
are just ‘idiots savants’. As a result, LQWHOOLJHQW�VRIWZDUH�and SUHGLFWLYH�VRIWZDUH are completely
different notions, especially in regard to purpose and the temporal-scale of the inductive
techniques involved. Predictive software requires an eager methodology, which can be either
manual or automated, to discover the regularity from the requirements in order to produce a
predictive model. In contrast, adaptable and intelligent software is usually based on lazy
techniques.

A lazy system lacks a model and therefore does not need to be revised as it is completely
adaptive and adaptable. In the last section of this paper, we will discuss some software systems
such as knowledge-based systems that may be more appropriately devised using lazy methods.
Nevertheless, lazy methods are unsuitable in the large for most problems, because the response
time increases as more previous cases are to be considered to give the result to each problem, as
is shown in Figure 3.1.

Life-Time

Design-maintenance
Effort

Response Time

Development
Time

Operation
Time

× × × × ×
Prediction

Errors

××

)LJXUH����� Design-maintenance Effort and Response Time in Lazy Methods

On the other hand, eager methods work with a model, and response time is given by the
deduction of each future case with respect to the model. The response time can remain almost
constant in the large, because the model is remade to conciliate the novelties and anomalies, as
shown in Figure 3.2. Moreover, prediction errors will be less numerous in the case of eager

                                                          
5 Another interesting question is whether a model can be constructed to ensure a high probability that modifications
will be easy to adapt. In other words, a SUHGLFWDEO\� DGDSWDEOH model would be a model whose probability of
modification is not necessarily reduced and whose overall adaptability is not high either, but its adaptability is
distributed in such a way that most modifications can be done easily and, hence, the maintainability is still high. To
our knowledge, there are no ML methods which are specifically designed to deal with this issue.
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methods than lazy methods in the large provided the unknown model can be identified in the
limit.

Predictive software, in the end, emphasises a more long-term view of the software process. A
great effort must be invested in the requirement elicitation stage in order to obtain a durable
model. Obviously, despite this initial effort, some modifications will eventually have to be made.
Within the same philosophy, each revision (modification) must be done carefully and
consistently with the rest of the model in order to preserve the predictiveness of the model.

Life-Time

Response Time

Development
Time

Operation
Time

Novelties
Anomalies

× × × × ×
Prediction

Errors

REVISION

Design-maintenance
Effort

)LJXUH������Design-maintenance Effort and Response Time in Eager Methods

Even under an eager characterisation, different degrees of eagerness or anticipation are possible.
The degree of eagerness is precisely determined by the evaluation criterion, which establishes
whether patches are allowed in the model or not (revisions are easier but more frequent). The
most eager evaluation criterion turns out to be the intensionality criterion (characterised by
anticipating or ‘investing’ in more complex theories). It is still more eager than the MDL
principle, which is sometimes too conservative. According to the software counterpart to
Popper’s paradigm, a software system should only be considered ‘validated’ if it has remained
unchanged for a varied sample of tests. More importantly, it must be intrinsically refutable.
General and intensional models, not including exceptions or patches (which cannot be refuted),
are then preferable for software practice. Only in this case, the validation of the system can be
considered more reliable if a test set has been passed satisfactorily.

In the following subsections, we show how ML selection criteria can be used in software
engineering to compare models in order to distinguish the most predictive one.

�����([DPSOH

The first example has been chosen in order to compare between two extreme cases of
requirements models, although there are many other different models for this problem and many
different combinations of both. In addition, we will use a declarative programming language
since it is possible to know which part of the model covers each part of the examples given. This
property makes the evaluation of the model easy and can be automated.

A university library gathers the information about the journals it is subscribed to and the
articles that appear in them. The system allows the search by journal name, paper title and year,
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as well as author(s) name. However, no information about the area or field of each paper is
included in the database. A new query system is to be developed to allow for the search of
journals and papers by field.

Suppose that part of the journal papers have been classified manually. Now the goal of the
application is to suggest the field for the rest of the papers. Part of the initial database (scientific
papers in computer science journals) is read and converted into the schema illustrated in Figure
3.3.

-2851$/
MFRGH
title
editor
..

3$3(5
SFRGH
title
jcode
year
fcode
..

:5,77(1
SFRGH
DFRGH

$87+25
DFRGH
name
..

),(/'
IFRGH
name
..

,6B723,&
MFRGH
IFRGH

7R�EH
OHDUQHG

)LJXUH������A Database Schema for The Field Query Problem

To better illustrate the point and trace the subsequent models, let us show a brief excerpt from
the data:

-�MFRGH -�WLWOH 3�SFRGH DXWKRUV� )�IFRGH )�QDPH
$6( $XWRPDWHG�6RIWZDUH�(QJLQHHULQJ � 3HQL[��$OH[DQGHU 6: 6RIWZDUH�(QJLQHHULQJ
$6( $XWRPDWHG�6RIWZDUH�(QJLQHHULQJ � &KDW]RJORX��0DF$XOD\ 6: 6RIWZDUH�(QJLQHHULQJ
$6( $XWRPDWHG�6RIWZDUH�(QJLQHHULQJ � &RXVRW��&RXVRW /3 /RJLF�3URJUDPPLQJ
-/3 -RXUQDO�RI�/RJLF�3URJUDPPLQJ � 0XJJOHWRQ��'H�5DHGW 0/ 0DFKLQH�/HDUQLQJ
-/3 -RXUQDO�RI�/RJLF�3URJUDPPLQJ � /OR\G /3 /RJLF�3URJUDPPLQJ
-/3 -RXUQDO�RI�/RJLF�3URJUDPPLQJ � 6DQQHOOD��:DOOHQ /3 /RJLF�3URJUDPPLQJ
-/3 -RXUQDO�RI�/RJLF�3URJUDPPLQJ � &RXVRW��&RXVRW /3 /RJLF�3URJUDPPLQJ
$$, $SSOLHG�$UWLILFLDO�,QWHOOLJHQFH � %ORFNHHO��'H�5DHGW '0 'DWD�0LQLQJ
7&6 7KHRUHWLFDO�&RPSXWHU�6FLHQFH � 5RVFRH��+RDUH 6: 6RIWZDUH�(QJLQHHULQJ
00 0LQGV�DQG�0DFKLQHV �� )HW]HU 6: 6RIWZDUH�(QJLQHHULQJ
'.( 'DWD�	�.QRZOHGJH�(QJLQHHULQJ �� /RSH]�GH�0DQW����$UPHQJRO 0/ 0DFKLQH�/HDUQLQJ
&$&0 &RPPXQLFDWLRQV�RI�WKH�$&0 �� 9DOLDQW 0/ 0DFKLQH�/HDUQLQJ
&$&0 &RPPXQLFDWLRQV�RI�WKH�$&0 �� +RDUH 6: 6RIWZDUH�(QJLQHHULQJ
&$&0 &RPPXQLFDWLRQV�RI�WKH�$&0 �� )D\\DG��8WKXUXVDP\ '0 'DWD�0LQLQJ
&$&0 &RPPXQLFDWLRQV�RI�WKH�$&0 �� )HW]HU 6: 6RIWZDUH�(QJLQHHULQJ
&$&0 &RPPXQLFDWLRQV�RI�WKH�$&0 �� *HQHVHUHWK��.HWFKSHO 6: 6RIWZDUH�(QJLQHHULQJ
&$&0 &RPPXQLFDWLRQV�RI�WKH�$&0 �� 0XJJOHWRQ 0/ 0DFKLQH�/HDUQLQJ
'(% 'DWD�(QJLQHHULQJ�%XOOHWLQ �� )D\\DG '0 'DWD�0LQLQJ
1*& 1HZ�*HQHUDWLRQ�&RPSXWLQJ �� 0XJJOHWRQ 0/ 0DFKLQH�/HDUQLQJ
0/- 0DFKLQH�/HDUQLQJ�-RXUQDO �� /RSH]�GH�0DQWDUDV 0/ 0DFKLQH�/HDUQLQJ
0/- 0DFKLQH�/HDUQLQJ�-RXUQDO �� 0XJJOHWRQ 0/ 0DFKLQH�/HDUQLQJ
0/- 0DFKLQH�/HDUQLQJ�-RXUQDO �� $QJOXLQ 0/ 0DFKLQH�/HDUQLQJ
$, $UWLILFLDO�,QWHOOLJHQFH �� 'H�5DHGW��'HKDVSH 0/ 0DFKLQH�/HDUQLQJ

                                                          
6 A.name is shown aggregated.
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This data is generated by the following query:

SELECT J.jcode, J.title, P.pcode, A.name, F.fcode, F.name
FROM JOURNAL J, PAPER P, WRITTEN W, AUTHOR A, FIELD F
WHERE J.jcode = P.jcode AND P.pcode = W.pcode AND W.acode = A.acode AND P.fcode = F.fcode;

The first relation to be learned is is_topic, which is easily extracted as follows:

%    topics of journals
is_topic(J, F) :- paper(_, _, J, _, F).

which means that the topics of a journal are all the topics of its papers. This is possible because
the relation between journal and topic is many-to-many, by the use of the extra relation
is_topic. On the other hand, the problem of classifying the main field of a paper is more
complicated because of the uniqueness restriction. Moreover, apart from the sample, there will be
papers which will be manually classified and others will have to be classified automatically. To
differentiate them, the classified papers are denoted by the predicate paper, and the papers to
classify are denoted by paper_. From here, the following models can be induced:

02'(/��$:
%%%%%%%%% Learnt rules

%    Muggleton’s articles are about ML.
paper_(P, _, _, _, ‘ML’):- written(P, A), author(A, ‘Muggleton’), !.
%    ‘JLP’ papers field is ‘LP’ except from Muggleton’s articles handled above:
paper_(P, _, ‘JLP’, _, ‘LP’).
%    MLJ articles are always about ML.
paper_(P, _, ‘MLJ’, _, ‘ML’).
%    Valiant’s articles are about ML.
paper_(P, _, _, _, ‘ML’):- written(P, A), author(A, ‘Valiant’), !.
%    Fayyad’s articles are about DM.
paper_(P, _, _, _, ‘DM’):- written(P, A), author(A, ‘Fayyad’), !.
%    ‘CACM’ papers field is ‘SW’ except from Valiant’s, Fayyad’s and Muggleton’s:
paper_(P, _, ‘CACM’, _, ‘SW’).

%%%%%%%%%% Exceptions  // non-predictive
paper_(1, _, _, _, ‘SW’).
paper_(2, _, _, _, ‘SW’).
paper_(3, _, _, _, ‘LP’).
paper_(8, _, _, _, ‘DM’).
paper_(9, _, _, _, ‘SW’).
paper_(10, _, _, _, ‘SW’).
paper_(11, _, _, _, ‘ML’).
paper_(23, _, _, _, ‘ML’).

02'(/��%:
%%%%%%%%% Learnt rules ordered by priority (strength)

%    dependency between authors’ other papers field:
paper3(P, _, J, _, F) :- written(P, A), written(P2, A), paper(P2, _, J2, _ F),
                         written(P, A2), written(P3, A2), paper(P3, _, J3, _ F),

                     P <> P2, P <> P3, A <> A2.
%    dependency between author’s other paper field:
paper2(P, _, J, _, F) :- written(P, A), written(P2, A), paper(P2, _, J2, _ F).
%    dependency with journal field:
paper1(P, _, J, _, F) :- is_topic(J, F).
%    Unclassified papers follow these rules:
%    ‘JLP’ papers field is ‘LP’:
paper0(P, _, ‘JLP’, _, ‘LP’).
%    ‘ASE’ papers field is ‘SW’:
paper0(P, _, ‘ASE’, _, ‘SW’).

%%%%%%%%%%  uniqueness restrictions for the field of a paper
paper_u1(P, _, _, _, _) :- paper1(P, _,_ ,_ , F1), paper1(P, _,_ ,_ , F2),
                          F1 != F2, !, fail.
paper_u1(P, _, _, _, F) :- paper1(P, _,_ ,_ , F).
paper_u2(P, _, _, _, _) :- paper2(P, _,_ ,_ , F1), paper2(P, _,_ ,_ , F2),
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                          F1 != F2, !, fail.
paper_u2(P, _, _, _, F) :- paper2(P, _,_ ,_ , F).
paper_u3(P, _, _, _, _) :- paper3(P, _,_ ,_ , F1), paper3(P, _,_ ,_ , F2),
                          F1 != F2, !, fail.
paper_u3(P, _, _, _, F) :- paper3(P, _,_ ,_ , F).

%%%%%%%%%%%%  priorities
paper_(P, _, _, _, F) :- paper_u3(P, _,_ ,_ , F), !.
paper_(P, _, _, _, F) :- paper_u2(P, _,_ ,_ , F), !.
paper_(P, _,_ ,_ , F) :- paper_u1(P, _,_ ,_ , F), !.
paper_(P, _,_ ,_ , F) :- paper0(P, _,_ ,_ , F), !.

In a semi-automatised ILP environment, both models would possibly need some meta-
information to be generated (mainly the cuts for uniqueness in the second model), but they are
not far from the possibilities of some ILP systems. Clearly, model A is much shorter and simpler
than B, and would be chosen according to descriptive selection criteria, such as the MDL
principle. However, model A is full of exceptions (extensional patches) and will fail to classify
many new papers. Moreover, some rules are based on particular cases and will have to be revised
soon, as more papers are added to the database.

In contrast, model B is much more complex, but it is also much more intensional, in the sense
that it does not include many particular cases. Hence, the second model should be preferable.
Maybe the choice does not seem difficult for this easy example by manually inspecting the code,
but the techniques of how to select the second from the first one are known in the ML literature
and philosophy of science and, more importantly, can be automated provided that the
representational language is model-based, such as in declarative languages (see for instance
Hernández 2000 for an effective measure applicable to this problem).

�����$XWRPDWHG�6HOHFWLRQ�([DPSOH

Let us show with a second example how this model selection can be done automatically. We will
use the FLIP system for this. The FLIP system (Ferri et al. 2000) is an application built in C
which implements the Inductive Functional Logic Programming framework (Hernández &
Ramírez 1998) (Hernández &  Ramírez 1999). At its actual stage of development, the FLIP
system allows conditional functional logic programs for background knowledge and hypothesis.
Functional logic programs are a step forward in declarative programming because they subsume
logic programs but allow a better handling of functions. The system works with two sets of facts:
the positive examples and the negative ones and optionally an initial set of theories and
background knowledge. Hypothesis selection is guided by the criteria which we have commented
on in the first sections: simplicity and consilience.

The FLIP system is a versatile application that can operate as a pure induction system, a
theory reviser and a theory evaluator. When there is no initial program, the system behaves as a
generator of hypotheses which only outputs the best solution according to the FLIP selection
criterion. In the case that different initial theories are supplied to FLIP and there are still new
examples to consider, the system behaves as a reviser, which can modify or extend the initial
theories according to the novelties or anomalies that the new examples could trigger. Finally, in
the case that different initial theories are supplied to FLIP and there are no new examples to
consider, the system behaves as a theory evaluator wrt. past examples. For this example, we use
FLIP as a theory evaluator.

Consider the following set of examples of good clients of an insurance company:
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goodc(p(p(v,woman),tall))=true,
goodc(p(p(v,nurse),woman))=true,
goodc(p(p(p(p(v,has_children),woman),joan),speaks_spanish))=true,
goodc(p(p(p(p(v,jane),woman),speaks_portuguese),tall))=true,
goodc(p(p(p(p(p(v,susan),has_children),teacher),woman),high_income))=true,
goodc(p(p(p(v,married),teacher),has_cellularphone))=true,
goodc(p(p(p(v,anthony),man),teacher))=true,
goodc(p(p(p(p(p(v,teacher),low_income),atheist),has_cellularphone),married))=true,
goodc(p(p(v,john),has_children))=true,
goodc(p(p(p(v,browneye),likes_coffee),has_children))=true,
goodc(p(p(p(v,has_children),nurse),cellular_phone))=true,
goodc(p(p(p(v,jane),plays_chess),has_children))=true,
goodc(p(p(p(p(v,mary),speaks_spanish),has_children),has_cellularphone))=true

where ‘p’ is the list constructor. From here, the following two theories have been generated:
02'(/��$:

goodc(X0) = member(has_children, X0)
goodc(X0) = member(woman, X0)
goodc(X0) = member(teacher, X0)

02'(/��%:
goodc(X0) = member(has_children, X0)
goodc(X0) = member(woman, X0)
goodc(X0) = and(member(married, X0), member(has_cellularphone, X0))
goodc(X0) = member(anthony, X0)

where ‘and’ is the ‘∧’ logic connective and ‘member’ is an incomplete function which returns
true if the element is in the list. Both functions are defined in the background theory.

FLIP automatically chooses model A as the best solution by following its selection criterion
wrt. the previous examples. In fact, it is to be expected that model B would be revised soon,
because the last equation only covers one example and, in the best case, will only be applicable
to clients whose name is ‘Anthony’. It is apparently a patch which should be avoided in a
predictive software. Accordingly, FLIP rates the first model much more favourably than the
second one.

� 3UHGLFWLYH�6RIWZDUH�/LIH�&\FOH

In the introduction we have presented five main common stages in the development of scientific
theories and software systems. The analogy is now exploited to re-design the software life-cycle
with the objective of making it predictive.

�����7KH�3UHGLFWLYH�/LIH�&\FOH

The following figure represents a mixture between an automated software construction cycle and
scientific theory evolution. The terminology is used indistinctly, by either using a term from
philosophy of science (or ML) or by using a term from software engineering.



14 J. HERNANDEZ-ORALLO & M. RAMIREZ-QUINTANA

Gen er a t ion
a nd

Sel ec t ion

'DWD���3DUWLDO
5HTXLUHPHQWV

6RIWZDUH
5HSRVLWRULHV

,QWHQVLRQDO
0RGHO

Tr an sf or ma t ion

3URJUDP

Appl ica t ion

%HKDYLRXU

Revision
Con t r ast

Reuse

Requir emen t s
Chan ges

)LJXUH������Predictive Software Life-Cycle

The first stage is specially appropriate for problems where the specification of requirements is
difficult. Thus, in the example in Section 3.1 about the University library, if the goal is to avoid
the manual classification of thousands of papers each month, then this requires LQYHQWLQJ a
‘heuristic’ technique to solve the problem. However, there is no clear specification of the
problem, and the most difficult stage of this example is precisely requirement elicitation. In this
case, it seems better to learn the specification from the examples, possibly using the background
knowledge or software repository. After a model is selected (model B in the example of Section
3.1), it can be transformed into a more efficient or appropriate form for operation. After this
stage, a validation phase could be performed with another group of manually classified examples,
something known in the ML literature as cross-validation. If the contrast detects anomalies or
novelties, some revisions or extensions will have to be done, and these will have to be performed
with the goal of maintaining the predictiveness of the model. Finally, the program is ready for
application. The cycle could be reactivated by abnormal behaviour or requirements changes.

Obviously, this cycle could be more detailed depending on the automated or non-automated
character of each stage. For instance, in a non-automated developing schema, an analysis stage
could be introduced between the partial specification and the model, without using previous
software. The design would convert this initial model into a refined model using the repositories.

The predictive life-cycle is similar to the transformational one (Balzer 1985) with regard to
the later stages of the development: definition of a model or specification of requirements and its
transformation into the final program. Also, the maintenance stage consists of a revision and re-
derivation of the model. Nevertheless, the difference between both life-cycles lies in two aspects:
the way in that intensional models or formal specifications (respectively) are built, and the
criteria used for generating and selecting them. In the transformational approach, the prototype is
usually generated by hand. The criteria taken into consideration for guiding this construction (at
least in a first stage) are usually specifically developed for software engineering and are not
inspired in other model selection criteria from other disciplines.

In other cases, the inductive stage and the transformation stage could be joined using mixed
techniques as the inductive functional programmer ADATE (Olson 1995).

Finally, the adoption of this life-cycle also depends on the choice of the representational
language. In the same way as many modern non-declarative methodologies were not adapted to



PREDICTIVE SOFTWARE 15

the automated programming paradigm, because automated deductive techniques required a well-
established and manageable semantics, the first inductive stages are even more difficult to apply
to non-declarative languages, because model-based languages have been shown to be more
appropriate for automated induction of expressive and understandable models.

�����3UHGLFWLYH�'HFODUDWLYH�3URJUDPPLQJ

ML techniques can also be employed to generate the models and not only to evaluate them.
However, it is difficult to adapt these techniques to languages which are procedural, because an
inductive hypothesis or theory is usually declarative or model-based. On the other hand, any
general programming paradigm should be based on full-expressive languages, thus excluding
many declarative non-programming languages used in ML, such as attribute languages,
grammars, etc. Another factor to be taken into account is comprehensibility.

This all restricts the possible languages which can make the predictive programming paradigm
successful. Any full-expressive model-based language (such as functional languages, logic
languages, functional-logic languages, etc.) that is, almost any declarative programming
language, is theoretically appropriate for this paradigm. In practice, only logic programming has
a well-developed literature and experience about the four important processes in the paradigm:
generation and evaluation, transformation, reuse and especially revision, and more recently,
functional logic programming (Hernández and Ramírez 1999).

Three facts make the step from ML to programming within declarative languages more
plausible. First of all, the use of background knowledge and intensional data as evidence has
been incorporated in many modern ILP systems. This allows for the use of partial specification +
data, which reduces the learning complexity. The second fact is more insightful: ILP slowness is
not so worrying for software engineering as for ML. In the generation of hypotheses from data,
programming scale is not in milliseconds or seconds, but rather hours or even days. The third fact
is comprehensibility; there are few inductive frameworks in ML apart from ILP where the
hypotheses are expressible enough and easily comprehensible to humans.

Muggleton and Michie (Muggleton and Michie 1996) express this appropriateness quite well:
“ ,/3�LV�UHODWLYHO\�VORZ�LQ�JHQHUDWLRQ�RI�K\SRWKHVHV��EXW�DOORZV�D�ULFK�UHODWLRQDO�UHSUHVHQWDWLRQ�
KDV�DQ�H[SOLFLW�VHDUFK�ELDV��EDFNJURXQG�NQRZOHGJH��DQG�>WKLV�ELDV�DQG�WKH�UHVXOWLQJ�K\SRWKHVHV
DUH@�FRPSUHKHQVLEOH�WR�KXPDQ�H[SHUWV”.

The second process, transformation, is more necessary in our paradigm than in the classical
automated programming paradigm, because the specification generated by ILP can be less
prepared for execution than a specification which is generated manually. Program transformation
usually requires a complete specification (or model) which is usually given as a logic, functional
or functional logic program where the output is another program which must follow some
structural, efficiency or space properties, while always maintaining the same semantics. Program
transformation techniques (Alpuente et al. 1998, Pettorossi and Proietti 1990, Dershowitz and
Reddy 1993, Pettorossi and Proietti 1996a, 1996b) are mainly based on folding and unfolding
techniques, function orderings, mathematical induction7 and partial evaluation (Jones et al.
1993). Although the techniques are mostly deductive, inductive techniques have sometimes been
introduced for the invention of functions for folding and unfolding, something known as Eureka
functions or predicates.

A third important process, UHXVH, has been extensively addressed in many declarative and non-
declarative languages. In logic programming, modular extensions would be useful (Sannella and
                                                          
7 It is important not to confuse ‘mathematical induction’ with (scientific) induction, as used in this paper.
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Wallen 1992), although the ILP framework usually incorporates medium-sized background
knowledge without much difficulty.

Finally, the fourth process, revision, is where logic programming is clearly superior to other
languages, because computational logic has been used in artificial intelligence. Non-monotonic
extensions are very useful to the extension and modification of logic programs. Specifically,
abductive logic programming (Kakas et al. 1993) could also be used for programming. Some
other approaches to revision are based on minimal revisions (Richards and Mooney 1995,
Wrobel 1996), which are contrary to the paradigm of predictive software. A more appropriate
solution, which joins revision and reusability is dynamic logic programming. Dynamic Logic
Programming (Alferes et al. 1998), which is more specialised to the revision process, allows for
the update of an extended logic module 3 with another extended logic module 8, solving the
possible inconsistencies of the conjunction of two theories developed from different environment
and purposes: “G\QDPLF� SURJUDP� XSGDWHV� GHVFULEH� WKH� HYROXWLRQ� RI� D� ORJLF� SURJUDP� ZKLFK
XQGHUJRHV�D�VHTXHQFH�RI�PRGLILFDWLRQV��7KLV�RSHQV�XS�WKH�SRVVLELOLW\�RI�LQFUHPHQWDO�GHVLJQ�DQG
HYROXWLRQ�RI�ORJLF�SURJUDPV��OHDGLQJ�WR�WKH�SDUDGLJP�RI�G\QDPLF�ORJLF�SURJUDPPLQJ��:H�EHOLHYH
WKDW�G\QDPLF�SURJUDPPLQJ�VLJQLILFDQWO\� IDFLOLWDWHV�PRGXODUL]DWLRQ�RI� ORJLF�SURJUDPPLQJ��DQG�
WKXV�� PRGXODUL]DWLRQ� RI� QRQ�PRQRWRQLF� UHDVRQLQJ� DV� D� ZKROH�� >«@� G\QDPLF� SURJUDPPLQJ
SURYLGHV�WKH�PHDQV�RI�UHSUHVHQWLQJ�WKH�HYROXWLRQ�DQG�PDLQWHQDQFH�RI�VRIWZDUH�VSHFLILFDWLRQV”.

As a result, we can chain all these techniques in a unique paradigm. Using logic programming,
our cycle is practically the same as the generic one, but now using concrete (and in many cases
automated) techniques, as is illustrated in Figure 4.2:
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)LJXUH������Predictive Logic Programming Cycle

The extension to other declarative languages seems difficult at the current time, except in the
functional logic programming case, because generation and evaluation of inductive hypotheses
and transformation processes are now available (Hernández and Ramírez 1999, Pettorossi and
Proietti 1996a). In the end, the functional extension may be crucial for the acceptance of the
predictive declarative programming paradigm, because the definition of functions is a profoundly
established custom in software engineering. Furthermore, the examples which are more
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appropriate for the use of ML techniques are classification problems, which are better handled as
functions than as predicates.

�� 2Q�$XWRPDWLRQ�RI�2WKHU�6WDJHV

In Section 3 we have stated that evaluation methods can be implemented and easily automate the
evaluation stage if the description language has model semantics, as in declarative languages.
After the predictive life-cycle of the previous section, there are more stages to automate and they
are more complex. Although the application stage is usually fully automated (and the goal of a
software system was supposed to be precisely this, the automation of this stage), the other stages:
transformation, generation, revision and reuse are much more difficult to automate fully for
complex problems. Consequently, we will discuss two different approaches for automation:
whole automation of small software cases and partial automation of more large-scale problems.

�����:KROH�$XWRPDWLRQ�RI�6PDOO�6RIWZDUH�&DVHV�ZLWK�WKH�)/,3�V\VWHP

Let us consider an example which first appeared in (Cendrowska 1987). An optician requires a
program to determine which kind of contact lenses should be used first on a new client/patient.
The optician has many previous cases available where s/he has finally fitted the correct lenses
(either soft or hard) to each client/patient or has just recommended glasses. The evidence is
composed of 24 examples with the following attributes and possible values for them:

$WWULEXWH 9DOXH
6SHFWDFOH�3UHVFULSWLRQ� {myopia, hypermetropia}
$VWLJPDWLVP� {no, yes}
7HDU�3URGXFWLRQ�5DWH� {reduced, normal}
$JH� {young, presbyopic, prepresbyopic}

The goal is to construct a program that classifies a new patient into the following three classes
{soft, hard, no}. Obviously, we can make this program by hand, by trying to discover some rules
that could successfully be used in such a classification. However, depending on the size of the
problem, we can also essay the automation of the generation stage. To do this we will use the
FLIP system. After feeding FLIP with the 24 lens examples from (Cendrowska 1987), the result
obtained in approximately six seconds on a personal computer (without the incremental option)
is:

lens(X0,hypermetropia,no,normal) = soft
lens(young,myopia,no,normal) = soft
lens(X0,myopia,yes,normal) = hard
lens(young,hypermetropia,yes,normal) = hard
lens(prepresbyopic,myopia,no,normal) = soft
lens(prepresbyopic,hypermetropia,yes,normal) = no
lens(presbyopic,myopia,no,normal) = no
lens(X0,X1,X2,reduced) = no
lens(presbyopic,hypermetropia,yes,normal) = no

Now suppose that the optician wants to ‘internalise’ the program, at least for young people, who
are the patients who most frequently request contact lenses. A transformation tool could
automatically specialise the previous program into:

lens(young,X0,no,normal) = soft
lens(young,X0,X1,reduced) = no
lens(young,X0,yes,normal) = hard
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Another option is to re-generate the program by only using examples of young people. The
previous program can be generated by FLIP in just 0.19 secs.

Another stage that can be automated for this example is the revision stage. Consider a new
kind of soft lens which is more permeable and can be beneficial to patients suffering from
reduced tear production rate. Given the initial program with the old and the new examples, the
FLIP system is able to revise or reuse the initial program when novelties and anomalies appear,
constructing the following program:

lens(X0,hypermetropia,no,normal) = soft
lens(young,myopia,no,normal) = soft
lens(X0,myopia,yes,normal) = hard
lens(young,hypermetropia,yes,normal) = hard
lens(prepresbyopic,myopia,no,normal) = soft
lens(prepresbyopic,hypermetropia,yes,normal) = no
lens(presbyopic,myopia,no,normal) = no
lens(presbyopic,hypermetropia,yes,normal) = no
OHQV�\RXQJ�;��;��UHGXFHG�� �SHUPHDEOH
OHQV�SUHVE\RSLF�;��;��UHGXFHG�� �SHUPHDEOH
lens(prepresbyopic,X1,X2,reduced) = no

In this example we have seen that generation, transformation, revision and reuse can be fully
automated. Moreover, the evaluation criterion embedded in the FLIP system ensures that the
model is intensional, preserving predictiveness.

More information about the FLIP system and other examples that have been addressed can be
found in http://www.dsic.upv.es/~jorallo/flip/ or (Ferri et al. 2000).

�����3DUWLDO�$XWRPDWLRQ�DQG�'HFODUDWLYH�3URJUDPPLQJ

There is a huge amount of literature on (semi-)automatic program construction from the
VSHFLILFDWLRQ or the model of the problem (see e.g. (Nishida et al. 1991)), where the model is
supposed to be known and stable. Theoretically, the subsequent stages of the whole process can
be completely automated because the specification can be executed directly or after
transformations. This used to be one of the main reasons to support declarative programming.

In our SUHGLFWLYH� paradigm, the problem of automating software construction is centred on the
LQWHOOLJHQW�part of the process, modelling and modification, because it can be considered as a re-
modelling. The previous example (and ILP in general) has shown that a certain amount of
automation can be done, at least for small and very formal cases or where the specification is
data-based or case-given (control systems, expert systems, medical systems, etc.). We have also
seen that complex problems using declarative programming can automate the
evaluation/selection stage, which is, as we have seen, fundamental to the cost of the entire
software life-cycle.

Nevertheless, full automation of the entire process is neither scalable to complex problems nor
problems for which continuous variables are relevant. For the time being, it is better to make a
‘lightweight’ use of logic and formal methods as used in conceptual modelling (Robertson and
Agustí 1998). Other techniques, such as case based reasoning or temporal reasoning, could be
incorporated. It is important to note that logics can be used to “model problems” or to “specify
solutions of problems”, whenever the techniques are mainly inductive or deductive.

A hybrid or semi-automated approach is possible by the intrinsic comprehensibility of logic.
Both hypotheses and background knowledge can be partially hand-written by humans to guide
the search (something which is very difficult to do in other ML paradigms, like neural networks),
and the results are comprehensible to allow manual modifications or improvements. Hence the
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understandability of declarative programming is what mostly supports its use, rather than the
automation of the evaluation or transformation stages.

As we have commented on in the introduction, the case of inductive programming has been
recently highlighted by Partridge (Partridge 1997) and will become of even more importance in
the future. However, at the present time, a full and general software engineering life cycle can
only incorporate automated inductive programming provided that the whole cycle is automated
and infallible, or provided that the representational language input and output of some of the
processes that can be automated (evaluation, transformation) is understandable by humans. Since
the first situation (full automation) is a Utopia in the short-term and mid-term for complex
problems, we foresee a forthcoming increase of the use of declarative languages.

Other issues which have been introduced in this paper can also be illustrated with the example
of section 3.1. The choice of a declarative paradigm allows a manual modification of the program
to achieve better performance. It also allows for the inclusion of extensions (such as the
consideration of the words of the title), which, after some manual intervention, could be re-
generated again.

�� )URP�0/�WR�2WKHU�.LQGV�RI�6RIWZDUH�6\VWHPV

Some of the ML paradigms and techniques that were seen in section 2 have not been applied or
included in the new life-cycle because they are not compatible with the predictive software
paradigm or with the view of software as an incremental learning session from examples. This is
a result of a finally accepted principle in ML: there is no best paradigm for all kinds of problems.
The same thing happens in software engineering. In this section, we emphasise two different ML
paradigms that can be fruitfully adapted for other kinds of software systems.

�����,QWHUDFWLYH�6RIWZDUH�DQG�4XHU\�/HDUQLQJ

Hitherto the paper has implicitly adopted the common assumption of software engineering that
the software developer is different from the software user. In this case, the lack of functionality
(prediction errors) is mainly perceived by the user and reported to the developer, as shown in
Figure 6.1.

USER

SW
System

Developer
Modifications

Operation

Interviews,
reports,

demands.

)LJXUH������Peer Interaction in Classical Systems

On the other hand, in a (semi-)automated software framework, where part of the development is
performed by an inductive/learning system that could understand user demands, the scene
changes as follows:
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)LJXUH������Peer Interaction in Interactive Systems

Specifications are remade and updated as the software system interacts with the user, learning
what s/he wants, as well as what s/he will want, following a predictive view. It has often been
advocated (Rumbaugh 1994) that learning from interaction with the user is the best way of
capturing requirements, in perfect parallel with ML, where it has been shown that learning can be
accelerated if the learner can interact with the environment or a teacher.

This superiority has recently been vindicated as a ‘new’ idea by (Wegner 1997), arguing that
“interactive machines” are qualitatively more powerful than passive Turing machines (the input
and program are fixed before the program starts). In our opinion, the QHZ proposition is just a
new expression of well-known facts, which are somehow equivalent: first, Turing machines with
an oracle are more powerful than Turing’s machines (as shown by Turing himself) and secondly,
a learner with the ability of interacting with the environment, via experiments of its hypotheses,
actions and responses, or queries to a teacher (Angluin 1987, 1988), is more powerful than a
passive learner who only receives a sequential input from the environment.

For this interaction to take place, it is necessary for the communication to be established from
peer to peer. The interaction with a heterogeneous environment and especially with human
beings is a very difficult issue. Agent-oriented software (Shoham 1993) has also been seen as an
evolution of object-oriented software where agents are not passive objects but proactive and
reactive, and they have an independent decision control to messages (demands). This approach,
however, does not solve the problem of interaction with the user.

As a first approach, information about the user or environment satisfaction, i.e., system
behaviour, must be improved.  Reinforcement Learning (RL) (Sutton 1991, Kaelbling et al. 1996,
Hernández 2000) provides a very useful paradigm for this. In RL, it is usually assumed that the
learner receives some reward (or penalty) value for its actions. This can be applied to software
systems in many different ways, from the simplest one of introducing a reward button in the
applications to knowing dynamically the user’s level of satisfaction with the system behaviour.
For the example of section 3.1, the user (any person who makes the queries) can see whether a
paper is misclassified. For this situation, the application could provide an interface to allow
authorised users to correct (or simply penalise) the misclassification. In this case, a revision of
the model can be triggered by the user, ameliorating the interaction between the user and the
application. This would improve its behaviour by positive and negative reinforcement.

On the other hand, the communication of user demands must also be ameliorated by
increasing the external intelligibility of software. Human beings should be able to tell the system
to do something that it is not included in the menu options or inside the commands of a strict
interpreter. Although some of these other simple demands can be incorporated inside what has
been dubbed “intelligent software agents” (or program by demonstration, Lieberman 2000), for
more complex needs, there must be a learner that XQGHUVWDQGV these needs. Moreover, the user
must also XQGHUVWDQG the agent, in order to be sure that it has understood what s/he wanted.

To reach this communication between human beings and software systems, Muggleton and
Michie advocate the logic programming paradigm by using ILP techniques: “VRIWZDUH� ZKLFK
LQWHUDFWV�ZLWK�KXPDQ�EHLQJV� >���@� VKRXOG� LQFRUSRUDWH�GHFODUDWLYH�PDFKLQH� OHDUQLQJ�DW� LWV� FRUH�
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>���@� 8VLQJ� WRGD\¶V� PDFKLQH� OHDUQLQJ� WHFKQRORJ\�� OHDUQLQJ� DW� WKH� GHFODUDWLYH� OHYHO� ZRXOG
QHFHVVDULO\�EH�FDUULHG�RXW�XVLQJ�,QGXFWLYH�/RJLF�3URJUDPPLQJ” (Muggleton and Michie 1996).
More precisely, they suggest a two-layer approach for human-computer interaction: the upper
GHFODUDWLYH layer should be capable of extensive human interrogation at runtime, supporting
simple deductive and inductive inference, which translates the user’s GHPDQGV� into SUHFLVH
IXQFWLRQV�to the lower SURFHGXUDO layer. Finally the result is given to the user after pre-processing
by this GHFODUDWLYH�layer.

In this case, the relative slowness of ILP is a drawback, because the response time scale is in
milliseconds or seconds. Nonetheless, ILP possibilities are currently at this borderline, and ILP
agents are beginning to appear. For instance, ILP web agents (Lavrac 1998) must advertise their
VHUYLFHV, must negotiate, self-sell, deliver, install, update, learn from users needs, desires and
acquisitive capacity.

�����.QRZOHGJH�%DVHG�6\VWHPV�DQG�/D]\�/HDUQLQJ

As we said in section 2, eager techniques are necessary for the construction of a predictive model
in the large. However, some kinds of problems are difficult to convert into a model, especially
when new cases are quite varied, highly knowledge-dependent or difficult to predict (Scacchi
1991, Cuena 1993, Guida and Tasso 1994). The knowledge-based approach for software has
been vindicated to address this kind of complex problems.

Traditionally, the knowledge of expert systems or knowledge based systems (KBS) was
manually selected from a domain, pre-processed and stored in an appropriate representation, and
the KBS was able to use several reasoning techniques to give solutions to different XQSUHGLFWDEOH
problems. Although initially, the inference engine was almost exclusively constituted by
automated deduction techniques, more reasoning methods have been increasingly introduced:
case-based reasoning, analogical reasoning and abduction. This has increased the percentage of
factual or extensional data (previous cases), which makes modern KB systems clear examples of
lazy systems.

Recently, however, expert systems (and KBS) are beginning to be less “idiots savants” by
including some inductive techniques, especially for the stage of knowledge acquisition. In this
case, eager inductive techniques can be used, which gives a life-cycle which is more compliant
with the life-cycle in Figure 4.1 than with traditional software cycles.

In the end, the combination of eager and lazy techniques must be seen as a failure of eager
techniques to find a good model for some kinds of problems (or some parts of the problem), but
this must not preclude a predictive view of what actually can be modelled or revised.

�����2WKHU�7UDQVIHUV

In general, any technique of ML (see e.g. Mitchell 1997) should have its parallel in software
engineering.  For instance, the oldest transfer took place between Evolutionary Software and
Genetic Programming. Nowadays, they have the close relationship that the other transfers should
have, and they even have a common and agglutinative name, Evolutionary Computation
(Goldberg 1994). We think that similar names should be given to eager computation or lazy
computation.

 Evolutionary Software matches perfectly with incremental learning, and different software
paradigms have been employed under this scheme: object-oriented (Cox 1987), functional (Olson
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1995), functional and logic (Hernández and Ramírez 1998, 1999). Some of them complement the
usual techniques and operators from ILP with new techniques inspired in genetic programming.

We also consider that the dynamic part of modelling could be addressed by using some
theories of change and time from AI, such as situation calculus or event calculus, when proper
induction frameworks for these representations are developed further.

�� &RQFOXVLRQV

This paper has introduced a new paradigm for software development inspired by the analogy
between a software development process and an incremental learning session. Predictive
paradigms and techniques of ML have been adapted to introduce the notion of ‘predictive
software’ in order to minimise software modification probability. Intensionality and consilience
have been vindicated as the most appropriate evaluation criteria for software modelling.
Moreover, this evaluation can be fully automated. Although further experimental validation of
more complex software systems with different selection criteria should be done, the existing
theoretical and experimental results of these criteria in ML cannot be neglected and can be
reasonably reused rather than re-obtained for upholding the ‘predictive software’ claim.

A new life-cycle has been introduced, clarifying the location of different inductive and
deductive stages, thus making it possible for a (partial) automation of the life-cycle. Both
inductive and deductive declarative programming techniques will play a central role in this
automation. This life-cycle is more suitable for classification problems. Much still has to be done
to fully automate the life-cycle that has been presented, particularly for more general and
complex applications. Nonetheless, the vindication for intensional models in software
engineering is useful for reducing the number of future modifications, as has been shown in ML.
This predictive character of software is useful independently of the level of automation of the
process.

The forthcoming decades will surely bring a broader range of applications of automated
induction in software engineering. We think that this work has helped to clarify the generation
framework and selection criteria for inductive programming.
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