
A Formal Definition of Intelligence 
Based on an Intensional Variant of Algorithmic Complexity 

 
 

JOSE HERNANDEZ-ORALLO 
 

Universitat Politècnica de València, Departament de Sistemes Informàtics i Computació 
Camí de Vera 14, Aptat. 22.012 E-46071, València, Spain 

E-mail: jorallo@dsic.upv.es 
 

NEUS MINAYA-COLLADO 
 

Universitat de València, Facultat de Ciències Biològiques 
Doctor Moliner s/n E-46100, Burjassot, València, Spain 

E-mail: ploro@uv.es 
 
 

After a brief discussion about the counter-intuitive results of a first approach like “intelligence as the ability of 
universal compression” we present a formal definition of exception-free description. Then we introduce a variant E 
of algorithmic complexity that we name intensional complexity with the only additional property that it allows no 
‘exceptions’, making formal this deep notion in the very theory. Once defined this variant and a time-weighted 
version Et that we name explanatory complexity we retake the analogy and formulate the idea that “intelligence is the 
ability of comprehension” understanding this last term in a formal way: explanatory compression. Finally, we devise 
a test based on k-incomprehensible strings and we present an effective algorithm for generating them. 
To dissipate its ethereal appearance, we devote most of the paper to present some computational, philosophical, 
psychological, psychometric and other experimental facts that support such a definition. We ‘unfold’ the definition to 
fill the gap between the formalities and the classical IQ tests. This relation to psychometrics leads us immediately to 
propose a framework to evaluate artificial —or not— intelligent systems. In the end we take a step forward from the 
evaluation into the understanding and design of intelligent systems. 

 

0 Apologies 
First, we must apologise for the title because it ‘forces’ 
to pay more attention than we are deserving. Secondly, 
we apologise for some unorthodox treatment, 
oversimplifications and partial views of the related 
areas we discuss. And last, we apologise for the haste 
we are taking for presenting it without the observation 
of some specialists of the different fields this article 
deals about. Right or wrong, we think there is no reason 
to keep back the current state of our theory for quick 
reproof or further improvement. 

In the end, we think we have an intriguing view of  
‘intension’ and what follows is, for the moment, the 
most we have been able to do from its interpretation. 

1 Introduction 
To face up a formal definition of intelligence may seem 
preposterous in the current complexity of the sciences 
which such a definition might influence. Also, there is 
now a considerable history of Artificial Intelligence to 
suggest this work is nonsense. Just beginning with the 

first words of its title and the authors’ skill, we have, by 
the crudest probability, all the nays to this article. 

Maybe this proposal seems more suitable in the 
fifties, as a response against the subjectivism and 
human-chauvinism of Alan Turing’s Intelligent Test 
[Turing 1950]. Since no convincing objectivistisc 
response was given, it became a general belief for 
computer scientists, philosophers and psychologists that 
non-human intelligence is not measurable in any other 
way. The article also fits better in the atmosphere of the 
sixties, with the first works on computers making 
analogies and problems extracted from IQ tests. It even 
could have been seen in the frame of the seventies as a 
need to characterise Extraterrestrial Intelligence in a 
non-chauvinistic way [Sagan 1973]. 

Nevertheless the idea of an objective definition of 
intelligence reappeared in 1982. Also it did in its 
adequate context. One of the parents of modern 
information theory, Gregory C. Chaitin, proposed some 
directions for future research using algorithmic 
information theory. One of the proposals was the 
following one [Chaitin 1982]: 



(f) Develop formal definitions of intelligence and 
measures of its various components; apply 
information theory and complexity theory to AI. 

The second part of this claim began time ago [Wallace 
& Boulton 1968] but it was Rissanen’s MDL [Rissanen 
1978] which promoted its current use. Later, other 
parent of algorithmic information theory [Solomonoff 
1986], proposed explicitly to address directly AI using 
“algorithmic probability”. We have not found (to our 
limited bibliographical knowledge) any work related to 
the first part of the claim (except Wolff’s program that 
we will comment later). Considering that a formal 
definition of intelligence may be so influential, we 
suppose those who undertook it found counterintuitive 
results with the straightforward definition: “intelligence 
as the ability of compression”.  

About 1990, AI broke up its branches in different 
fields. One of the reasons that motivated this disruption 
was, in [Chandrasekaran 1990] words, that  “there is no 
broad agreement on the essential nature or formal basis 
of intelligence and the proper theoretical framework for 
it”. If there is a thing that has restrained the advent of 
artificial intelligent systems is the thought that 
intelligence is something completely subjective. 

But precisely, and according to [Dietrich 1990], the 
goal of AI is to tell us what kind of computing 
intelligence is. In this paper we pretend precisely so. 
We are not giving a definition of human-like 
intelligence, we just pretend to give a formal definition 
of a computational ability essential to show intelligent 
behaviour. We agree with Minsky that any study of 
intelligence must take account of both human and 
artificial intelligence. Accordingly, most of the work of 
this paper is devoted to justify a relative short formal 
definition with many psychological, neurological, 
computational and even philosophical issues. 

The links will show to be so close that we will be 
able to devise a human intelligence test based on our 
definition and —with all the cautions that a single 
psychometric study is considered— it correlates with 
the results that the Homo Sapiens obtains on IQ tests. In 
other words, we give a formal counterpart to g factor. If 
this is accurate, how to make operative this principle 
inside intelligent systems will be an important topic for 
research. In this sense, we do not want to stop only on 
the cognitive view of AI, we will revise some topics on 
applied AI, of how to judge the progress of intelligent 
systems and even how we can make them ‘smarter’. 

2 Previous Theories of Intelligence 
Many theories have been proposed to define 
intelligence from many fields, e.g. philosophy, 
psychology, biology and, lately, computer science, and 

it is the capital key for many other problems of 
cognitive science and artificial intelligence. Most of 
them coincide in one thing: intelligence is an ability. All 
of them are informal in some extent and very different 
in kind and purposes. How can we define formally a 
thing that is so many other things at the same time? 

The most practical approach is psychological: 
“intelligence is the ability measured by the IQ 
(Intelligence Quotient) test, known as the g factor” 
[Sternberg 1977]. Owing to the fact that IQ tests are 
made by psychologists and the philosophical popularity 
of the Turing test, it has been a generalised opinion that 
“the intelligence of a system can only be judged by 
another intelligent system”. 

Although IQ tests are used to corroborate analytic 
techniques, should we be satisfied with a definition like 
“intelligence is what is measured by IQ”?. Following 
[Eysenck 1979]’s analogy, we are not less satisfied with 
“temperature is what is measured by thermometers”. 
But this is a trap because the question arises again: 
“What is actually measured by IQ tests?”. 

Apart from Chaitin’s proposal others believe that an 
objective characterisation is possible [Hofstadter 1979]: 

It would be nice if we could define intelligence in 
some other way than “that which gets the same 
meaning out of a sequence of symbols as we do”. 
[...] This in turn would support the idea of meaning 
being an inherent property. 

We will in fact give inherent (intrinsic) definitions in 
section 4. Classical definitions lack a methodological 
basis that could be applicable to compare and develop 
artificial intelligent systems. Our proposal allows at 
least the first of these two things and we will see that, 
except Turing’s conception, our definition agrees with 
all the other definitions of intelligence. 

3 Compression and Intelligence 

3.1 Notation 
We will work with finite or infinite strings of 
consecutive elements from some (possibly unspecified) 
alphabet Ω with at least two elements. With l(x) we 
denote the length of string x. The ith element of some 
string x is represented by xi. The string x without its d 
last elements is denoted (awkwardly) as x-d. By φ we 
denote some kind of universal function (a universal 
computer, a Turing Machine, etc.) and φ(p) is the result 
of executing the program p by φ. We use the word bias 
to refer to a specific universal computer, i.e., some 
descriptive framework β which is constituted by an 
alphabet Ωβ, some operations Θβ, and a machine φβ with 
some resources. x* (or x+) express any program for x in 



an unspecified bias. The empty string is ε. We say that y 
is a substring of x iff ∃z,w: x=zyw. 

3.2 Algorithmic Complexity 
Algorithmic Complexity (commonly referred as 
Kolmogorov Complexity) was independently 
introduced (with different reasons and directions) by 
R.J. Solomonoff, A.N. Kolmogorov and G.J. Chaitin. 
Since we will just give the only necessary definitions, 
see [Chaitin 1992],  [Watanabe 1992] or [Li & Vitányi 
1997] if you are not familiar with the theory. The term 
Algorithmic Complexity is generally associated with its 
‘purest’ variant, based on Minimum Length Encoding 
(MLE) or Minimal Description Length (MDL), i.e., the 
shortest string that, taken as an algorithm, produces 
exactly the original string. Formally, 

DEFINITION 3.1 
Cφ(x) = min { l(p): φ(p) = x } 

Since any universal machine φA can emulate any other 
universal machine φB, the value of C(x) is said to be 
machine-independent to a small constant, that is usually 
expressed as O(1). 

DEFINITION 3.2 
Cφ(x|y) = min { l(p): φ(p,y) = x } 

Straightforwardly we have C(x) = C(x|ε), C(x|x) = O(1) 
and C(x|y) ≤ C(x) + O(1). This is the conditional version 
and it will be of great importance later to clarify some 
intrinsic features of interdependence and separability in 
information.  

DEFINITION 3.3 
Kφ(x) = min { l(p): φ(p) = x } 

is similar to definition 3.1 but forcing φ to be a partial 
recursive prefix function, i.e., if φ(x) < ∞ and φ(y) < ∞, 
then x is not a proper prefix of y.  

K has some additional advantages over C, and is 
often considered the standard algorithmic complexity or 
Kolmogorov Complexity [Li & Vitányi 1997]. 

3.3 Universal Compressors 
A universal compressing algorithm is a compressor that 
gives the minimal description for every string in a given 
descriptive mechanism. Usual compressing algorithms 
are not universal compressing algorithms. The reason is 
not only that C and K are not computable: it is formally 
impossible even to approximate to the optimal 
compression attainable by computers [Kieffer & Yang 
1996] which suggests compression is very dependant 
and restricted to the bias used. 

The general idea can be still profited if we limit the 
time in a computable universal compression algorithm. 

DEFINITION 3.4 
Enumeration Algorithm: 
Given a bias Β and an input string to compress x 
run all the possible programs p over Β selected in 
length increasing order with a time limit t. Stop 
when we have φΒ(p) = x.  

It can easily be proved that this algorithm can always 
find the program with length equal to the time-bound 
complexity K(x,t) (see [Li & Vitányi 1997]). Depending 
on the limit time t of the description, the algorithm 
varies from intractability to tremendous intractability. 

3.4 Intelligence as Compression 
Compression —or the broader sense of principle of 
economy— is omnipresent in different fields of 
computer science and cognition. This has suggested a 
new trend, seeing “computing as compression”, led by 
Wolff’s SP theory [Wolff 1995].  

All kinds of computing and formal reasoning may 
usefully be understood as information compression 
by pattern matching, unification and search.  

Despite the fact that principles of compression of 
information are present in brains and nervous systems, 
artificial neural networks, knowledge systems, machine 
learning, etc., the essay “intelligence as the ability of 
universal compression” yields soon many problems. It 
does not account either for some classical definitions of 
intelligence (e.g. ability of explanation) and it does not 
bring hints for smarter systems. Just the idea “statistical 
induction as compression” has been successful [Li & 
Vitányi 1997]. 

3.5 Induction, Learning and MDL 
Traditionally, reasoning is seen as the trait that 
distinguishes us from the rest of the animal world. Since 
Aristotle, deduction was granted the prominence (when 
no the exclusivity) of reasoning. The works of the 
philosophers Hume, Kant and Bacon gave an important 
role to inductive reasoning. More recently the works of 
[Popper 1968] and [Kuhn 1970] have brought some 
new ideas in the context of philosophy of science. 
Recently, deduction has been recognised by some 
authors as a special case of induction. Learning is the 
common and broader view of induction. 

Induction, in the sense we will use throughout this 
paper, is the process of theory abstraction from facts. 
Since this is the problem usually faced by a scientist, 
induction has been known as the “logic of discovery”.  

Broad ended his book “The Philosophy of Francis 
Bacon” [Broad 1926] with the famous words: 
“Inductive Reasoning... the glory of Science... the 



scandal of Philosophy”. The things are not going better 
until the principle of economy has come strenuously 
into play. The role of simplicity is clearly represented in 
many works in this century [Barker 1957]. But it is 
attributed to William of Ockham 1290?-1349? this 
recurrent theme in philosophy of science and induction: 

Occam’s Razor Principle: “if there are alternative 
explanations for a phenomenon, then, all other things 

being equal1, we should select the simplest one”. 

This principle was rejected by Karl Popper because he 
said that it had no sense because there is no objective 
criterion for simplicity. He proposed [Popper 1968] 
instead the concept of verisimilitude as the level of 
agreement with the facts. A theory t1 has more 
verisimilitude that t2 if t1 implies as many true 
observational sentences as t2 and has less false 
observational sentences (exceptions). But algorithmic 
complexity K(x) is an objective criterion for simplicity. 
This is precisely what R.J.Solomonoff proposed as a 
‘perfect’ theory of induction, in [Li & Vitányi 1997] 
words. Algorithmic Complexity inspired J. Rissanen in 
1978 to use it as a general modelling method, giving the 
popular MDL principle [Rissanen 1978]: 

Minimum Description Length (MDL) principle: 
The best theory to explain a set of data is the one 
which minimises the sum of: the length, in bits, of 
the description of the theory; and ,the length, in bits, 
of data when encoded with the help of the theory. 
Then, we enclose the exceptions, if any. 

This principle is not computable in general and it can 
only be used if we restrict the descriptive mechanism. 
The first justified reason to use the MDL principle is to 
avoid over-generalisation. But MDL is used mainly for 
another reason, “the shorter the hypothesis the more 
predictable it is”. This has been proved for statistical 
prediction. 

An oversimplification of the bias has self-defeating 
effects. For instance, if we select a very restricted bias, 
the MDL principle will be easy to apply, but it will 
require that the bias had been adequately selected by a 
person to operate for a specific problem class. If we 
want more flexibility in the bias, it has to be extensible, 
introducing new synthesised concepts. 

3.6 Machine Learning and Prediction 
Automated Learning has provided some techniques to 
obtain rules from experimental data. From these rules a 
theory is built up to predict future experiences. Some of 
the formal models gather some of the ideas about 

                                                           
1 Some of the following sections originate on our 
thought that the following MDL principle ignores this. 

compression we have presented. Soon [Solomonoff 
1964], it was recognised that the unsupervised learning 
of a grammar from raw data may be understood as 
information compression. The general field of machine 
learning has its more computational and formal part in 
the area of  COmputational Learning Theory (COLT). 

With the ideas of compression and with the aim of 
learning and prediction there were presented different 
models of learning: identification in the limit [Gold 
1967], PAC model [Valiant 1984], Query-Learning 
[Angluin 1988]. Although the other models have 
brought learning to tractability, it is identification in the 
limit “the model that embodies all the salient features of 
learning by example, and nothing else” [Freivalds et al. 
1995]. Identification in the limit is based on Popper’s 
conception of the growth of knowledge. The idea is just 
obtaining the MDL in the limit, and then the 
enumeration algorithm we have presented can be used. 
The model presented in [Shapiro 1981] does precisely 
so, except that it reuses the old hypothesis instead of 
starting from scratch (to make the idea feasible). 

Some recent different approaches  [Rivest and Sloan 
1994] are beginning to question that the preceding 
models were sufficient to comprise some learning tasks. 
The most interesting objection is the view that learning 
is an incremental process [Abe 1997]. The new goal is 
not necessarily to achieve the highest accuracy at the 
end of a learning session, but to maximise the 
cumulative benefits obtained throughout all the session. 
But is there any principle to achieve the maximum 
reliability during incremental learning? 

It is said that the shorter the hypothesis, the better 
the prediction. So, MDL seems the first candidate (and 
so it has been used), but we can show that it is not the 
better option for incremental learning (although it is a 
good one) because after a counterexample n, the MDL 
nth hypothesis generally remakes to the same n−1th 
hypothesis just adding the exception. In this way, the 
hypothesis gets patched for a time until the length of 
coding the exceptions forces the appearance of a new 
radical hypothesis. In conclusion, the more tolerant we 
are with exceptions the less the accuracy in incremental 
learning. This is Kuhn’s view of changing paradigms in 
philosophy of Science. MDL has another problem, it is 
usually not suitable for short finite strings, because 
exception-based descriptions are shorter. Let us see 
these three problems in an example: 

EXAMPLE 3.1 
Given the finite sequence: x = 1,2,3,5,7 
we can guess some short hypotheses or 
descriptions for x, simply “the sequence 1,2,3,5,7”, 
or “the first four odd numbers and the number two, 
ordered”, or “the first three natural numbers and 



the number 5 and 7”, or “begin with numbers 1,2. 
The following three are the sum of their preceding 
two, but decrementing the last one” or “the first 
five numbers which are dividable only by 1 and 
itself”. Almost everybody would select the last 
hypothesis as the more explanatory. But it is not 
the shortest one. But it is the shortest exception-
free hypothesis. In fact, it is able to predict 
reliably the following value (11) because using 
that description, the right half of x reinforces the 
hypothesis while the others are weakened. 

An immediate critique to this example is that the 
probability of 11 as being the correct answer is the same 
(or less according to the MDL) and it is only the 
assumption that the concept of prime is well known by 
humans which increases our probability of guessing 11. 
We think this is not accurate in this case because the 
shortest description “the first four odd numbers and the 
number 2” has an exception which ‘perverts’ the 
hypothesis, although it would be the ‘elegant’ program 
in Chaitin’s LISP. In general, MDL has been used 
successfully because the strings are long enough or the 
bias has been selected to ban exceptions. 

Exceptions are useful to memorise, to describe, to 
predict statistical problems, but they are not suitable for 
a robust explanation. So, how can we eliminate 
exceptions? But wait a moment, what is an exception? 

4 Intensional Complexity 
In mathematics, there are two kinds of descriptions: by 
extension and by intension (or by comprehension). But 
how can we know if a definition by intension ‘hides’ 
some extensionally defined information? Is it possible 
to know whether a definition is intensionally pure? 
Now, that is the question. 

4.1 Natural Partitions 
Algorithmic Complexity talks about the complexity of 
given strings, but who splits up these sequences? 

EXAMPLE 4.1 
Given the sequence: x = 1,2,3,4,...,m,333,..n times.,3 
we intuitively see that there is no relation between 
the first and the second part. 

We say informally that y is a subsequence of x iff it is 
easily recognisable from x. Formally, 

DEFINITION 4.1 
y is a subsequence of (or easily recognisable from) 
x, denoted y∠x, iff C(y|x) < C(y). 

Being C(y) the algorithmic complexity of y (the 
length of its shortest description) and C(y|x) the 
conditional complexity of y, given x. 

The meaning of subsequence is much more than a 
sequence that is easily extractable in a string. It means 
any string that is easily described as a part —or a simple 
function of a part— of another. Since the concept of 
subsequence is rather lax, we normally understand y as 
easily recognisable from x when C(y|x) << C(y). For 
instance, given the string x = “abcbcdcdedef” we have 
the subsequences “abcbcd”, “bbdddf”, “bcdcdedefefg” 
but not “abcd” or “xazabb”. 

DEFINITION 4.2 
A covering or recoverable partition s of a string x 
is a set of subsequences {xs1 ; xs2 ; xs3 ; ... ; xsp}  
holding C(x|s) ≤  O(log(l(x))) 

Since a partition is constituted by subsequences, they 
are easily recoverable from x. Inversely, since it is a 
covering partition, x is easily recoverable from s. There 
is no limit in the number p of subsequences or the 
length of the subsequences, so there are always infinite 
many covering subsequences. If we restrict also l(s) ≤ 
l(x) we have the notion of low-redundant covering 
partition. Every string has at least a low-redundant 
covering partition s = {x}. The proof is straightforward, 
since C(x|s) ≤ O(log(l(x))) and l(x) ≤ l(x). 

A partition should be better made using the prefix-
free version of Algorithmic Complexity, i.e., K(x). With 
this, we avoid the need to include some additional 
information to separate the strings of a partition (which 
is represented by a ‘;’ in our notation). 

The previous example 4.1 has at least two low-
redundant covering partitions s = { x } and s’ = {3,3,3..n 

times.,3 ; 1,2,3,4,..,m }. We have that l(s’) ≤ l(x) and 
C(x|s) ≤ l(“take the second string of s’ and then the first 
string”) = 1 < O(log(l(x)) = O(log(m+n)). 

The notion of low-redundant covering is not still 
suitable for our purposes. We have derived [Hernández-
Orallo 1997] a natural partition from it that it is, to 
some extent, equivalent to the following definition. 

4.2 Exception-free Descriptions 
The next approach tries to avoid exceptions identifying 
them in the description mechanism. Informally, “an 
exception is something we can take apart from a string 
so leaving its description much simpler respect the 
magnitude of the length of the elements removed”. An 
easy solution could be just not allowing some kind of 
quoted exceptions in the description mechanism, but as 
we saw in Example 4.1 there are no exceptions, only an 
‘arbitrary’ concatenation. A deeper observation of this 
leads us to an uncomfortable definition: 



EXAMPLE 4.5 DEFINITION  4.3  
A description p of a string x is exception-free 
denoted ∆(p) if and only if: 

Given the string  x = 1,2,3,5,7 
is exception-free for a bias Β1 where the concept 
prime is defined (or definable) and not exception-
free for a bias Β2 where the concept prime is not.  

    ¬∃y, y∠x ∧ ∃p’ : p’ = subp(p) ∧ φ(p’) = y ∧ 
              ∧ l(p’) < gain(p’, p, x) 

The last example shows the difference between 
restricted bias and constructive bias where the system 
could handle every possible definible concept. 

and being subp(p) a subprogram of p and, 

   [ ]
gain p p x l p

l x l y C y x
r

( ', , ) ( )
( ) ( ) ( )

= −
− +  

After the example, if we take a look at definition 
4.3, we see that it requires the comparison between 
programs and the data they describe. Since a jump 
between levels is required, only high-order bias will be 
able to detect exceptions —in its broad sense—. 

I.e., a description is exception-free if it does not exist a 
subdescription that produces almost the whole string, 
i.e., there is not a reduction in the description that could 
be greater that the corresponding reduction in the 
strings. The relevance of being subdescriptions is that 
every long string has subsequences easily compressible. 

The preceding definition expresses a more important 
idea: whenever we can find an exception-free 
description we see that is intensional, i.e. it is the one 
that would be selected if we think that it must have a 
sense3. 

The hardness resides on the checking of whether p’ 
is a subprogram of p since this depends on the 
descriptive mechanism φ. Also, it is difficult (e.g. is 
“the first n natural numbers” a subdescription of “the 
first 2n numbers”?). A more formal definition of subp 
could be just definition 4.1. Now we realise that we are 
talking about descriptions of descriptions, and we 
discover the scaling of “abstractions of abstractions”. It 
would be more accurate to use r to determine the 
“exception degree” or inversely “purity” of a 
description. For the moment we will use the a threshold 
r=1 to adjust a ‘syntactical’ approximation for a specific 
bias. 

4.3 Intensional Complexity 
DEFINITION  4.4  
The Shortest Intensional Description p of a string 
x, denoted SID(x), is defined as follows: 
SID(x) = argmin { l(p) : φ(p) = x ∧ ∆(p) } 

With this definition we can formulate the: 
Shortest Intensional Description (SID) principle: 

With the previous definition you can check2 that: The best theory to explain a set of data is the one that 
minimises the length, in bits, of the description of the 

theory; and contains no implicit or explicit exceptions. 
EXAMPLE 4.1(REVISITED) 
Given the string  x = 1,2,3,4,...,m,333,..n times.,3 

This idea of implicit exception tries to emphasise that 
the concept of exception is deep, and it follows from the 
preceding definition 4.3. Due to the non-computability 
of SID (as the MDL principle) it may be understood as 
a limit to come close. Let us see a hint of application: 

The description p = “the first m natural numbers 
followed by n 3’s” is not exception-free (excluding 
the case m = n). 
EXAMPLE 4.2  
Given the string  x=1,2,3,4,5, ..., m EXAMPLE 4.6 
The description p=“the first m natural numbers” is 
exception-free for each arbitrary m (see next one). 

Given x = aaaaaaabaaaaaaaaaaaaaabaaa 
and two descriptions. 

EXAMPLE 4.3   p1= Output 26 a’s. 
Given the string  x=a,a,..m.,a  being m = 2n + 2l    Two exceptions: b at 8 and b at 23 
The description “2n + 2l a’s” is exception-free only 
when n and l are relatively far. 

  p2= let n = 7 . Repeat up to position 26 
   Output n a’s and 1 b. Let n = n · 2 

EXAMPLE 4.4 
p1 is shorter (better according to MDL) but p2 is 
intensionally purer (better according to SID). Given the string  x = 1,2,3, ... , n, m. 

The description “the n first natural numbers 
followed by number m” is obviously not 
exception-free when m < n. 

                                                           

                                                           
3 Regarding example 4.3 we may think that the string 
seems a whole but the length is an important trait to 
consider its ‘separation’ into two strings. 2 See [Hernández-Orallo 1997a] for proofs. 



Comparably we have, 
DEFINITION  4.5  
The Intensional Complexity of a string x, denoted 
E(x), is defined as follows: 
 E(x) = l(SID(x)) = min { l(p) : φ(p) = x  ∧ ∆(p) }   

Informally, this definition comes to say that the 
explanatory complexity of a string x is the shortest 
description which has no exceptions. There are strings 
that seem to have exceptions, e.g. x = 1, 2, 3, 4, 5, 6, 7, 
342, 8, 9, 10 but it cannot be proved that a very long 
explanation would ever be found to give placidly the 
string x. Then E(x) is not computable (like C) and it can 
be greater than l(x) (not like C).  

We also can affirm that “the SID principle is the 
right principle to achieve Hypothesis Reliability during 
Exact Incremental Learning using an arbitrary and 
unknown probability distribution”. Informally, the nth 
hypothesis (given n+1 examples) is k-reliable iff the 
hypothesis has remained unchanged during the m last 
examples, being k=m/n. For n great, the use of 
exception-free hypotheses gives more probability that 
the last hypothesis had been older because they are 
sought sooner since no exceptions are allowed. This is, 
in the end, a formal view of Popperian methodology. 

4.4 Explanatory Complexity 
Most definitions we have been giving in this section are 
not computable. The reason is that there can be short 
descriptions whose computational cost would be so 
high, and other descriptions, taken as algorithms, do not 
terminate. The known non-halting problem makes that 
we cannot discern between both cases. The usual 
solution to make them computable is to restrict some 
resource of the description (time or space required for 
the program). We introduce a variant weighted on time. 

DEFINITION  4.6 
The Explanatory Complexity of a string x, denoted 
Etβ(x), is defined as follows: 
 Etβ(x) = min { LT β(p): φβ(p) = x ∧ ∆(p) } 

We have chosen LTβ (p) = lβ(p) + log cost β(p) —the 
same weighing as [Levin 1973]’s Kt— because it 
provides a good compromise between space and time, 
but another relation could be tuned. 

But Etβ  is not computable in general, either. Thus, 
has definition 4.6 any utility? We could have used a 
time-bounded version to make it computable but the 
result is then a partial function. There are good reasons 
to choose a time-weighted definition of the best 
explanation. The intuitive view of explanation entails 
that the hypothesis can be explained to others. Winston 
[Winston 1992] says: “if you want to understand a 

concept, try explaining it to someone else”. At the 
moment a system has to tell or communicate the 
explanation to other system (or internally work with it), 
there are two important topics: the space of the 
discourse and the time the system will need to relate it. 

Accordingly, from definition 4.6 we could define 
SED (Shortest Explanatory Description) instead of SID. 
Obviously, Etβ(x) = lβ(SEDβ(x)). People, and Science, 
expect that nature has underlying mechanisms that 
emerge “quickly” in our observations. In this sense, 
SED is preferable over SID and over MDL. 

If we regard the difficulty of finding an explanation 
for an information (to comprehend it), it would be more 
accurate to talk about levels of comprehensibility: 

DEFINITION 4.7 
A string x is k-hard (or k-incomprehensible) in a 
bias β iff k is the least positive integer such that 
Etβ(x) ≤ k · log l(x).  

This will be the formal counterpart to our notion of 
hard-to-learn good explanations. In our sense, a k-
incomprehensible string with a high k (difficult to 
comprehend) is different (harder) than a k-compressible 
string (difficult to learn) [Li & Vitányi 1997] and 
different from classical computational complexity (slow 
to compute). Calculating the value of k for a given 
string is not computable in general. Fortunately, the 
converse, i.e., given an arbitrary k, calculating whether 
a string is k-comprehensible is computable. We just 
generate the descriptions of x that have only LTβ  ≤ k · 
log lβ(x), and check if there are at least one that is 
explanatory. This is the reason why we say that our 
definition of intelligence of section 5 is computable, or 
more exactly, the generator. 

4.5 Induction, Complexity and Intrinsic 
Explanations 
Algorithmic Complexity and its corresponding MDL 
principle would yield the explanatory descriptions if the 
sample is long enough (or even infinite) to make worthy 
the program with long concepts (e.g. the description of 
prime). There have been proposed many variants of 
Algorithmic Complexity to account for a fact: 
Kolmogorov Complexity measures the amount of 
information but not the complexity to understand them. 
They usually express better the complexity of physical 
systems per se but not the difficulty to model them. For 
instance, none of the variants has been assumed for 
systems theory as a formal definition for the complexity 
of a system. One of the factors that [Flood 1987] points 
out in the complexity of modelling a system is “no 
holonomicity” (holo= all, nomic= law), which means 
that not all the parts follow the rule. This view of 



complexity, although it is not formalised under 
Algorithmic Complexity, penalises exceptions, and it is 
similar to our unbounded version E. 

Also, Algorithmic Complexity would not answer the 
following question to Mill [Mill 1843]: 

Why is a single instance, in some cases, sufficient 
for a complete induction, while in others myriads of 
concurring instances, without a single exception 
known or presumed, go such a very little way 
towards establishing a universal proposition? 

An easy solution for this is that induction is a subjective 
matter that depends on which is the previous knowledge 
of the system. To respond to this rationale, we will see 
again our famous example: 
 x = 1,2,3,5,7,11,13,17,19,23 
Using the MDL principle it will be described usually as 
a series of odd numbers with exceptions (+2, -9, -15, -
21) because the description would be too long if we 
have to include our notion of prime inside it. Let us 
recall that since we have not seen much compression, 
the string is considered random, and therefore, not 
learnable, a result that is usual for short strings. 

Using SED, we select the description x* = “the first 
10 primes” (being prime a large concept), even though 
it is longer. But now the length of this SED implies that 
the string x is quite hard, that is hard-to-learn. In fact, 
people which cannot multiply and divide would never 
comprehend the series. But if we have the subconcept 
of prime, the learnability of x is easy. This can explain 
why some subconcepts are necessary or useful to make 
some hard-to-learn concepts easier to learn. 

Given the sequence x = “aabbbccdddee”, ‘f’ is 
usually predicted. Followers of MDL will answer 
quickly: it can be compressed. But a short string is only 
compressible if the bias is prepared for some kinds of 
strings. Even universal biases cannot compress this 
string because it is not worthy. This is due to the fact 
that the term O(1) which appears in K and C is a short 
constant but it is greater than l(x) or the information of 
everyday problems. It is like normal compressors, that 
do well on some strings but consequently wrong on 
others. Thinking in MDL is assuming bias rigidity. 

Next, to the question of selecting the bias, many 
philosophers and scientists would have argued that this 
sequence has some patterns that are similar to those 
common in nature —’shaping’ their bias— and this is 
simply the reason why people usually predict f. But this 
empirical point of view is not correct because we have 
given a function SED that will give us that as the best 
hypothesis. This hypothesis would be somehow similar 
to “Beginning with a, (1) print twice this symbol, print 
three times the next symbol and goto (1) till position 
l(x)”. This can be modified to “Beginning with a, (1) 

print twice this symbol, print three times the next 
symbol and goto (1) till position l(x) + 1”. And, as you 
can see in the appendix it is easy to implement an 
algorithm that gives an answer for it. 

Summing up, [Whewell 1847] coined the term 
consilience to comprise the relevant basics in scientific 
theories: prediction, explanation and unification of 
fields. In this sense, we have given a formal view of 
Thagard’s article [Thagard 1978]. 

4.6 Discontinuity and Stability 
Another question is whether we can say that two 
explanations are akin. We give a definition for this: 

DEFINITION 4.10 
An explanation e1 is akin to explanation e2 on the 
bias β if and only if e1 is a subprogram of e2 or e2 
is a subprogram of e1. 

We have said in previous subsections that a simple 
exception “perverts” the hypothesis and forces to 
reformulate another one. That is to say, most of the 
times a simple change in the input surely produces a 
great change in the description. This means that all the 
definitions we have been given are extremely 
discontinuous. Immediately it poses the question of how 
we can tackle its radical discontinuity. We are 
beginning to realise that our definition are —in some 
sense and independently to other classical 
computational complexity hierarchies— the hardest 
problem of interest that we can imagine. In this sense 
they are much harder than universal compression 
because although original algorithmic complexity is 
discontinuous, it is more or less locally continuous, i.e., 
a change in the input generally changes in a coding of 
this as an exception. Here, usual methods of search, like 
“hill climbing or gradient descent” and “beam search” 
can be useful to some extent. 

But with very discontinuous problems the only 
techniques that have shown useful are those based on 
“parallel combinatorial search” maybe with techniques 
from evolutionary computation. Fortunately, if we use 
some genetic search, we can profit a characteristic of 
this exception-free nature. When hypotheses fail (in a 
generation), we try to construct other (for the next 
generation) beginning with the data that was not 
covered in most of the previous hypotheses. In fact, this 
resembles how people look for explanations: an 
anomaly originates new hypotheses precisely from it. 

If our definitions are so sensitive to any change in 
the inputs, they are less discontinuous to the length. 

DEFINITION 4.8 
A string x is m-stable on the right on the bias β iff  



We give these K·p strings without its d − r last 
elements (xk,p

-d + r) to S and ask for the following 
element under some short ‘explanation’ that 
combines the elements of β (Ωβ and Θβ). We give 
S a time t and record its answers: guess(S, xk

-d+r+1). 

∀ d, 1 ≤ d ≤ m  : SEDβ(x-d) is akin to SEDβ(x) 
Informally, a string x is m-stable on the right if taking at 
most m elements from the right, renders the same kind 
of explanation. Note also that the length of the 
explanations does not have to be decreasing with m 

Then we give the result for the C-test.  EXAMPLE  4.8 

[ ]I S k hit x guess S xe
d r

k i
d r

k i

i pk K
( ) , ( , ), ,

....
= ⋅ − + + − + +

==
∑∑ 1 1

11

 

Given the sequence x = “1,2,3,…n” being n = 2p. 
has SEDβ(x) = “the first 2p natural numbers”. We 
have that has SEDβ(x-d) = “the first 2p−d natural 
numbers” is a superstring of SEDβ(x). being hit a difference function (usually hit(a,b) = 1 

and 0 otherwise). r indicates the ‘redundant’ 
values we give in order to make easier (and 
reliable) the answer. e is an exponent to weight 
more or less the difficult questions. If we choose e 
= 0 all the questions have the same value. 

It is also notable to realise that the longer the string the 
more probable that it would be more stable. This is why 
the longer the string the more C(x) approximates E(x). 

5 A Formal Definition of Intelligence 
Informally, “the test measures the ability of finding the 
shortest explanation (exception-free description) for 
some strings of different difficulty (comprehensibility) in 
a fixed time”. The way it can be tuned and implemented 
is discussed in [Hernández-Orallo 1997b] but point 5.4 
and the appendix could suggest many of the answers. 
We have called this test C-test (C from Comprehension) 
just to differentiate it from IQ-test. 

First, the informal definition: “Intelligence is the ability 
of explanatory compression”. So, let’s measure it. 

5.1 Assumptions 
We establish the following reasonable assumptions: We 
cannot say that a system is or is not intelligent just like 
we cannot say that a person is or is not intelligent, as 
Turing Test does. Also, we think there is no ‘meta-
intelligence’ since there is no discontinuity from the 
reactions of our pets, the sometimes smart behaviour of 
primates and dolphins to the smartest Homo Sapiens. 
So, it is gradual from birth to adolescence. Accordingly, 
most definitions of intelligence begin with the word 
‘ability’. Every ability is wont to be measured. But in 
this case it requires the collaboration of the subject. So 
the intelligence of a system S can only be measured by a 
test made to S. We also presuppose that the system 
understands the aim of (or at least it is well 
programmed for or it has been given an order to do) the 
test. It also understands the bias or language used for 
the test. 

5.3 E(x) vs. C(x) 
Maybe every system that is able of exception-free 
compression is able of normal compression (we doubt 
the converse), and all the definitions can be simplified a 
great deal, using the more generalised and comfortable 
C. But the latter is not practical for measuring this 
ability for short strings, because they usually render 
descriptions with exceptions that are not intuitive. The 
strings used in the tests would have to be longer and this 
will make the tests impracticable. The only objective 
view of eliminating some ‘arbitrary’ descriptions is by 
using our definition. Also, any kind of system that is 
good in E is good in C because it is able to detect 
exceptions and to code them interestingly. As we will 
see, the contrary is not the case. 5.2 The Definition Is —Of Course— a Test 

We are ready to give a formal definition of intelligence 
as a value resulting from the following test: 

5.4 The Generator 
We have said that calculating the k-comprehensibility of 
an arbitrary string is not computable in general. But 
given an arbitrary k, the k-comprehensibility of a string 
is computable. This does not render the things easy. The 
process of finding a random string that would be k-
incomprehensible goes as follows. 

DEFINITION 5.1 
Let us select an expressible and fair bias β and a 
wide range 1..K . For each k = 1..K  we choose 
randomly p sequences xk,p, such that are k-
incomprehensible and d-stable with d ≥ r. 
We measure the intelligence of a pretended 
intelligent system S in the following way. We first 
give (or programme) to S the alphabet Ωβ and the 
operations Θβ with their corresponding costs. 

ALGORITHM FOR STRING GENERATION 
We begin with K empty sets of pairs <x, x*> and 
we want to obtain p pairs for every k-set. 



Beginning with k=K, and skipping it if the k-set is 
full, choose randomly a description x* (combining 
operators and alphabet) such that ∆(x*) and: 
 (k-1) · log l(x) ≤  LTβ(x*) ≤ k · log l(x).   
We have to look for all the explanations x+ for x, 
with LTβ(x+) ≤ k · log l(x). If there is not such an 
explanation (the less probable) we have that x is k-
incomprehensible and we know its SEDβ(x), 
putting <x, x*> in the k-set. If there is such an 
explanation with LTβ(x+) ≤ k’ · log l(x) we put 
down in the k’ set the pair <x, x+>. 

The more feasible option seems to select a bias which 
does only allow explanatory descriptions maintaining 
expressibility. But this is difficult because it is hard to 
detect whether some program is hiding an exception. 
For instance, we can design a bias that does not allow 
the operation “Print x” to avoid descriptions like “Print 
1, Print 3, Print 5” but it can be cheated with the 
program Push 5, Push 3, Push 1, Pop, Pop, Pop. 
Although one usually does not hide exceptions like 
these without necessity the bias could do it in ‘subtle’ 
ways. We have precisely introduced all the section 4 for 
this reason. 

Another approach is restricting memory (or stack) 
resources, so reducing the possibilities of hiding 
exceptions. The best practical solution we have found is 
using programs that are not separable (only one low-
redundant covering s={x}). For instance, if we use 
assembler-like programs we can force them to finish in 
a loop (the greater the final part of the string the loop 
covers the better). Curiously, similar restrictions appear 
in the early essays of [Simon & Kotovsky 1963]. 

It is left to see the stability of the strings. Once we 
have filled in each k-set, we pass the following sifting. 

ALGORITHM TO SIEVE THE D-STABLE STRINGS. 
Given a pair <x, x*> look for all the SEDβ(x-i) for 
all i=1...d and check that all are akin to x*. (Seek 
the SEDβ(x-i) only up to LT ≤ k · log l(x) + C)4. 

We have again a problem of efficiency. Fortunately 
with the approximation we have commented it is easy 
since “loop until position p arrived” is stable for some q 
generally near to p. 

5.5 IQ-tests and C-tests 
We have presented some guidelines to make the C-test. 
Most of them are restrictions to turn the production of 
the problems for the test more efficient —they 
originally are computable—. Non tractability is not so 

                                                           
4 If we do not found one and only one for each d it is 
not valid either. 

grave in this case because the generator can be executed 
on a speedy machine in a preparatory stage to store a 
good collection for future tests. Appendix A presents a 
test we have designed using these considerations. 

The test-based nature of the definition presented 
suggests an analogy with the usual tests that measure 
intelligence, the Intelligence Quotient (IQ) tests. But, 
will IQ tests correlate with C-tests? We think that the 
result is far from conclusive to guarantee or discredit 
our theory, but according to [Brand 1996] correlation 
with IQ tests is a necessary (but not sufficient) 
condition for a good measurement of intelligence. 

6. A Formal Definition of Analogy 
The test nature of definition 5.1 gives the impression 
that is not so formal. In this section we show that it 
serves for giving formal definitions of many reasoning 
processes, like analogy. Complex recognition tasks are 
extremely well performed by animals (a dog which 
recognises his owner’s smell or some spoken orders, an 
elephant which never forgets your face, etc.). They are 
not by far considered intelligent for this (more often 
they are considered intelligent for other different 
things). Humans are distinguished for a higher level of 
recognition, usually known as analogy. [Holland et al. 
1986] regard analogy as a special case of induction: “a 
subtle, powerful inductive process, often viewed as a 
mysterious fount of creativity” and assert that analogy is 
a morphism between two mental models. 

6.1 Analogy and Fluid Minds 
Hofstadter’s key insight is that machines will never 
satisfactorily pass the Turing test until they achieve true 
mental fluidity. In his view [Hofstadter 1985], fluid 
analogies “are not game for rigid minds” and are “so 
clearly subjective”. However, he does not think that this 
is not attainable, but that it requires a very complex and 
“fluid” system with many experiences (and evolution-
originated schema) to give these answers. But he goes 
further when he asserts that “there is no fixed 
mathematical recipe for reconciling all the different 
forces pushing and pulling you in analogies”. 

To study the problem, he proposes analogies like 
“abc is to abd” as “ccc is to ?” and many more complex 
ones. With a convincing justification of why a 
simplified domain like this is meaningful and models 
real aspects of intelligence, he and the Fluid Analogies 
Research Group [Hofstadter et al. 1995] present 
programs to give the same kind of answers as humans in 
these simple-domain complex-analogy problems. In 
fact, they give no formalism after their solutions. 



6.2 A Formal View of Analogy 
Different paradigms for solving analogies have been 
essayed since [Kling 1971] to [Winston 1992] to give 
the same solution as people to simple analogy problems. 
Given a “A is to B” as “C is to X” Winston presents a 
matching based on the ‘similarities’ between the 
mapping from A to B and C to X. It works quite well for 
the blocks world but his model cannot explain many 
other more ‘elaborate’ problems, like simply “abc is to 
abd” as “xyz is to ?”. Why does it give intuitively the 
result wyz and not xyd? Using Winston’s schema, we 
get the answer xyd. According to common sense, what 
can we do to obtain the answer wyz?  

Common sense is to us the contrary to arbitrariness. 
Our solution is similar, apparently, but we define our 
similarity based on intensional complexity: 

DEFINITION 6.1 
Analogy Plausibility = − α  · C(A) 
 − β  · E(MapA↔B) 
 − γ  · E(MapA↔C) 
 − δ  · E(MapAB↔CX     A↔C ) 

With E(MapA↔B) we mean the Intensional Complexity 
of the mapping between A and B (in both senses). The 
last term gives the commonalties of low and high level. 
If we make δ great enough compared to the other 
coefficients, we see how it works. For example “abc is 
to abd” as “xyz is to ?”:  

Analogy Plausibility (“wyz”) = 
− α ·C(A) = l(“the first 3 letters of the alphabet”). 
− β · E(MapA↔B)= l(“inc. the greatest element”) 
− γ  · E(MapA↔C) = l(“change orders”) 
− δ · E(MapA↔C       AB↔CX ) = l(““)  

You can also check out with the preceding definition 
why you may say “acg” to the question “Given abc to 
abd, what does ace go to?” instead of “acf” or “ade”. 

Obviously, as you can guess, this formulation 
requires some kind of high order language (or bias) to 
talk about maps of maps. Also it requires to compute E 
(or Et) or, at least, some approximation. 

It is not casual that we have chosen analogy because 
it is the more common mechanism by which we can 
‘project’ structure across levels. In our opinion the best 
approach in this line is the system FOL [Weyhrauch 
1980].  

In our view, the most remarkable result from this 
theory of analogy is to see ‘beyond’ and realise that 
fluidity is the ability of reducing E of a problem and the 
associated context. Most architectures essayed in the 
field of AI (and even more in expert systems) are 
‘corrupt’ from the beginning because they fix (and then 
limit) the reasoning operations the system can do. 

7 Intelligent Cognitive Agents 
Just from the generator presented in section 5, we can 
program a machine to make the C-test. So we have 
done. If executed in a speeder machine, it would give 
moderate good scores. The question arises quickly. 
Must we call this machine intelligent? Our opinion is 
that the answer is no. We, at most, can call the machine 
potentially intelligent. The reason is that when we talk 
about an intelligent system we implicitly mean a 
cognitive agent with intelligent abilities. 

The main difference is in knowledge. We must 
recall that the intelligence of a system is an ability that 
is stable during life while its knowledge is something 
that is in constant evolution and remaking. Also the 
different knowledge of the individuals is what 
characterises and differentiates them, much more than 
their intelligence. The relation between intelligence and 
knowledge must begin with Habermas’ statement: 
“there is no knowledge without interest”. This is the 
reason for using the word agent. 

Well, we have been harping on the virtues of 
exception-free descriptions. But there are some 
circumstances where a leeway of exceptions can be 
profitable to make a description much shorter. The 
information that finds some suitable transformation to 
the interesting topics is considered relevant and gets the 
attention of the system. Tolerance on exceptions varies 
radically on the different purposes: memorising, 
recognising, learning, reasoning or explaining 
something. Without more discussion, we just give an  
informal and maybe inaccurate conception of an 
intelligent cognitive agent. 

An intelligent cognitive agent is an interested system 
with input/output devices for a complex environment 

and a contextual knowledge organisation and 
competing concepts governed by principles of short 

explanations and purpose related relevance.  

We identify a context with a bias that is selected for a 
problem to look for explanations. That is, when a 
purpose or a simple strange phenomenon triggers the 
attention to explain some fact, we construct “a virtual 
bias” in working memory composed of the concepts 
related to the problem. The contextualisation is usually 
seen in a more static idea of ‘distance’ to the huge 
information of long-term memory, but to some 
problems Et(x) would construct better contexts (by 
analogy). 

It is well known in psychology that only a small 
number of items —six according to [Hamilton 1859] or 
seven according to [Miller 1956]— can be considered at 
a time. There have been given some rationales for this 
limit but the most reasonable one seems to be in, in 



Kotovsky words: “people’s limited working memory 
capacity controls their ability to think about problems 
and plan moves”. This may be the reason why 
sometimes a person is not prepared to learn some 
concept because it would require more than, say, seven 
concepts at a time. It is after the learning of a new 
concept that comprises a few ones that a person is able 
to learn some difficult concept or solve some problem. 
This limitation forces us to learn more abstract concepts 
to comprehend the world. Definition 4.6. avoids low-
level descriptions when we have high-level 
descriptions. 

7.1 Some Models of Explanatory Reasoning 
We have talked about COLT (COmputational Learning 
Theory) to justify the introduction of our theory. But 
there are still many models and interesting work based 
on more classical knowledge representation in AI 
around the fashionable term “explanatory reasoning”. 

Inductive Logic Programming (ILP) has been paid a 
big attention as a framework of supervised learning in 
first order logic [Muggleton 1991] [Lavrac & Dzeroski 
1994]. It has been said that: “regression gives numeric 
prediction, but little explanation. ILP gives explanation, 
but no numeric prediction” [Srinivasan & Camacho 
1997]. Our interest about ILP is that it has made plain 
the necessity of inventing new predicates as bias shift 
operation [Stahl 1995]. Also, it has differentiated 
between useful and necessary predicates. The first allow 
the hypotheses to be shorter, but the generalisation is 
not strictly necessary (they are, in some way, 
extensional). The second are recursive ones that are 
strictly necessary to learn a concept (they are, to some 
extent, intensional). Since first-order seems exhausted 
for more ambitious purposes, [Lloyd 1995] has 
proposed a new inductive system called Escher to jump 
to Higher-Order Logic, based on Church’s  theory of 
types [Church 1940], a work which resembles high-
order logic reasoning systems like HOL. 

Abduction (Sherlock Holmes’ intelligence 
[Josephson & Josephson 1994]) is a notion introduced 
by Peirce (1839-1914). He asserted [Peirce 1867/1960] 
that neither deduction nor induction can help us to 
unveil the internal structure of meaning. Abduction is 
the process of making assumptions to explain some 
facts. It is described as “inference to the best 
explanation” [Harman 1965]. A counterpart of ILP, 
ALP (Abductive Logic Programming) [Kakas et al. 
1993] and other frameworks like EBL and Abductive 
Explanation Based Learning (AEBL) have appeared as 
more specific cases of abductive reasoning. [Michalski 
1987] expresses perfectly our point of view inside all 
this diversity: “inductive inference was defined as a 

process of generating descriptions that imply original 
facts in the context of background knowledge. Such a 
general definition includes inductive generalization and 
abduction as special cases”. The only subtle difference 
between abduction and induction originates mainly 
from the aim and utility. The following example shows 
all the difference we make in our C-tests. 

 Induction Problem: 1, 3, 5, 7, ? 
 Abduction Problem: 1, ?, 5, 7, 9 

Finally, case-based reasoning appeared to face the 
problem of everyday abductive explanation [Leake 
1992], [Shank et al. 1994]. The difference with the 
preceding methods is in the non-constructive character. 
Every explanation is matched (using schema) on a 
similar case on prior episodes from memory. Despite 
the limitation of pure case-based reasoning (in our 
view), one remarkable thing is the clarification of the 
issue when to explain. In [Leake 1995] words: the 
“explanation process is triggered when anomalies 
arise”. But “anomalies not only provide guidance about 
when to explain, but of what to explain as well”. 

7.2 The Representation Problem 
In AI, representation has been always the most debated 
topic. We will also make some considerations. It is 
known that (1) restricted representation limits 
expressiveness but usually favours tractability or 
adequacy for some kind of problems, (2) between two 
representations with the same expressive power, C(x) 
spirits away any reason to choose one over the other . 

In our opinion, representation is not only a question 
of easiness to people or tractability for certain problems. 
Some of the discussions on representation could clarify 
a great deal if we think in terms of plain evidence of 
exceptions and easiness of separability. It is not casual 
that these two ideas have led from structured 
programming to object-oriented programming. 

The other question about representation is which 
representation is more suitable for intelligence? 
Intuitively, for instance, high order logic seems more 
suitable than Turing machines because separability 
seems easier. While this would we a conjecture, one 
should use the bias more suitable for implementation. 

7.3 The Implementation Problem 
In reaction to traditional AI which used symbolic 
manipulation, exemplified by the list processing 
approaches in Expert Systems and the Logic 
Programming paradigm, a modern AI, known as soft 
computing, entered the scene to deal with uncertainty. 
Artificial Neural Networks (ANN) (or the broader term 
connectionism) are the most prominent technology in 



this tendency. Its intrinsic parallel character makes them 
very efficient and suitable for recognition tasks and 
similar problems. But, in our opinion, the pending 
matter for ANN is to address higher-level tasks. 

In Calvin’s words: “tying a necktie or hair ribbon 
required lots of conscious attention in the beginning, 
but once established (perhaps as a subcortical level) we 
can do it better if we don’t try to think about it. What is, 
initially, consciously mediated can become 
subconscious with practice” [Calvin 1996]. A lot of 
mixed systems have been essayed to cope the ‘higher’ 
side of the coin, reasoning. We see neuro-statistical, 
neuro-genetic, neuro-rule, neuro-fuzzy, neuro-chaos 
and the like. Also, recent algorithms for “symbolic 
representation of neural networks” [Gallant 1993], 
[Towell & Shavlik 1993] help to bridge them. 

One of the great misconceptions in this area is to 
think that fuzzy and numerical approaches are just 
sufficient to fluid categories (e.g., assimilate a pen with 
a keyboard or the meaning of “head” in different 
contexts). We do not mean that fuzziness should be 
banned. Conversely, many times it is useful in cognition 
too. We think that, at the higher levels, fuzziness must 
be voluntary, guided by interest. 

From all these examples and many psychological 
studies we are rather convinced that the way people 
think is rather different from how people recognise, 
control and even learn many routine problems. It is 
algorithmic plan construction, time-dependent 
mechanisms and symbolic reasoning which make the 
distinction between us and animal intelligence. 
Accordingly, recent work is centred on learning 
classical computational machines on neural networks 
[Giles et al. 1990], [Wiklicky 1994], [Zeng et al. 1994], 
[Giles et al. 1997]. Naturally, many classical problems 
in computational learning theory are reappearing here.  

7.4 Detecting Anomalies and Selection 
Event-related potential (ERP) has been used to study the 
selection of hypotheses in higher-level information 
processing. There have been also essays with semantic 
incongruity [Kutas & Van Petten 1988] and temporal 
sequence of language-processing events. In the latter, 
subjects were presented phrases like “The pizza was too 
hot to ... “ but completed with three kinds of ending: 
most expected sentence completions (e.g., “eat”), 
unrelated anomalous completions (e.g., “cry”) and 
related anomalous completions (e.g., “drink”). During 
the interval 200-600 ms, the result showed a flat 
waveform for the expected sentence completion, a 
pronounced negative waveform for unrelated 
anomalous completions and an irregular intermediate 
result for the related anomalous completion. This 

suggested that brain activity is higher and longer the 
greater the anomaly [Caryl & Harper 1996]. Since in 
this stage myriads of possible explanations are 
generated, selection must be done. Much recent work is 
precisely there, in evolutionary recurrent networks 
[Angeline et al. 1994] [Batali 1995]. But the selection 
rule is not clear. Usually a combination of interest, 
utility, and complexity is used, where MDL is the more 
popular candidate in the later case. We suggest SED 
instead or implementation-oriented approximations. 

In our opinion, the next step is a re-encounter 
between “soft-computing” and a new generation of 
“symbolic approaches”. They will have to collaborate to 
find similarities sometimes —frequently at the low 
level— in order to be able to find anomalies, exceptions 
and differences for making hypotheses —at a high 
level—. 

8 Evaluating Intelligent Systems 
We think that Turing Test had a lot of negative 
influences in AI research because, accordingly, the only 
way to measure progress in the field was comparing the 
skill of people in certain tasks with the skill of machines 
in the same tasks. This is partial and subjective. Our 
proposal is to use objective tests derived from our 
theory. At the current state of the art in artificial 
intelligence we cannot expect good results (vs. people 
scores) for these tests —if made with broader contexts 
than the toy machine we have used in appendix A—. 
The tests we propose to construct will provide a range 
of magnitudes large enough to remark this difference. 
Also this could be used someday to measure systems 
beyond the range of human intelligence —since IQ-tests 
would not have any reference in order to do this—. 

This detailed scale of measuring provides a means 
for evaluating the progresses in learning systems or 
other intelligent systems. It is well known that libraries 
or corpus of problems used to evaluate systems in an 
area tend to produce specialised systems which attain 
better scores on that kind of problems while being 
completely dull at others. This has been the case even in 
TPTP [Suttner & Sutcliffe 1996], a complete and varied 
fair corpus used to compare Automatic Reasoning 
systems or ATP devices. 

The idea of making feasible more objective 
measures for intelligent systems is not new. There are 
prediction contests based on chaotic strings [Ditto & 
Munakata 1995]. We hope that if our C-tests are 
confirmed flawless, a similar contest could be held in 
the future to compare artificial intelligent systems. 



9 Conclusions 
After all this work we pose the question of how much 
(if any) we have reduced the validity of Winograd’s 
view of the state of the art in 1990: “there is no reason 
but hubris to believe that we are any closer to 
understanding intelligence than the alchemists were to 
the secrets of nuclear physics”  [Winograd 1986]. 

We think we have effectively reflected the aim of 
the title. We are conscious that we leave moot points 
and many open questions to work on, but we have 
presented an intrinsic and human-independent formal 
definition of intelligence. It is compliant with the more 
common definitions of intelligence and it is also 
compliant with IQ tests. But this definition has to be 
conceived as a means for the discernment and 
measurement of a main ability that an intelligent 
cognitive system must have. 

Conversely, and more remarkable, this article may 
be seen as an information-based justification of why IQ 
—currently based mostly on induction and analogy— 
actually measures intelligence. With all, the correlation 
between IQ-tests and C-tests cannot be considered as a 
support to our theory. More experiments may bring 
confidence. Some day, this theory could be used to ease 
the construction of IQ-tests and to justify why people 
see some problems harder than others.  

From the more theoretical or philosophical point of 
view, Algorithmic Complexity C(x) has a great, 
ignored, problem for modelling finite things. It leaves 
the notion of exception to the bias, which is outside the 
theory. Intensional complexity distinguishes the purity 
of an intensional mathematical definition (by 
comprehension). More philosophically, it can give some 
light into the dark question of “what is meaning” which 
is also a central question in AI. 

Back on the classical view of computers, this 
definition, in some sense, proves that only the three 
basic operations required to construct any recursive 
function: composition, primitive recursion and 
minimisation [Boolos & Jeffrey 1989] are sufficient 
(finitely combined under the closure property) to 
implement intelligence. The question is how. 

In this sense, we think that some practical questions 
may also be helped by the perspective of intensional 
complexity. First, we have given a definition of 
analogy. Secondly, we can determine which 
representation can be more suitable (and discard 
formally first-order approaches) and then help to make 
more creative and inventive machines. 

Nonetheless, many informal ideas are not new (e.g. 
“explanatory coherence” [Thagard 1989], Wolff’s 
proposal [Wolff 1995], “concept learning by complexity 

regularisation” [Lugosi & Zeger 1996] and many 
others). Maybe we are not the first who criticise the 
MDL principle; we know it is a good operative 
principle for tasks like recognition, classification, 
statistical prediction and approximations but it is not a 
justification principle useful for high-level rationales. It 
does not distinguish noise from exceptions. 

In conclusion we think that the most reliable result 
of this work is to serve as a start point for a framework 
for measuring the intelligence of pretended artificial 
intelligent systems, a question that has not been 
addressed successfully to date in AI and cognitive 
science. As in any other field of science, a great 
advance of a discipline happens when some of the 
topics relevant to the theory can be effectively and 
justifiably measured, contrasted and compared. 

9.1 Epilogue 
When you do not have a direction, you follow 
somebody else’s way. In AI we have been copying the 
brain (psychologically or neurologically) with the 
implicit objective of resembling human behaviour. We 
are not able to evaluate the admittance that our proposal 
can have in many fields, but we are convinced that a 
unified and formal framework is possible. Maybe it is 
not strictly necessary for making intelligent systems —
we are sceptical but it could happen as an emergent 
property on some kind of evolutionary system— but we 
think it is the only way if we pretend to understand 
intelligence. We hope you agree that sooner or later we 
will have to walk alone. 

Appendix A. An Example of C-Test  
The problem of selecting a good bias for generating k-
hard strings depends on many factors. The objective is 
to maintain expressiveness, to ease the problem of 
finding explanatory descriptions and to limit the 
combinatorial explosion. The final choice we present is 
an oversimplified abstract machine that is easily 
extensible to work as a Turing machine.  

A.1 A Toy Memory-less Abstract Machine 
Due to the current technology of the computers we can 
use, we have chosen an extremely abridged emulation 
of the machine that will effectively run the programs, 
instead of more proper languages, like λ-calculus (or 
LISP). We have adapted the “toy RISC” machine of 
[Hernández & Hernández 1993] with two remarkable 
features inherited from its object-oriented coding in 
C++: it is easily tunable for our needs, and it is efficient. 
We have made it even more reduced, removing any 
operand in the instruction set, even for the loop 



operations. We have only three registers which are AX 
(the accumulator), BX and CX. The operations Θβ we 
have used for our experiment are in Table 1: 

 

LOOPTOP Decrements CX. If it is not equal to the 
first element jump to the program top. 

LOOPS Same as LOOPTOP but it jumps n (for the 
tests n=4) instructions backward. 

LOOPM Same as LOOPTOP but it jumps m (for the 
tests m=7) instructions backward. 

SUCC Increments the accumulator. 

PRED  Decrements the accumulator. 

WRITE Writes into the output and moves fwd. 

BREAD2 Moves back and reads from the output. 

FREAD2 Moves fwd and reads from the output. 

MOV A,B1 Copy register BX into AX 

MOV B,A1 Copy register AX into BX 

MOV A,C Copy register CX into AX 

MOV C,A Copy register AX into CX 

ROTR3 Rotates 45° to the right. 

ROTL3 Rotates 45° to the left. 

Table 1. Instruction Set 
The operations with no superscript are present in all the 
subsets. Operations marked with (1) are present in the 
‘professional’ version of the machine, the operations 
with (2) are present in the Turing-like version and those 
with (3) are present in the logo version where the output 
is bidimensional. This sparseness of only 10 operations 
will be clearly justified later. We have essayed with 
many different alphabets but for this test we will use the 
professional version and a circular alphabet Ωβ = 
{a,b,c,d,...,z}, that is, incrementing ‘z’ yields ‘a’ and 
decrementing ‘a’ yields ‘z’. Since the first element is an 
inflexion point for the loops, it is presented to the 
subjects as “a critical element”. 

This configuration still produces many programs 
that are not robust because programs can be often split 
into subprograms. The solution for these cases comes 
from another restriction: the programs must be 
comprised wholly inside a loop. This leaves a good 
approximation to explanatory programs. The rest to do 
is to avoid repetitions of patterns like “abcabcabcabc” 
and take apart the strings where an important part is 
explained by a shorter program. We think that the bias 
is not all the expressible we would like but it allows the 
generation of strings of certain complexity. Also we 
think it is fair because it does not relate on arithmetic 
(like cryptarithmetics tests) or any other preceding 
knowledge, except the order of the alphabet. 

A.2 The Generation of k-Hard Strings 
The algorithm we have used to generate a set of 
different k-incomprehensible strings is very similar to 
the one we presented in section 5.4. Having 10 
operations, we have that usually only about a 20% of 
the programs of any size are explanatory. This means 
that trying to know if a randomly generated program of, 
say, size 15, will need the checking of more than 
2,222,222,222,222 programs. And this is the case if the 
computational cost of x* is slow, contrariwise (if x* is a 
costly program) we will have to check longer programs. 

We have used some optimisations and heuristics in 
order to make the great amount of programs to check 
more tractable. Some examples of questions are: 

Prediction style: 
k9: a, d, g, j, …  Answer: ‘m’ 
k12 a, a, z, c, y, e, x, …  Answer: ‘g’ 
k14: c, a, b, d, b, c, c, e, c, d, … Answer: ‘d’ 

Abduction style: 
k8: a, _, a, z, a, y, a, …  Answer: ‘a’ 
k10: a, x, _, v, w, t, u, … Answer: ‘y’ 
k13: a, y, w, _, w, u, w, u, s, … Answer: ‘y’ 

A.3 The Tests  
Four tests were devised to measure prediction, 
abduction, g-factor and similarity. The prediction test is 
composed of 19 exercises generated with the following 
k-hardness distribution (2 k7, 1 k8, 2 k9, 3 k10, 3 k11, 3 
k12, 2 k13 and 1 k14), redundancy r = 2 and the less 
‘akin’ as possible. The abduction test is composed of 15 
exercises using the same generator and redundancy. The 
distribution was (2 k7, 2 k8, 1 k9, 2 k10, 1 k11, 3 k12 
and 4 k13). In these two tests, the incorrect options were 
generated randomly but relative near to the solution and 
the letters appearing in the string. The IQ test we used 
was the European IQ test simply because it is a culture-
fair test, devised for 20 minutes, ensuring a reasonable 
range (75-174) of values and available on the Internet. 
The similarity test is composed of 8 exercises generated 
with binary strings of different length and different 
levels of edit errors (insertion, deletion or change). The 
strings were generated and checked by dynamic 
programming to ensure that they did not have a better 
correction path. The purpose of this test was to measure 
the ability of compression by trivial pattern matching. 

A.4 Subjects and Administration 
Subjects were selected from two different groups: the 
first group was composed by 48 high-school students 
with ages comprised  between 14 and 18 years. The 
second group was composed by 17 subjects of a mixed 
sample of undergraduate and postgraduate university 
students with ages comprised between 22 and 32 years. 



Acknowledgements All the tests were passed in the same session. The 
times were, without including instructions, 10 min. for 
the prediction test, 5 min. for the abduction test, 5 min. 
of break, 20 min. for the IQ test and 3 min. for the 
similarity test. 

A.6 Results 
We evaluated the test without penalising the errors, i.e, 
the function hit evaluated the same for blanks that for 
mistakes. We chose e=0, i.e. all questions with the same 
value. IQ-correlations are illustrated in Table 2. 

 

 Pred. Abd. Induct.  Simil. 

High-School  0.31 0.38 0.42 0.39 
University  0.51 0.42 0.56 0.35 
Both Groups  0.73 0.68 0.77 0.50 

We are much obliged to Rafael Beneyto and the 
‘fluidity’ of his postgraduate sessions about intelligent 
systems and, in general, to all the Department of Logic 
and Philosophy of Science of the University of 
Valencia. We specially thank Enrique Hernández and 
Ismael García for their useful comments on the 
‘weighty’ report for this paper [Hernández-Orallo 
1997b] and for all their moral support. Finally, we agree 
the inestimable collaboration of Enrique Fueyo for 
administering the tests at the “I.B. Gil y Carrasco” at 
Ponferrada and all the students who made them. 

References 
[Abe 1997] Abe, N. “Towards Realistic Theories of Learning” New 

Generation Computing, 15, 1997 
[Angeline et al. 1994] Angeline, P.J.; Saunders, G.M.; Pollac, J.B.  

“An Evolutionary Algorithm That Constructs Recurrent Neural 
Networks”, IEEE Trans. Neur. Nets, Vol. 5, no. 1, pp 54-65, 1994. Table 2. Correlations with EIQ test 

[Baker & Anderson 1982] Baker, L.; Anderson, R. “Effects of 
inconsistent information on text processing: evidence for 
comprehension monitoring” Reading Research Qtly., 17, 281-294, 
1982. 

The correlation for induction (prediction + abduction) is 
of the same order as the usual correlation for induction 
tests made by psychologists. The correlation between 
the abduction and prediction tests was 0.61, less than 
expected, which suggests that even problems 
constructed by the same generator can be more or less 
difficult depending on its presentation (abductive or 
predictive). The correlation between induction and 
similarity was 0.51 which supports the thesis that “the 
ability of compression” is different from “the ability of 
comprehension”. Finally, we think that an analogy test 
based on our theory would surely round off the study. 

[Barker 1957] Barker, S.F. Induction and Hypothesis Ithaca, 1957 
[Barlow 1969] Barlow, H.B. “Trigger Features, Adaptation and 

Economy of Impulses” in K. N. Leibovic (ed.) Information 
Processing in the Nervous System, Springer, pp. 209-230, 1969. 

[Batali 1995] Batali, J. “Recurrent Neural Networks, Context-Free 
Grammars, and Evolution” Department of Cognitive Science, 
University of California at San Diego, March 1995. 

[Bertalanffy 1971] Bertalanffy, L.V. “Teoria generale dei sistemi”, 
Instituto Librario Internationales, Milano 1971. 

[Blum  1967] Blum, M. “A machine-independent theory of the 
complexity of recursive functions” J. ACM 14, 4, 322-6, 1967.  

[Blumer et al. 1987] Blumer, A.; Ehrenfeucht, A.; Haussler, D.; 
Warmuth, M. K. “Occam’s razor” Inf.Proc.Lett. 24, 377-380, 1987. With these data and our amateur methods we are not 

in conditions to assert more things about the relation 
between C-tests and IQ-tests. There is only a thing that 
has no discussion in the light of the results, the k-
hardness matches fairly well with the difficulty people 
found on them, as it is seen in Figure 1: 

[Blumer et al. 1989] Blumer, A.; Ehrenfeucht, A.; Haussler, D.; 
Warmuth, M. “Learnability and the Vapnik-Chervonenkis 
Dimension” Journal of ACM, 36, pp. 929-965, 1989. 

[Board & Pitt 1990] Board, R.; Pitt, L. “On the necessity of Occam 
algorithms” in Proc., 22nd ACM Symp. Theory of Comp., 1990. 

[Boolos & Jeffrey 1989] Boolos, G.; Jeffrey, R. “Computability and 
Logic” 3rd Edition, Cambridge University Press 1989. 

[Brand 1996] Brand, C. “The g Factor: General Intelligence and its 
implications” Wiley 1996 

0
0,2
0,4
0,6
0,8

1

K7 K8 K9 K10 K11 K12 K13 K14

Difficulty (K)

Hit 
Rate

Prediction

Both

Abduction

 

[Broad 1926] Broad, C.D. The Philosophy of Bacon, Cambrdge, 1926 
[Calvin 1996] Calvin, W.H. “The Cerebral Code. Thinking a Thought 

in the Mosaics of the Mind” The MIT Press 1996 
[Caryl & Harper 1996] Caryl, P.G.; Harper, A. “ERPs in Elementary 

Cognitive Tasks Reflect Task Difficulty and Task Threshold” 
Intelligence 22, 1-22, 1996. 

[Chaitin 1982] Chaitin, G.J. “Gödel’s Theorem and Information” Int. 
Jnal. of Theoretical Physics, vol.21, no.12, pp. 941-954, 1982. 

[Chaitin 1992] Chaitin, G.J. “Algorithmic Information Theory”, fourth 
printing, Cambridge University Press, 1992. 

[Chandrasekaran 1990] Chandrasekaran, B. “What kind of 
Information Processing is Intelligence?” in Partridge,D.; Wilks, Y., 
Foundations of AI: A Source Book Cambridge Univ. Press, 1990. 

[Church 1940] Church, A. “A formulation of the simple theory of 
types” Journal of Symbolic Logic, 5:56-68, 1940. Figure 1. Hit Rate per Difficulty 

[Dietrich 1990] Dietrich, E. “Programs in the Search for Intelligent 
Machines: The Mistaken Foundations of AI” in Partridge & Yorick, 
Foundations of AI: A Source Book, Cambridge Univ. Press, 1990. 



[Ditto & Munakata 1995] Ditto, W.; Munakata, T. “Principles and 
Applications of Chaotic Systems” Comm. ACM, v.38, n. 11, 1995. 

[Eysenck 1979] Eysenck, H.J. “The Structure and Measurement of 
Intelligence”, Springer-Verlag 1979. 

[Flach 1995] Flach, P. “Abduction and Induction: Syllogistic and 
Inferential Perspectives” INFOLAB, Tilburg University 1995. 

[Flood 1987] Flood, R.L. “Complexity: a definition by constructing a 
conceptual framework” System Rsrch, v 4, n.3., pp. 177-185, 1987. 

[Freivalds 1990] Freivalds, R. “Inductive inference of minimal size 
programs”, in M. Fulk and J. Case (eds) “Proceedings of the third 
Annual Workshop on Computational Learning Theory”, pp. 1-20, 
Morgran Kaufman, San Mateo, CA, 1990. 

[Freivalds et al. 1995] Freivalds, R.; Kinber, E.; Smith, C.H. “On the 
Intrinsic Complexity of Learning” Inf. & Control 123, 64-71, 1995. 

[Gallant 1993] Stephen I.G. “Neural Network Learning and Expert 
Systems” MIT 1993 

[Giles et al. 1990] Gile, C.L.; Sun, G.Z. and Chen, H.H.; Lee, Y.C.; D. 
Chen, D. “Higher Order Recurrent Networks & Grammatical 
Inference” in D.S.Touretzky “Advances in Neural Information 
Processing Systems, pp. 380-387, Morgan Kaufmann Pubs 1990. 

[Giles et al. 1997] Giles, C.L.; Lin, T.; Horne, B.G. “Remembering the 
Past: The Role of Embedded Memory in Recurrent Neural Network 
Architectures” in “Neural Networks for Signal Processing VII”, 
Proc.1997 IEEE Workshop, IEEE Press 1997. 

[Giles et al. 1994] Giles, C.L.; Kuhn, G.M.; Williams, R.J. “Dynamic 
Recurrent Neural Networks: Theory and Applications” IEEE 
Transactions on Neural Networks, Vol. 5, no. 2, 1994. 

[Gold 1967] Gold, E. M. “Language Identification in the Limit”, 
Inform and Control, 10, pp. 447-474, 1967. 

[Hamilton 1859] Hamilton, Sir W. “Lectures on metaphysics and 
logic”, vol. 1. Blackwood, Edinburgh 1859. 

[Herken 1994] Herken, R. “The universal Turing machine: a half-
century survey” Oxford University Press, 1994. 

[Hernández-Orallo 1997a] Hernandez-Orallo, J. “Intensional 
Complexity. An Exception-Free Variant of Algorithmic 
Complexity” . 

[Hernández-Orallo 1997b] Hernandez-Orallo, J. “A Formal Definition 
of Intelligence. A Thoroughful Discussion”. 

[Hernández & Hernández 1993] Hernández-Orallo, E.; Hernández-
Orallo, J. “Programación en C++” Paraninfo 1993. 

[Hintikka 1970] Hintikka, J.; Suppes, P. “Surface Information and 
Depth Information” in Hintikka, Jaakko; Suppes, Patrick 
“Information and Inference”, D. Reidel Publishing Company 1970. 

[Hofstadter 1979] Hofstadter, D.R. “Gödel, Escher, Bach: An eternal 
golden braid” New York: Basic Books, 1979. 

[Hofstadter 1985] Hoftadter, D.R. “Metamagical Themas. Questing 
for the Essence of Mind and Pattern” Basic Books, Inc., 1985. 

[Hofstadter et al. 1995] Hofstadter, D.R.; Fluid Analogies Research 
Group “Fluid Concepts and Creative Analogies: Computer Models 
of the Fundamental Mechanisms of Thought” Basic Books, 1995. 

[Holland et al. 1986] Holland, J.H.; Holyoak, K.J.; Nisbett, R.E.; 
Thagard, P.R. “INDUCTION, Processes of Inference, Learning and 
Discovery” The MIT Press 1986. 

[Hopcroft & Ullman 1979] Hopcroft, J.E. and Ullman, J.D. 
“Introduction to Automata Theory, Languages, and Computation” 
Addison-Wesley Publishing Company, Inc. 1979. 

[Josephson & Josephson 1994] Josephson, J.R.; Josephson, S.G. 
“Abductive Inference. Computation, Philosophy, Technology” 
Cambridge University Press, New York 1994. 

[Kass 1986] Kass, A. “Modifying explanations to understand stories” 
in Proceedings of the Eighth Annual Conference of the Cognitive 
Science Society, pp. 691-696, Cognitive Science Society 1986. 

[Kearns 1989] Kearns, Michael J. “The Computational Complexity of 
Machine Learning” An ACM Dist. Dissert. The MIT Press 1989. 

[Kieffer & Yang 1996] Kieffer, J.C.; Yang, E. “Sequential Codes, 
Lossless Compression of Individual Sequences, and Kolmogorov 
Complexity” IEEE Trans. on Inf. Theory, vol. 42, no. 1, Jan. 1996. 

[Kling 1971] Kling, R.E. “A paradigm for reasoning by analogy” 
Artificial Intelligence, 2:147-178, 1971. 

[Klir 1985] Klir, George J. “Complexity, Some General Observations” 
Systems Research, no. 2, pp. 131-140, 1985. 

[Kolmogorov 1965] Kolmogorov, A.N. “Three Approaches to the 
Quantitative Definition of Information” Problems Inform. 
Transmission, 1(1):1-7, 1965. 

[Kotovsky and Simon 1990] Kotovsky, K.; Simon, H.A. “Why are 
some problems really hard: explorations in the problem space of 
difficulty”. Cognitive Psychology, 22, 143-183 1990. 

[Kuhn 1970] Kuhn, T.S. “The Structure of Scientific Revolution”, 
University of Chigago 1970. 

[Kutas & Petten 1988] Kutas, M.; Van Petten, C. “Event-related brain 
potential studies of language” in P.Ackles, J.R.Jennings, M. Cles 
Advances in Psychophysiology, Greenwich, JAI Press. 1988. 

[Lakatos 1976] Lakatos, I. “Proofs and Refutations. The Logic of 
Mathematical Discovery” Cambridge University Press, 1976. 

[Lavrac & Dzeroski 1994] Lavrac, N.; Dzeroski, S. “Inductive Logic 
Programming: Techniques and Applications” Ellis Horwood, 1994. 

[Leake 1992] Leake, D.B.”Evaluating Explanation: A Content 
Theory” Lawrence Erlbaum Associates, Hillsdale, NJ, 1992. 

[Leake 1995] Leake, D.B “Abduction, Experience, and Goals: A 
Model of Everyday Abductive Explanation” The Journal of 
Experimental and Theoretical Artificial Intelligence 1995. 

[Levin 1973] Levin, L.A. “Universal search problems” Problems 
Inform. Transmission, 9:265-266, 1973. 

[Lloyd 1995] Lloyd, J.W. “Declarative programming in Escher” TR 
CSTR-95-013, Dep. of Comp. Science, Univ. of Bristol, 1995. 

[Li & Vitányi 1997] Li, M.; Vitányi, P. “An Introduction to 
Kolmogorov Complexity and its Applications” 2nd Ed. Springer-
Verlag 1997. 

[Lugosi & Zeger 1996] Lugossi; Zeger “Concept Learning Using 
Complexity Regularization” IEEE T.Inf.Theory,v.42,n.1,Jan 1996. 

[Lucas 1962] Lucas, J.R. “Minds, Machines, and Gödel” Reprinted in 
Anderson, A. (ed) “Minds and Machines”, Prentice Hall, 1962. 

[McKoon & Ratcliff 1992] McKoon, G.; Ratcliff, R. “Inference 
during reading” Psychological Review, 99 (3), 440-466. 

[Michalski 1987] Michalski, R.S. “Concept Learning” in S.C. Shapiro 
(ed). “Encyclopedia of A.I.” 185-194, John Wiley, 1987. 

[Mill 1843] Mill, J.S.”System of logic ratiocinative and inductive” 
1843. 

[Miller 1956] Miller, G. “The magic number seven, plus or minus two: 
Some limits on our capacity for processing information” Psychol. 
Rev. 63. 81-97, 1956. 

[Muggleton 1991] Muggleton, S. “Inductive Logic Programming” New 
Generation Computing, 8, 4, pp. 295-318, 1991. 

[Newell 1990] Newell, A. Unified Theories of Cognition, Cambridge, 
Mass.: Harvard University Press, 1990. 

[Peirce 1867/1960] Peirce, C.S. “Collected papers of Charles Sanders 
Peirce” Cambridge. Harvard University Press 1960. 

[Plotkin 1970] Plotkin G. “A note on inductive generalization” 
Machine Intelligence, Vol. 6, Edinburgh Univ. Press, 1970. 

[Popper 1968] Popper, K.R. “Conjectures and Refutations: The Growth of 
Scientific Knowledge”, Harper Torch Books, New York, 1968. 

[Rissanen 1978] Rissanen, J. “Modelling by the shortest data 
description” Automatica-J.IFAC, 14:465-471, 1978. 

[Rivest & Sloan 1994] Rivest, R.L.; Sloan, R. “A Formal Model of 
Hierarchical Concept Learning” Inf. and Comp. 114, 88-114, 1994. 

[Rozenber & Salomaa 1994] Rozenberg, G.; Salomaa, A. “Cornerstones 
of Undecidability” Prentice Hall 1994. 

[Sagan 1973] Sagan, C. (ed). “Communication with Extraterrestrial 
Intelligence” Cambridge, Mass.: MIT Press, 1973. 

[Sanford 1990] Sanford A. “On the nature of text-driven inference” in 
Balota D., d’Arcais, G.F. & Rayner, K. (Eds.) Comprehension 
processes in reading, chap. 24. Lawrence Erlbaum, 1990. 

[Schank et al. 1994] Schank, R.; Riesbeck, C.; Kass, A. (Eds.) “Inside 
Case-Based Explanation” Lawrence Erlbaum Assoc., 1994. 



[Shannon and Weaver 1949] Shannon, C.E. and Weaver, W., “The 
Mathematical Theory of Communication”, Univ. Illin. Press, 1949. 

[Shapiro 1981] Shapiro, E. “Inductive Inference of Theories from 
Facts” RR 192, D. Comp. Science, Yale Univ., 1981, in Lassez, J.; 
Plotking, G. (eds.) “Computational Logic” The MIT Press 1991. 

[Shavlik 1994] Shavlik, J.W. “Combining Symbolic and Neural 
Learning” Machine Learning, Vol. 14, no. 3, pp. 321-331, 1994. 

[Simon & Kotovsky 1963] Simon, H.; Kotovsky, K. “Human 
acquisition of concepts for sequential patterns” Psych. Review 70, 
534-46, 1963. 

[Smullyan 1992] Smullyan, R.M. “Gödel’s Incompleteness Theorems” 
Oxford University Press 1992. 

[Solomonoff 1964] Solomonoff, R.J. “A formal theory of inductive 
inference” Inf. Control.. vol. 7, 1-22, Mar., 224-254, June 1964. 

[Solomonoff 1986] Solomonoff, R.J. “The Application of Algorithmic 
Probability to Problems in AI” in L.N. Karnal; J.F. Lemmer(eds) 
Uncertainty in AI, Elsevier Science, pp.473-91, 1986. 

[Spearman 1904] Spearman, C. “‘General Intelligence’ objectively 
determined and measured” Amer. J. of Psych-, 15, 201-293, 1904. 

[Srinivasan & Camacho 1997] Srinivasan, A.; Camacho, R.C. 
“Experiments in numerical reasoning with ILP” J. of LP, 1997. 

[Stahl 1995] Stahl, I. “The appropiateness of predicate invention as 
bias shift operation in ILP” Machine Learning, 20:95-117, 1995.    

[Sternberg 1977] Sternberg, R.J. “Intelligence, Information 
Processing, and Analogical Reasoning” John Wiley & Sons 1977 

[Suttner & Sutcliffe 1996] Suttner, C.B.; Sutchliffe, G. “The TPTP 
Problem Library”, Tech. Univ. Munich, Germany, 1996 

[Thagard 1978] Thagard, P. “The best explanation: Criteria for theory 
choice” Journal of Philosophy, 75, 76-92, 1978. 

[Thagard 1989] Thagard, P. “Explanatory coherence” The 
Behavioural and Brain Sciences, 12 (3), 435-502, 1989. 

[Towell & Shavlik 1993] Towell, G.G.; Shavlik, J.W. “Extracting 
Refined Rules from Knowledge-Based Neural Networks” Machine 
Learning, Vol. 13, no. 1, pp. 71-101, Oct. 1993. 

[Turing 1950] Turing, A.M. “Computing Machinery and Intelligence” 
Mind 59: 433-460, 1950. 

[Valiant 1984] Valiant, L. “A theory of the learnable”. 
Communication of the ACM 27(11), 1134-1142, 1984. 

[Wallace and Boulton 1968] Wallace, C.S.; Boulton, D.M. “An 
Information Measure for Classification” Computer J. 11, 2, 1968. 

[Watanabe 1972] Watanabe, S. “Pattern Recognition as Information 
Compression” in Watanabe (ed.) Frontiers of Pattern Recognition 
New York: Academic Press, 1972. 

[Watanabe 1992] Watanabe, O. (ed.) “Kolmogorov complexity and 
computational complexity” Monographs on TCS, Springer 1992. 

[Weyhrauch 1980] Weyhrauch, R.W. “Prolegomena to a theory of 
formal reasoning” Artificial Intelligence 13, 133-170, 1980. 

[Watrous & Kuhn 1992] Watrous, R.L.; Kuhn, G.M. “Induction of 
Finite-State Languages Using Second-Order Recurrent Networks” 
Neural Computation 4, 469-490. 

[Whewell 1847] Whewell W. “The Philosophy of the Inductive 
Science” New York: Johnson Reprint Corp. 1847, 

[Wiklicky 1994] Wiklicky, H. “On the Non-Existence of a Universal 
Learning Algorithm for Recurrent Neural Networks” in Advances in 
Neural Inf. Proc.Systems 6, Morgan Kaufmann, pp. 431-6, 1994. 

[Winograd 1986] Winograd, T. “Thinking Machines: Can There Be? 
Are We?” in Winograd & Fernando Flores “Understanding 
Computers and Cognition: A New Foundation for Design” 
Norwood, 1986. 

[Winston 1992] Winston, P.H. “Artificial Intelligence” Third edition, 
Addison-Wesley Pusblishing Company 1992 

[Wolff 1995]  Wolff, J.G. “Computing as Compression: An Overview 
of the SP Theory and System” New Gen. Computing 13, 187-214, 
1995. 

[Zeng et al. 1994] Zeng, Z.;  Goodman, R.M.; Smyth, P. “Discrete 
Recurrent Neural Networks for Grammatical Inference”, IEEE 
Transactions on Neural Networks, Vol. 5, no. 2, 320-330, 1994. 


	0Apologies
	1Introduction
	2Previous Theories of Intelligence
	3Compression and Intelligence
	3.1Notation
	3.2Algorithmic Complexity
	3.3Universal Compressors
	3.4Intelligence as Compression
	3.5Induction, Learning and MDL
	3.6Machine Learning and Prediction

	4Intensional Complexity
	4.1Natural Partitions
	4.2Exception-free Descriptions
	4.3Intensional Complexity
	4.4Explanatory Complexity
	4.5Induction, Complexity and Intrinsic Explanations
	4.6Discontinuity and Stability

	5A Formal Definition of Intelligence
	5.1Assumptions
	5.2The Definition Is —Of Course— a Test
	5.3E(x) vs. C(x)
	5.4The Generator
	5.5IQ-tests and C-tests

	6.A Formal Definition of Analogy
	6.1 Analogy and Fluid Minds
	6.2 A Formal View of Analogy

	7Intelligent Cognitive Agents
	7.1Some Models of Explanatory Reasoning
	7.2The Representation Problem
	7.3The Implementation Problem
	7.4Detecting Anomalies and Selection

	8Evaluating Intelligent Systems
	9Conclusions
	9.1 Epilogue

	Appendix A. An Example of C-Test
	A.1A Toy Memory-less Abstract Machine
	A.2The Generation of k-Hard Strings
	A.3The Tests
	A.4Subjects and Administration
	A.6Results

	Acknowledgements
	References

