
Learning Mixtures of Localized Rules by Maximizing the
Area Under the ROC Curve

Tobias Sing1 and Niko Beerenwinkel2 and Thomas Lengauer3

Abstract. We introduce a model class for statistical learning which
is based on mixtures of propositional rules. In our mixture model, the
weight of a rule is not uniform over the entire instance space. Rather,
it depends on the instance at hand. This is motivated by applications
in molecular biology, where it is frequently observed that the effect
of a particular mutational pattern depends on the genetic background
in which it occurs. We assume in our model that the effect of a given
pattern of mutations will be very similar only among sequences that
are also highly similar to each other. On the other hand, a pattern
might have very different effects in different genetic backgrounds.

Model inference consists of repeated iteration through a sequence
of three steps: First, a new rule is mined from a resampled data set
using the apriori algorithm. Next, the localization information for
the rule is computed. Finally, the weights of all rules in the mixture
model are re-optimized simultaneously. This weight optimization is
done using the area under the ROC curve rather than the error rate
as the objective function. Correspondingly, the weight of a sample in
the resampling procedure is based on the rank of the sample relative
to the other samples rather than directly on the score itself (such as
in boosting). This strategy can be seen as an adaptation of boosting
to the case of AUC optimization. Finally, we apply our method to the
problem of predicting HIV-1 coreceptor usage from the amino acid
sequence of the viral surface protein.

1 MOTIVATION

Classifiers based on sets of rules have received a lot of attention in
the machine learning and data mining communities. This is certainly
in large part due to the easy interpretability of the learned classifier, a
feature that makes them especially attractive when the intended users
are non-experts who want to understandwhya particular prediction
has been made. Our field of application is molecular biology, and
consequently, we will formulate our approach for an instance space
of proteins or nucleic acids. However, our method could also be used
as a general attribute-value learner.

An important issue in rule-based classification is the question of
how to use the learned rules to make a prediction. In [6], several
strategies towards this so-calledresolution problemare discussed.
One of the strategies that are mentioned islowest false positive rate
(LFPR). In LFPR, among all rules whose preconditions are fulfilled,

1 (a) Max Planck Institute for Informatics, Saarbrücken, Germany, email:
tsing@mpi-sb.mpg.de
(b) Machine Learning and Natural Language Processing Group, University
of Freiburg, Germany

2 Max Planck Institute for Informatics, Saarbrücken, Germany, email:
niko@mpi-sb.mpg.de

3 Max Planck Institute for Informatics, Saarbrücken, Germany, email:
lengauer@mpi-sb.mpg.de

a prediction is made only based on the rule with the lowest false
positive rate. Of course, other quality criteria could be used instead
of the false positive rate. In this more general interpretation, LFPR
relies on a scoring scheme which can be used to rank individual rules.
The prediction for a new instance is then performed using only the
highest-scoring rule whose preconditions are fulfilled. While it seems
very reasonable to assume that some rules are more important than
others, there are a number of pitfalls that arise when the prediction is
based only on a single rule and all other rules whose preconditions
are fulfilled are ignored: Firstly, it is not clear why the rule with the
highest score should be more relevant for the particular instance at
hand than a rule with lower score. Secondly, more than one rule could
be relevant for a given instance.

These objections motivate taking into account all rules whose pre-
conditions are fulfilled in order to make a prediction. The most sim-
ple and most popular strategy for combining the predictions of sev-
eral rules into a single prediction ismajority voting (called equal
voting (VOTE)in [6]). Here, for each class, the number of rules that
predict this class are counted. The ensemble prediction is then the
class with the largest number of advocates. While being more robust
than the LFPR strategy, the idea that not all rules are equally im-
portant is abandoned here: The rather strong assumption implicitly
underlying majority voting is that all rules are of the same quality.
With majority voting, one ignores that in many biological applica-
tions some mutational patterns have stronger impact than others.

The advantages of the two strategies described above can be com-
bined by taking a vote among all rules, with an individual weight
attached to each rule. Indeed, as reported in [6], this approach, called
weighted voting (WVOTE), performed best among the five strategies
that had been compared. This also seems to be the appropriate model
for many tasks from a biological point of view, as underlined by the
following two examples relating to the Human Immunodeficiency
Virus (HIV): Firstly, it has been observed that if two particular mu-
tations (each of which would be described by a rule here) associated
with HIV drug resistance co-occur in an HIV particle, the virus with
both mutations is more resistant than viruses with only one muta-
tion. Secondly, in a recent investigation of HIV coreceptor usage, it
has been observed that “although certain mutations may have dis-
proportionate influence on coreceptor usage, such mutations are not
necessary for coreceptor switching, provided V3 has accumulated
enough other mutations with smaller effect.” [11]. In summary, there
is much evidence that all mutational patterns (each described by a
rule) that occur in a sequence should be taken into account, each of
them with an individual weight, modelling the strength of the effect
of the particular pattern.

As to the resolution problem, our hypothesis space is a weighted
voting model. However, the model goes beyond weighted voting by

challenging an assumption that to our knowledge has not been ques-
tioned before: Should the weight of a rule be modelled as uniform
over the entire instance space?

In our point of view it is surprising that to date the answer to this
question seems to be a universal “yes”. Indeed, the assumption of
constant rule weights is in sharp contrast to phenomena observed in
molecular biology. For instance, it has been reported that the strength
of the effect of certain resistance-associated mutations depends on
the particular HIV subtype in which they occur [10], [4]. Likewise,
in the context of HIV coreceptor usage, it has been observed that
“no single set of mutations appears to lead to coreceptor switching
in every genetic background” [11]. In summary, there is a body of
evidence supporting the notion that the effect of a given pattern of
mutations depends on thegenetic backgroundin which it occurs.

Thus, we argue that in deciding how to use a set of rules for a
prediction, addressing the resolution problem (namely the question
of how to combine the predictions of the individual rules) is only one
side of the coin. In many practical classification problems, it will also
be beneficial to deal with what we call therelevance problem, which
is the problem of determining how relevant a given rule is for the
instance at hand.

The rest of this paper is organized as follows. In the next sec-
tion, we will describe the model class that results from combining
the weighted voting strategy towards the resolution problem with a
simple approach towards the relevance problem. In section 3, we de-
scribe a learning algorithm for these models. It is based on iteratively
adding a rule to the partial model, determining its relevance surface,
and finally re-optimizing all weights simultaneously with respect to
the area under the ROC curve. We have applied our method on the
task of predicting HIV-1 coreceptor usage from the viral sequence,
and in section 4 we show results of a ROC evaluation of all methods
that have been used so far for this task, including our own approach.

2 MIXTURES OF LOCALIZED RULES

2.1 Mixtures of rules

We consider the binary classification problem: An instance, given
by theX -valued random variableX, and its class, given by the
{1,−1}-valued random variableY , are drawn according to an un-
known probability measureP(X,Y). The task is to make a correct
prediction for an instancex ∈ X , based on training dataD =
((x1, y1), . . . , (xm, ym)). As mentioned before, we have in mind an-
notated amino acid sequences as an application task. In many cases,
these sequences will be of different length, because insertions or
deletions can be quite common. Sequences of different length are
brought to the same length by inserting copies of a gap symbol “−”
into them using specialalignmentalgorithms, such as the one de-
scribed in [15]. Thus, for our discussion,X is the set of all aligned
amino acid sequences (including gaps) of lengthL. For example,

x1 = CTRPGNNTRKSIRIGPGQAFYTN-HIIGDIRQAYC

x2 = CIRPNNNTRKGIYIGPGRAVYTTGNIIGDIRQAHC

are elements ofX (L = 35). Individual elements of an instance are
accessed via superscripted indexes. For example,x

(1)
1 = C, x

(2)
1 =

T, and so on.
We restrict ourselves to the most elementary language for rules

here (although extensions, for example towards first order logic, are

certainly desirable). We only allow rulesr of the formr ≡ (j1 :
a1 ∧ . . . jm : am ⇒ y), with 1 ≤ j1 < . . . < jm ≤ L, and
y ∈ {1,−1}. Here, eachai is either an amino acid or a gap symbol.
A rule r induces a function in the obvious way: if for an instance
x, all preconditions are fulfilled, i.e.x(j1) = a1, . . ., x(jm) = am,
the classy given by its right-hand side is predicted, and otherwise
0. Since rules and the induced functions correspond to each other
uniquely, by abuse of notation, we use the same letterr both for the
rule and for the induced function.

With these preparations, and given rulesr1, . . . , rK and corre-
sponding weightsw1, . . . , wK ∈ [0, 1] such that

∑K
i=1 wi = 1,

the weighted voting strategy can be written as aK-mixture model of
rules:

h(r1,w1),...,(rK ,wK) : X → [−1, 1],

x 7→
K∑

i=1

wiri(x).
(1)

We omit the subscript if it is not relevant for the discussion. Here,
K is a fixed integer, treated as a model parameter. Model selection
can be performed by standard techniques such as cross-validation, or
the Bayesian or Akaike information criterion [9].

The functionh is a scoring classifier. It induces a family of binary
classifiers{hγ}γ∈[−1,1], based on the choice of different cutoffsγ:

hγ(x) =

{
1, h(x) ≥ γ

−1, otherwise.

2.2 Localized rules

As motivated in the introduction, our model should allow for rule
weights which vary over the instance space. We focus on a ruleri

in the mixture model (1). The corresponding weightwi ∈ [0, 1] is
now interpreted as the maximal weightri can attain over the instance
space. This weight is modulated by a functionρi : X → [0, 1],
the so-calledrelevance functionof the rule. As the name suggests,
it estimates the relevance of the ruleri for the given sample. With
this modification, the contribution of a rule to the mixture model is
wiρi(x)ri(x). The remainder of this section will be devoted to defin-
ing a model for the relevance function that can be estimated from
data.

Ideally, the relevance function of a ruler would be defined as

ρideal(x) := P (r(X) = Y |X = x),

the probability that the rule’s prediction will be correct, given that
samplex has been drawn with unknown class. However, it is not fea-
sible to estimate this probability from training data. We now describe
a simple and practical model for the relevance function of a rule.

A rule r partitions the training dataD into three sets: The first set
consists of those samples for which the rule’s preconditions are not
fulfilled and is of no further interest for the relevance function. The
setDcorr(r) contains those samples for which the preconditions ofr
are fulfilled and the prediction is correct. Finally, the setDincorr(r)
consists of samples that fulfill the preconditions, but are incorrectly
predicted. In light of our fundamental assumption that the relevance
of a rule depends on the genetic background in which it occurs, the
samples inDcorr(r) are examples of genetic backgrounds where the
rule seems to be relevant, whereasDincorr(r) contains examples of
regions of the instance space where the rule is irrelevant.

For good rules,Dcorr(r) typically should be much larger than
Dincorr(r). Because of this, we decided to split up the model for the

relevance function into two parts: the first part is a distribution-free
model that only relies on the data inDcorr(r). The second part of the
model adjusts this first part by also taking into accountDincorr(r).

2.2.1 First part: the similarity function

We assume that the effect of a particular pattern of mutations (as
described by a rule) will be similar if it occurs within genetic back-
grounds that are similar to each other. For a new instance to be classi-
fied this means that if it has high sequence similarity to the correctly
predicted samples, the rule should be considered to be very relevant,
whereas if the sequence similarity is low, so should be the relevance.

There are several ways to measure the similarity of a sequencex
to a family of sequences, but they all amount to computing the prob-
ability of seeingx under a probabilistic sequence model induced by
the family. Here, the family is the setDcorr(r), which consists of re-
alizations of the random pair(X, Y) for which r(X) = Y . In sum-
mary, the similarityλ(x) of a sequencex to the family of correctly
predicted sequences is the probability of drawing the sequence when
randomly drawing a correctly predicted instance. In fact, we use the
logarithm of this probability:

λ(x) := log P (X = x|r(X) = Y)

Our approach to estimating this probability based on the setDcorr(r)
is described in section 3.

2.2.2 Second part: the relevance adjustment

If the model is to take into account the setDincorr(r) as well, i.e. ex-
amples of genetic backgrounds where the rule does not work, this has
to be done using strong parametric assumptions, due to the limited
size of this set (as compared toDcorr(r)) in good rules. If the similar-
ity function is estimated well, and if our assumption that the effect of
a given mutation is similar in similar genetic backgrounds is valid,
one might expect that the similarity functionλ will assign a higher
score to samples where the rule is relevant than for those where it is
not.

In this second part of the relevance model, the task is to deter-
mine how optimistically or how pessimistically the similarity func-
tion should be translated into a relevance estimate, on the basis of
bothDcorr(r) andDincorr(r). Such a translation has to be a mapping
from (−∞, 0] to [0, 1]. A class of functions that allows for a simple
adjustment of this mapping are the sigmoid functions known from
artifical neural networks:

σα,τ (z) =
1

1 + e−α(z−τ)
,

wherez ∈ (−∞, 0]. This class is parametrized by two variables,α
andτ : The parameterτ shifts the graph ofσ horizontally, whileα
adjusts its slope.

Figure 1 shows how a sigmoid function is used to squeeze the sim-
ilarity function into the interval[0, 1]. The circles denote the training
samples. On thex-axis, the value of the similarity function,λ(x),
is plotted. On they-axis, the value is1 for samples fromDcorr(r),
and0 for samples fromDincorr(r). The idea in selecting appropriate
values forα andτ is that if the correctly predicted and incorrectly
predicted samples are substantially separated byλ, the transforma-
tion into a relevance function should be more optimistic than if there
is not much space in between. The optimality criterion chosen by us
is to minimize the sum of squared distances in the graph, regularized
by a term that penalizes large values ofα, i.e. very steep sigmoid

Figure 1. Sigmoid adjustment of the similarity function.

functions (the rationale for regularizing here is to prevent overfit-
ting). LetA = Dcorr(r) ∪ Dincorr(r), then the optimal parameters are
defined as

(α∗, τ∗) := arg min
α,τ

κ
1

|A|
∑
i∈A

(σα,τ (λ(xi))− 1r(xi)=yi
)2 + (1− κ)α2. (2)

2.3 Mixtures of localized rules

In summary, the space of mixtures of localized rules consists of func-
tions of the form

h : X → [−1, 1]

x 7→
K∑

i=1

wi
1

1 + e−αi(λi(xi)−τi)
ri(x).

(3)

with rules r1, . . . , rK , their corresponding similarity functions
λ1, . . . , λK , adjustment parameters(α1, τ1), . . . , (αK , τK) for the
sigmoid functions, and rule weightsw1, . . . , wK . In the next section
we describe our approach to learning these parameters.

3 LEARNING ALGORITHM

Figure 2 shows a high-level description of the learning algorithm. It
consists of K iterations of the following three steps: first (section 3.1),
a new rule is mined from a resampled dataset. Next (section 3.2), the
relevance surface for the rule is computed. Finally (section 3.3), the
rule is added to the mixture model by re-optimizing all rule weights
simultaneously, with the area under the ROC curve as the objective
function.

3.1 Step 1: Mining a new rule

Step 1 consists of five substeps:

1. Resampling the data set.
2. Mining potentially interesting rules using the apriori algorithm.
3. Scoring the rules.
4. Generalizing the rules.
5. Selecting the highest-scoring rule that is compatible with the al-

ready selected rules.

ALGORITHM learn LRM (HIGH-LEVEL DESCRIPTION)
INPUT:

• Training data{(x1, y1), . . . , (xn, yn)} ∈ (X ,Y)n

• Number of rules in the model,K ∈ N.

OUTPUT:

• A mixture model of localized rules

h(x) =

K∑
i=1

wi
1

1 + e−αi(λi(xi)−τi)
ri(x).

PROCEDURE:

Fork = 1, . . . , K:

1. Mine a new rule (section 3.1):Mine a new rulerk from a resam-
pled dataset (drawing the learner’s attention to the most problem-
atic instances) using the apriori algorithm.

2. Localization (section 3.2):Determine the similarity functionλk

and the adjustment parametersαk andτk for the rulerk.
3. Weight optimization (section 3.3):Find an optimal combination

of weightsw1, . . . , wk for all rulesr1, . . . , rk selected so far, i. e.
solve the following optimization problem:

maximize
w1,...,wk∈[0,1],

∑
wi=1

AUC(h(r1,w1,λ1,α1,τ1),...,(rk,wk,λk,αk,τk)).

Figure 2. Learning algorithm (high-level description).

3.1.1 Resampling the data set.

Resampling from a data set is done by first defining a probability
measure on the data and then drawing with replacement a data set
of the same size as the original set, according to the given distribu-
tion. The distribution used in our method to determine the weight
of a sample in resampling is the fraction of training samples from
the other class than the sample that score higher (if it is a positive
sample) respectively lower (if the sample is negative). If we denote
the positive samples byD+ and the negative samples byD−, this
quantity is given by

p̃i :=


∑

j∈D−
1h(xj)≥h(xi)

|D−|
, y = 1∑

j∈D+
1h(xj)≤h(xi)

|D+| , y = −1.

In order to get a probability measure, thẽpi are normalized in the
usual way:

pi :=
p̃i∑

j∈D p̃j

3.1.2 Mining rules with the apriori algorithm.

Figure 3 shows how the apriori algorithm [1] is used to find poten-
tially interesting rules. First, the resampled data set, which we denote
byD′, is divided intoD′

pos, the positive samples, andD′
neg, the nega-

tive samples. On each of these sets we apply apriori to mine frequent

Figure 3. Mining rules with the apriori algorithm.

item sets4, with as low a support bound as computationally feasible.
The two families of item sets are then merged as shown in the fig-
ure, resulting in a list of item sets for which the support both on the
positive as well as on the negative samples is known.

The item sets are then turned into rules in the obvious way: if the
support on the positive samples is higher than on the negative sam-
ples, class1 is added as a consequent, otherwise class−1 is added.

3.1.3 Scoring the rules.

To identify interesting rules, a scoring scheme for rules is needed.
Intuitively, a good rule is one for whichD′

corr(r) is large, while
D′

incorr(r) is small. Consequently, the most obvious idea would be
to take the fraction

|D′
corr(r)|

|D′
incorr(r)|

between the correctly and the incorrectly predicted samples as the
score for a ruler.

However, the scoring scheme should also take into account the
generality of a rule. Thus, for a rule that predicts class 1 (for rules
that predict class -1 replaceD+ with D− in the formula below) we
define:

σ(r) :=


(1

τ
suppD′+

(r))α
suppD′corr

(r)

suppD′incorr
(r)

, if suppD′+
(r) ≥ τ

suppD′corr
(r)

suppD′incorr
(r)

otherwise,

where the supportsuppD(r) of a ruler on a data setD is defined as
the fraction of samples inD for which the preconditions are fulfilled.
Here,τ andα are treated as fixed model parameters that determine
the trade-off between the generality of a rule and theDcorrect/Dincorrect

ratio.
4 We have used the apriori implementation provided by Christian Borgelt

(http://fuzzy.cs.uni-magdeburg.de/˜borgelt/doc/
apriori/apriori.html).

3.1.4 Generalizing the rules.

We say that a rule(j1 : a1, . . . , jm : am ⇒ y) is more generalthan
a rule(i1 : b1, . . . , in : bn ⇒ y), if {j1 : a1, . . . , jm : am} ⊆ {i1 :
b1, . . . , in : bn}. A rule r is more specificthan a ruler′ iff r′ is more
general thanr. Denote byG(r) the set of all rules which are more
general thanr, and byS(r) those that are more specific thanr.

Our scoring scheme does not take into account the number of pre-
conditions of a rule. Thus, it can happen that instead of the correct
version of a rule, a more specific rule will attain a higher score.
Therefore, to prevent overfitting, the rules that have been found us-
ing the apriori algorithm should be generalized as much as possible
without too much loss in score.

Below, we define which rule should be considered as the appropri-
ate generalization of a ruler by the learner. Letσmax be the maximal
score among the rules inG(r). Certainly, the score of the general-
ized rule should not be too far from the maximal score. Of all rules
in G(r) that fulfill this criterion, we are interested in a shortest one
(i.e. one with a minimal number of preconditions). If there is more
than one such rule, the one with the highest score is selected. In sum-
mary, using|r| to denote the number of preconditions ofr, we can
define thepreferred generalizationof r as the uniquely determined
ruler∗ ∈ G(r) such that

• σ(r∗) ≥ σmax− ε,
• ∀r′ ∈ G(r) : |r′| < |r∗| ⇒ σ(r′) < σmax− ε, and
• ∀r′ ∈ G(r) : |r′| = |r∗| ⇒ σ(r′) < σ(r∗).

3.1.5 Selecting the highest-scoring compatible rule.

In the final part of the rule-mining step, the task is to select one of the
generalized rules for integration into the mixture model. Intuitively,
it is clear that it would make no sense to add a rule which is more
general or more specific than an already selected rule. Consequently,
we require that a rule can only be added to the mixture model if it is
compatibleto the already selected rules: Letr1, . . . , rk be the rules
already incorporated into the mixture model. The ruler is said to be
compatibleto r1, . . . , rk iff none of theri is more general or more
specific thanr, i.e. if ∀i ∈ {1, . . . , k} : ri 6∈ G(r), andri 6∈ S(r). In
particular, of all the generalized rules, the highest-scoring one which
is compatible to the data set is chosen.

3.2 Step 2: Estimating the relevance function of a
rule

When a new ruleri has been selected for integration into the model,
the next task is to determine its relevance function. As described in
section 2.2, this task consists of two parts. First, the similarity func-
tion λi is estimated. Next, the shiftτi and slopeαi of the sigmoid
adjustment have to be computed.

3.2.1 Estimatingλi

First, we show how to estimate the similarity functionλi. As moti-
vated in section 2.2.1,λi is intended to modelP (X = x|r(X) =
Y), the probability of encountering instancex when randomly draw-
ing a pair of an instance and a class for which the rule’s prediction is
correct.

Without some (conditional) independence assumptions, this prob-
ability cannot be estimated in practice. The simplest approach is to
assume independence among the columns in the alignment (alterna-
tives to this rather strong assumption are discussed in the concluding

section of this paper). Thus, if we denote byL the number of columns
in the alignment,

P (X = x|r(X) = Y) =

L∏
j=1

P (X(j) = x(j)|r(X) = Y).

The probabilitiespij := P (X(j) = ai)|r(X) = Y) can be esti-
mated using a robust estimator, similarly as in the case of the naive
Bayes classifier, by

p̂ij =
|{i ∈ D′

corr(r)|x
(j)
i = x(j)}|+ mp

|D′
corr(r)|+ m

.

Here,p is the prior estimate of the probability, andm is a constant
which determines how heavily the prior estimate should be weighted
relative to the observed data. In computational biology, the matrix
(pij) is called asequence profilefor the family of sequences which
are predicted correctly by the ruler.

3.2.2 Estimatingαi andτi

The optimization problem stated in formula 2 can be solved using
gradient descent, since the objective function is differentiable as a
function ofα andτ . Several restarts can be performed to avoid get-
ting trapped in local minima.

3.3 Step 3: Optimizing the weights for all rules

In the final step, the weights for all rules within the mixture model are
re-optimized simultaneously with the AUC as the objective function.
Although there is no definitive answer yet, there are indications that
under certain circumstances such as considerable class skew, or in
difficult classification problems, optimizing with respect to the AUC
might yield a more robust classifier than optimizing with respect to
the error rate [3].

Formally, the goal is to find weightsw∗
1 , . . . , w∗

k, such that the
AUC of the mixture model, when parametrized with these weights
is maximal among allw1, . . . , wk ∈ [0, 1], for which

∑
wi = 1.

One approach towards optimizing this discontinuous function would
be to use combinatorial methods such as combinatorial simulated an-
nealing or taboo search. However, we use a different strategy here,
which has also been investigated in [16]. This strategy is built on two
ideas: Firstly, it exploits the equivalence of the area under the ROC
curve with the Wilcoxon-Mann-Whitney (WMW) statistic [5]. Sec-
ondly, it approximates the step functions of which the WMW statistic
is composed, by sigmoid functions. The resulting approximation of
the AUC is differentiable with respect to the weights, and therefore,
gradient descent can be used to find the optimal weights.

Before going into the details, a remark on notation. Denote byD+

respectivelyD− the positive respectively negative training samples.
For a weight vectorw = (w1, . . . , wk) we denote the mixture model
with these weights byhw. Our task is to solve the optimization prob-
lem:

maximize
w∈[0,1]k,

∑k
r=1 wr=1

AUC(hw).

It is easy to see [14] that the area under the curve is equal to the
WMW test statistic:

AUC(hw) =
1

|D+||D−|
∑

i∈D+

∑
j∈D−

1hw(xi)>hw(xj).

Thus,

max
w

AUC(hw) = max
w

∑
i∈D+

∑
j∈D−

1hw(xi)>hw(xj).

As to the the second idea mentioned above, namely the differentiable
approximation of the step function, the observation is simply that the
sequence of functions

gn : z 7→ 1

1 + e−nz

converges pointwise to the step function1z>0, with n →∞. There-
fore, withβ sufficiently large,

max
w

AUC(hw) ≈
∑

i∈D+

∑
j∈D−

1

1 + e−β(hw(xi)−hw(xj))
. (4)

If we further define

x̃i :=
1

1 + e−αi(λ(xi)−τi)
ri(x), i = 1, . . . , k

and usẽx to denote the vector (̃x1, . . . , x̃k), we can write

hw(x) = 〈w, x̃〉.

The right-hand side of (4) can then be written more conveniently as

g(w) =
∑ ∑ 1

1 + e−β〈w,x̂i−x̂j〉

The functiong is differentiable, and the partial derivatives are given
by

∂g

∂wr
(w) =

∑ ∑
β(x̂i − x̂j)

e−β〈w,x̂i−x̂j〉

(1 + e−β〈w,x̂i−x̂j〉)2
.

With these partial derivatives available, the AUC can be maxi-
mized using gradient ascent.

4 PREDICTION OF HIV-1 CORECEPTOR
USAGE

We applied our method to the task of predicting HIV-1 coreceptor
usage from viral genetic information. Like all viruses, HIV is de-
pendent on a host cell to make copies of itself. In order to enter a
cell, it successively attaches to two receptors on the cell surface. The
first one, which is called themain receptor, is always the same for
each virus particle. However, there are two receptors, called CCR5
and CXCR4, that can serve as the second receptor (coreceptor). HIV
particles fall into three classes according to which of those two re-
ceptors they can use: some can only use CCR5 (R5 viruses), some
can only use CXCR4 (X4 viruses), and some can use either of them
(R5X4 viruses). One is interested in finding out about viral corecep-
tor usage, because a new class of anti-HIV drugs is being developed
that tries to prevent HIV from binding to one of the two coreceptors.
There is particularly strong interest in predicting coreceptor usage
based on sequence data alone because these approaches would only
require sequencing of the virus, which is a cheap and fast routine task
as compared to the more expensive and time-consuming experimen-
tal assays for determining coreceptor usage.

In the application we report here, the task was to recognize virus
that can use CXCR4. Therefore, we have X4 and R5X4 viruses as
class 1, and R5 viruses as class -1. Prediction was based on the
third variable region (V3 region) of the HIV envelope protein gp120,
which is known to be the strongest determinant of coreceptor usage
(reviewed in [2]).

4.1 Data set

Our data set consists of 1110 sequences of the V3 region (769 R5,
210 X4, 131 R5X4) from 332 different patients. These were obtained
from the HIV Sequence Database in Los Alamos5, as well as from
the literature. Sequences were aligned to a V3 reference alignment
provided by the HIV Sequence Database.

4.2 Compared learning methods

We have compared the methods that have been proposed so far for the
prediction of HIV coreceptor usage, including the method described
in this paper. In the case of support vector machines, different ker-
nels and instance representations have been tested: in the indicator
representation, each position in the alignment was represented by 21
entries (20 amino acids and one gap symbol) in the instance vector,
one of which was set to1, while all others were set to zero. The
physico-chemical representation was similar, except that the entries
were not representing the amino acids themselves, but their physico-
chemical properties.

Method Reference
SVM with linear kernel, indicator
representation

[12]

Decision tree [12]
Artificial neural network [13]
Charge rule [7]
PSSM [11]
SVM with linear kernel, physico-
chemical representation

[14]

SVM with RBF kernel, indicator
representation

[14]

Mixtures of localized rules [14]

4.3 Experiments

Parameter optimization was performed using a grid search with the
area under the ROC curve as the objective function. Neural networks
were parameter optimized with respect to the weight decay parameter
(the backpropagation algorithm was used for training). In the case of
SVMs, the parametersC (linear kernel) respectivelyC andγ (RBF
kernel) were optimized.

Classifier performance was measured using stratified 10 times 10-
fold cross-validation. ROC curves were obtained for all the compared
classifiers without averaging, as well as using vertical and threshold
averaging, to get error bars as described in [5]. Results did not depend
on the particular averaging method (cf. [14] for details).

4.4 Results

Figure 4 shows the ROC curves for all the compared classifiers. Error
bars (1 standard error) were obtained from threshold averaging. As
can be seen in the plot, support vector machines with different ker-
nels and instance representations are superior over all other methods
on the entire range of false positive rates. Position-specific scoring
matrices have good performance on higher false positive rates. Our
method has good performance at higher false positive rates as well,
but has some weaknesses at the practically important regions with
small error rate.

5 http://www.hiv.lanl.gov/content/hiv-db/mainpage.
html

Loc.rule mixt.

Lin.SVM,physico-chemical

Lin.SVM
RBF SVM

PSSM

Charge rule

Decision tree
Neural network

Figure 4. ROC plot showing the performance of the compared methods
over the range of all possible cutoffs.

First, we compare the methods on a global range. The use of
the area under the ROC curve is a popular measure for this. This
geometric measure can also be given a probabilistic interpretation:
AUC(h) = P (h(X) > h(X ′)|Y = 1, Y ′ = −1). This means, the
AUC is equal to the probability that the classifier will assign a higher
score to a randomly drawn positive sample than to a randomly drawn
negative one.

Rank Method mean AUC
1. RBF SVM indicator 0.9121
2. Lin. SVM indicator 0.9046
3. PSSM 0.9018
4. Lin. SVM physico-chemical 0.8986

5. LRM 0.8807
6. Neural network 0.8664
7. Decision tree 0.7474

The variance in the data is surprisingly high, as can be seen in
figure 5, where boxplots of the measured AUCs during the differ-
ent cross-validation runs are shown. Still, when testing the null hy-
pothesis of equal AUC against the alternative hypothesis that the
linear SVM has higher AUC, the differences in AUC between the
linear SVM with indicator representation and localized mixtures of
rules(p = 0.0009), neural networks(p = 9.1 · 10−5), or PSSMs
(2.2 · 10−16) are highly significant (Wilcoxon-Mann-Whitney test).
In contrast, the differences in AUC to the other methods are not sig-
nificant, in particular to the PSSM (p=0.19).

A global measure such as the AUC should not be the only criterion
when comparing classifiers. It is also important to look in more detail
at the performance of classifiers at regions of practical relevance, i.e.
at small false positive rates. Figure 6 shows the details: The three
versions of SVMs perform best, with a slight performance gap to the
PSSM (p = 0.0009 at 1%,p = 3.2·10−5 at 5%, andp = 0.03 at7.5%
error rate). The method described by us here performs comparative
to decision trees and neural networks.

5 DISCUSSION

In this paper we have proposed a rule-based model class, whose ele-
ments are called mixtures of localized rules, along with an algorithm
to learn these models from data. One of the benefits of this model
class is that it combines the easy interpretability of rule sets with the
power of non-symbolic hypothesis spaces via the notion of relevance
surfaces defined for each rule over the instance space.

Indeed, this idea of localized rules (i.e. the assumption that the
relevance of a rule depends on the genetic background) is one of
the two distinguishing features of our approach, the other being the
combination of rank-based resampling and AUC optimization in the
learning algorithm. We shall now discuss some further aspects of
these two features.

5.1 Localization

As already mentioned in section 2.2, one can think of many alterna-
tives to our strategy towards the relevance problem. For example, it
could be beneficial to replace the strong assumption of independence
among the columns in the alignment with a slightly more realistic
sequence model. For example, one of these models is based on the
assumption that the probability that a given amino acida will oc-
cur at positionj in the alignment is not independent from the other
positions, but conditionally independent, given the amino acid at the
position(j − 1):

P (X(j) = x(j)|X(j−1) = x(j−1), . . . , X(1) = x(1)) =

P (X(j) = x(j)|X(j−1) = x(j−1)).

With this assumption, the appropriate probabilistic sequence model
would be a hidden Markov model rather than a sequence profile.

As another alternative, one could abandon our two-step approach
towards localization, and instead take into account the correctly and
the incorrectly predicted training samples simultaneously, for ex-
ample using position-specific scoring matrices. However, this will
most likely give rise to robustness problems, given the small size of
Dincorr(r).

A third, and entirely different, approach towards the relevance
problem would consist in performing a pre-clustering of the training

Figure 5. High variance of the AUC.

Figure 6. ROC plot: focusing on regions of practical interest.

samples. In this framework, the relevance region of a rule could be a
cluster, or if a hierarchical clustering method is used, some function
that varies according to the height in the dendrogram.

5.2 AUC boosting

In the beginning of this paper we have argued that the combination
of rank-based resampling with AUC optimization which is used in
our learning algorithm can be seen as an adaptation of boosting to
the case when the AUC is used as an objective function.

To see why, let us first consider why the traditional notions of the
margin of a sample are not appropriate for this situation. The reason
is that they all take into account the predicted scoreh(x) directly.
Consider for example the exponential margin used by the AdaBoost
algorithm [8]. In AdaBoost, the weight of a training sample(xi, yi)
in the resampling procedure ise−yih(xi). Yet, in classifiers optimiz-
ing the area under the ROC curve, it could well be the case that all
training samples are scored below 0. The classifier could still per-
form perfectly, since the cutoff can be chosen freely. However, since
the exponential margin implicitly assumes a cutoff at 0, in our case
(whereh(x) < 0 for all x ∈ D) this would result in a situation where
the positive training samples are considered more problematic than
the negative ones, just because they are scored below 0.

Of course it is possible to adjust the exponential margin to other
cutoffs than 0. However, it would be more desirable to have a resam-
pling scheme that is entirely independent of the choice of a cutoff.
One example of such a scheme is the rank-based resampling per-
formed by our method. The choice of ranks as resampling weights in
the context of AUC optimization also seems to be appropriate in the
light of the fact that the AUC is proportional to the sum of ranks of
the samples, relative to the samples of the other class [14].

Finally, future work will have to show whether rank-based resam-
pling in combination with AUC optimization could also be useful
when other models, such as decision trees or neural networks, are
used as basis classifiers instead of rules.

5.3 Conclusion

While our method performs significantly worse than support vec-
tor machines or PSSMs, it shows comparable performance to deci-

sion trees and neural networks at low false positive rates. At higher
false positive rates, it outperforms both methods. Since this is work
in progress, we still expect significant improvements of our method.
Certainly, evaluation on a wider range of data sets is needed to get a
more complete picture of its benefits and drawbacks. Approaches to
localize the influence of rules or the combination of rank-based re-
sampling with AUC maximization described in this paper might also
be beneficial in other contexts.

ACKNOWLEDGEMENTS

T. S. wants to thank Luc de Raedt from the Machine Learning and
Natural Language Processing Lab at the University of Freiburg for
co-supervising this work. N. B. was supported by the German Na-
tional Science Foundation (DFG) under grant no. HO 1582/1-3.

REFERENCES
[1] R. Agrawal and R. Srikant, ‘Fast algorithms for mining association

rules’, in Proc. 20th Int. Conf. Very Large Data Bases (VLDB), eds.,
Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, pp. 487–499. Mor-
gan Kaufmann, (1994).

[2] J.M. Coffin, ‘Molecular biology of HIV’, inThe Evolution of HIV, ed.,
K. Krandall, Johns Hopkins UP, Baltimore, Maryland, (1999).

[3] C. Cortes and M. Mohri, ‘AUC optimization vs. error rate minimiza-
tion’, in Advances in Neural Information Processing Systems 16, eds.,
Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, MIT Press,
Cambridge, MA, (2004).

[4] R. T. D’Aquila et al., ‘Drug resistance mutations in HIV-1’,Top HIV
Med, 11(3), 92–96, (May 2003).

[5] T. Fawcett. ROC graphs: Notes and practical considerations for re-
searchers. HP Labs Tech Report HPL-2003-4.

[6] T. Fawcett, ‘Using rule sets to maximize ROC performance’, inPro-
ceedings of the 2001 IEEE International Conference on Data Mining,
San Jose, CA, (2001).

[7] R. A. Fouchier, M. Brouwer, S. M. Broersen, and H. Schuitemaker,
‘Simple determination of Human Immunodeficiency Virus type 1
syncytium-inducing V3 genotype by PCR’,J Clin Microbiol, 33(4),
906–911, (Apr 1995).

[8] Y. Freund and R.E. Schapire, ‘Experiments with a new boosting algo-
rithm’, in International Conference on Machine Learning, pp. 148–156,
(1996).

[9] T. Hastie, R. Tibshirani, and J. Friedman,The Elements of Statistical
Learning, Springer, New York, 2001.

[10] R. Jaideep et al., ‘HIV-1 protease and reverse transcriptase mutation
patterns responsible for discordances between genotypic drug resis-
tance interpretation algorithms’,J Acquir Immune Defic Syndr, 33(1),
8–14, (May 2003).

[11] M. A. Jensen et al., ‘Improved coreceptor usage prediction and geno-
typic monitoring of R5-to-X4 transition by motif analysis of Hu-
man Immunodeficiency Virus type 1 env V3 loop sequences’,J Virol,
77(24), 13376–13388, (Dec 2003).

[12] S. Pillai, B. Good, D. Richman, and J. Corbeil, ‘A new perspective on
V3 phenotype prediction’,AIDS Res Hum Retroviruses, 19(2), 145–
149, (Feb 2003).

[13] W. Resch, N. Hoffman, and R. Swanstrom, ‘Improved success of phe-
notype prediction of the Human Immunodeficiency Virus type 1 from
envelope variable loop 3 sequence using neural networks’,Virology,
288(1), 51–62, (Sep 2001).

[14] T. Sing,Learning localized rule mixtures by maximizing the area under
the ROC curve, with an application to the prediction of HIV-1 corecep-
tor usage, Master’s thesis, Max Planck Institute for Informatics, 2004.

[15] J. D. Thompson, D. G. Higgins, and T. J. Gibson, ‘CLUSTAL W:
improving the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties and weight
matrix choice’,Nucleic Acids Res, 22(22), 4673–4680, (1994).

[16] L. Yan, R. Dodier, M. C. Mozer, and R. Wolniewicz, ‘Optimizing clas-
sifier performance via the Wilcoxon-Mann-Whitney statistic’, inPro-
ceedings of the Twentieth International Conference on Machine Learn-
ing (ICML), eds., Tom Fawcett and Nina Mishra, pp. 848–855. AAAI
Press, (2003).

