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Abstract. We introduce a model class for statistical learning whicha prediction is made only based on the rule with the lowest false
is based on mixtures of propositional rules. In our mixture model, thepositive rate. Of course, other quality criteria could be used instead
weight of a rule is not uniform over the entire instance space. Rathenf the false positive rate. In this more general interpretation, LFPR
it depends on the instance at hand. This is motivated by application®lies on a scoring scheme which can be used to rank individual rules.
in molecular biology, where it is frequently observed that the effectThe prediction for a new instance is then performed using only the
of a particular mutational pattern depends on the genetic backgrountighest-scoring rule whose preconditions are fulfilled. While it seems
in which it occurs. We assume in our model that the effect of a giververy reasonable to assume that some rules are more important than
pattern of mutations will be very similar only among sequences thabthers, there are a number of pitfalls that arise when the prediction is
are also highly similar to each other. On the other hand, a patterbased only on a single rule and all other rules whose preconditions
might have very different effects in different genetic backgrounds. are fulfilled are ignored: Firstly, it is not clear why the rule with the
Model inference consists of repeated iteration through a sequendgghest score should be more relevant for the particular instance at
of three steps: First, a new rule is mined from a resampled data sé@and than a rule with lower score. Secondly, more than one rule could
using the apriori algorithm. Next, the localization information for be relevant for a given instance.
the rule is computed. Finally, the weights of all rules in the mixture These objections motivate taking into account all rules whose pre-
model are re-optimized simultaneously. This weight optimization isconditions are fulfilled in order to make a prediction. The most sim-
done using the area under the ROC curve rather than the error rapte and most popular strategy for combining the predictions of sev-
as the objective function. Correspondingly, the weight of a sample ireral rules into a single prediction imajority voting (called equal
the resampling procedure is based on the rank of the sample relativeting (VOTE)in [6]). Here, for each class, the number of rules that
to the other samples rather than directly on the score itself (such gwedict this class are counted. The ensemble prediction is then the
in boosting). This strategy can be seen as an adaptation of boostirajass with the largest number of advocates. While being more robust
to the case of AUC optimization. Finally, we apply our method to thethan the LFPR strategy, the idea that not all rules are equally im-
problem of predicting HIV-1 coreceptor usage from the amino acidportant is abandoned here: The rather strong assumption implicitly
sequence of the viral surface protein. underlying majority voting is that all rules are of the same quality.
With majority voting, one ignores that in many biological applica-
tions some mutational patterns have stronger impact than others.
1 MOTIVATION The advantages of the two strategies described above can be com-

Classifiers based on sets of rules have received a lot of attention fined by taking a vote among all rules, V\_"th an |_nd|V|duaI weight
the machine learning and data mining communities. This is certainl)?tt"?mhed to e_ach rule. Indeed, as reported in [6], this a_pproach, qalled
in large part due to the easy interpretability of the learned classifier, égghted voting (WVOTEDerformed best among the five strgtegles
feature that makes them especially attractive when the intended use thad been compareo_l. Th'_s also _seems_to be the appr_oprlate model
are non-experts who want to understarigy a particular prediction for many tasks from a b|olog|(_:al point of view, as underllned_ py the
has been made. Our field of application is molecular biology, anJOHOW'ng two examples relating to the Human Immunodeficiency

consequently, we will formulate our approach for an instance s,pac>—,ﬂr_us (HIV):hF'r:'“);;_'thhas blzel:? odbser\_/gddtrl])at i tvxllo E articular mu- d
of proteins or nucleic acids. However, our method could also be use[ﬁt'sﬁ\(/egc orwhich would be descri ?—HVy a r_ule ire) gssoc_lz;te
as a general attribute-value learner. witl rug resistance co-occur in an particle, the virus wit

An important issue in rule-based classification is the question oPOth mutations is more resistant than viruses with only one muta-

how to use the learned rules to make a prediction. In [6], severaiion- Secondly, in a recent investigation of HIV coreceptor usage, it

strategies towards this so-calleelsolution problemare discussed. has begn obgerved that *although certain mutations may have dis-
One of the strategies that are mentionetbigest false positive rate proportionate influence on coreceptor usage, such mutations are not

(LFPR). In LFPR, among all rules whose preconditions are fulfilled, necessary for core(_:eptor_swnchlng, prov"fed V3 has accumulated
enough other mutations with smaller effect.” [11]. In summary, there
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challenging an assumption that to our knowledge has not been quesertainly desirable). We only allow rulesof the formr = (5 :
tioned before: Should the weight of a rule be modelled as uniforma; A ...j5m @ am = y),With1 < 51 < ... < j, < L, and
over the entire instance space? y € {1, —1}. Here, eaclu; is either an amino acid or a gap symbol.

In our point of view it is surprising that to date the answer to this A rule r induces a function in the obvious way: if for an instance
question seems to be a universal “yes”. Indeed, the assumption af, all preconditions are fulfilled, i.ec¥") = a4, ..., 20™) = a,,,
constant rule weights is in sharp contrast to phenomena observed the classy given by its right-hand side is predicted, and otherwise
molecular biology. For instance, it has been reported that the strength Since rules and the induced functions correspond to each other
of the effect of certain resistance-associated mutations depends amiquely, by abuse of notation, we use the same letteath for the
the particular HIV subtype in which they occur [10], [4]. Likewise, rule and for the induced function.
in the context of HIV coreceptor usage, it has been observed that With these preparations, and given rules...,rx and corre-

“no single set of mutations appears to lead to coreceptor switchingponding weightso:, ..., wx € [0,1] such thatzfi1 w; = 1,

in every genetic background” [11]. In summary, there is a body ofthe weighted voting strategy can be written & -amixture model of
evidence supporting the notion that the effect of a given pattern ofules:
mutations depends on tigenetic backgrouniah which it occurs.

Thus, we argue that in deciding how to use a set of rules for a R R T R (=11,
prediction, addressing the resolution problem (namely the question K 1)
of how to combine the predictions of the individual rules) is only one T Z wirs(@).
side of the coin. In many practical classification problems, it will also =t
be beneficial to deal with what we call thredevance problemwhich We omit the subscript if it is not relevant for the discussion. Here,
is the problem of determining how relevant a given rule is for the K is a fixed integer, treated as a model parameter. Model selection
instance at hand. can be performed by standard techniques such as cross-validation, or

The rest of this paper is organized as follows. In the next secthe Bayesian or Akaike information criterion [9].

tion, we will describe the model class that results from combining The functionh is a scoring classifier. It induces a family of binary

the weighted voting strategy towards the resolution problem with eclassifiers{h., },<[—1,1), based on the choice of different cutoffs

simple approach towards the relevance problem. In section 3, we de-

scribe a learning algorithm for these models. It is based on iteratively ho(z) = {17 h(z) > v

adding a rule to the partial model, determining its relevance surface, —1, otherwise

and finally re-optimizing all weights simultaneously with respect to

the area un(_je_r the ROC curve. We have applied our_method on thz2 Localized rules

task of predicting HIV-1 coreceptor usage from the viral sequence,

and in section 4 we show results of a ROC evaluation of all method#\s motivated in the introduction, our model should allow for rule

that have been used so far for this task, including our own approachweights which vary over the instance space. We focus on artule
in the mixture model (1). The corresponding weight € [0, 1] is

2 MIXTURES OF LOCALIZED RULES now interpreted as the maximal weightcan attain over the instance
) space. This weight is modulated by a functign: X — [0, 1],
2.1 Mixtures of rules the so-calledelevance functiorof the rule. As the name suggests,

it estimates the relevance of the rulgfor the given sample. With
r}his modification, the contribution of a rule to the mixture model is
w;pi(z)r;(x). The remainder of this section will be devoted to defin-
ing a model for the relevance function that can be estimated from
data.

Ideally, the relevance function of a rutewould be defined as

We consider the binary classification problem: An instance, give
by the X-valued random variabléX, and its class, given by the
{1, —1}-valued random variabl&, are drawn according to an un-
known probability measuré’x yy. The task is to make a correct
prediction for an instance € X, based on training dat® =
((z1,91),- -, (zm, ym)). As mentioned before, we have in mind an-
notated amino acid sequences as an application task. In many cases, pideal(z) := P(r(X) = Y|X = z),

these sequences will be of different length, because insertions or

deletions can be quite common. Sequences of different length até@€ probability that the rule’s prediction will be correct, given that
brought to the same length by inserting copies of a gap symbbl samplex has been drawn with unknown class. However, it is not fea-
into them using specialignmentalgorithms, such as the one de- sible to estimate this probability from training data. We now describe
scribed in [15]. Thus, for our discussiof, is the set of all aligned @ simple and practical model for the relevance function of a rule.

amino acid sequences (including gaps) of lengttFor example, A rule r partitions the training dat® into three sets: The first set
consists of those samples for which the rule’s preconditions are not

fulfilled and is of no further interest for the relevance function. The
setDeon(r) contains those samples for which the preconditions of

1 = CTRPGNNTRKSIRIGPGQAFYTN-HIIGDIRQAYC are fulfilled and the prediction is correct. Finally, the &&tcon(r)

2 = CIRPNNNTRKGIYIGPGRAVYTTGNIIGDIRQAHC consists of samples that fulfill the preconditions, but are incorrectly
predicted. In light of our fundamental assumption that the relevance
of a rule depends on the genetic background in which it occurs, the

are elements of’ (L = 35). Individual elements of an instance are samples iMDcor(r) are examples of genetic backgrounds where the
accessed via superscripted indexes. For exam:ﬁﬂé,: C,xﬁ” = rule seems to be relevant, wheré@g.o(r) contains examples of
T, and so on. regions of the instance space where the rule is irrelevant.

We restrict ourselves to the most elementary language for rules For good rulesDeor(r) typically should be much larger than

here (although extensions, for example towards first order logic, ar®incor(r). Because of this, we decided to split up the model for the



relevance function into two parts: the first part is a distribution-free
model that only relies on the dataTo(r). The second part of the
model adjusts this first part by also taking into accaDRton(r).

2.2.1 First part: the similarity function

We assume that the effect of a particular pattern of mutations (a

described by a rule) will be similar if it occurs within genetic back-

grounds that are similar to each other. For a new instance to be class

fied this means that if it has high sequence similarity to the correctly

predicted samples, the rule should be considered to be very relevar

whereas if the sequence similarity is low, so should be the relevance.
There are several ways to measure the similarity of a sequence Figure 1. Sigmoid adjustment of the similarity function.

to a family of sequences, but they all amount to computing the prob-

ability of seeingz under a probabilistic sequence model induced by

the family. Here, the family is the s@c.(r), which consists of re-

alizations of the random paftX, Y) for whichr#(X) = Y. Insum-  functions (the rationale for regularizing here is to prevent overfit-

mary, the similarity\(z) of a sequence to the family of correctly ~ ting). Let A = Deor(r) U Dincor(r), then the optimal parameters are

predicted sequences is the probability of drawing the sequence whdlefined as

randomly drawing a correctly predicted instance. In fact, we use the

logarithm of this probability: (a*,7") := argmin
A =log P(X = X)=Y 1
(w) og ( l‘|7"( ) ) HW E(UQ,T()\(QH)) o 1T(Ii):yi)2 + (1 . Ii)a2. (2)
Our approach to estimating this probability based on th@®gsgt(r) €A

is described in section 3.

2.3 Mixtures of localized rules

2.2.2 Second part: the relevance adjustment
] ) ) In summary, the space of mixtures of localized rules consists of func-
If the model is to take into account the $Bcor(r) as well, i.e. €X-  tions of the form

amples of genetic backgrounds where the rule does not work, this has

to be done using strong parametric assumptions, due to the limited h:X —[-1,1]
size of this set (as compared.(r)) in good rules. If the similar- K
. o . \ ) 1 ?3)
ity function is estimated well, and if our assumption that the effect of T — E W ri(z).
. L T . . . "1 4+ e—ai(ilag)—m) "
a given mutation is similar in similar genetic backgrounds is valid, i1

one might expect that the similarity functionwill assign a higher

score to samples where the rule is relevant than for those where it With rules r1,...,rk, their corresponding similarity functions
not. A1, ..., Ak, adjustment parametefsi, 71), . . ., (ax, 7x) for the
In this second part of the relevance model, the task is to detersigmoid functions, and rule weights; , . . ., wx . In the next section

mine how optimistically or how pessimistically the similarity func- We describe our approach to learning these parameters.
tion should be translated into a relevance estimate, on the basis of

both Deor(r) @and Dincorr(7). Such a translation has to be a mapping

from (—o0, 0] to [0, 1]. A class of functions that allows for a simple 3 LEARNING ALGORITHM
adjustment of this mapping are the sigmoid functions known from

" Figure 2 shows a high-level description of the learning algorithm. It
artifical neural networks:

consists of K iterations of the following three steps: first (section 3.1),
- 1 a new rule is mined from a resampled dataset. Next (section 3.2), the
T 1l4e Ty’ relevance surface for the rule is computed. Finally (section 3.3), the
rule is added to the mixture model by re-optimizing all rule weights
simultaneously, with the area under the ROC curve as the objective
function.

Oa,r(2)

wherez € (—oo,0]. This class is parametrized by two variables,
andr: The parameter shifts the graph o& horizontally, while«
adjusts its slope.

Figure 1 shows how a sigmoid function is used to squeeze the sim-
ilarity function into the interval0, 1]. The circles denote the training 3 1 Step 1: Mining a new rule
samples. On the-axis, the value of the similarity function\(x),
is plotted. On they-axis, the value id for samples fromDcon(r), Step 1 consists of five substeps:
and0 for samples fronDincorr(1). The idea in selecting appropriate
values fora. and T is that if the correctly predicted and incorrectly 1. Resampling the data set.
predicted samples are substantially separated,lipe transforma- 2. Mining potentially interesting rules using the apriori algorithm.
tion into a relevance function should be more optimistic than if there3. Scoring the rules.
is not much space in between. The optimality criterion chosen by ué. Generalizing the rules.
is to minimize the sum of squared distances in the graph, regularizédl Selecting the highest-scoring rule that is compatible with the al-
by a term that penalizes large valuescgfi.e. very steep sigmoid ready selected rules.



ALGORITHM learn_LRM (HIGH-LEVEL DESCRIPTION)
INPUT:

e Training data{(z1,y1), .-, (Zn,yn)} € (X, )"
o Number of rules in the modeK € N.

OUTPUT:

o A mixture model of localized rules
- 1
h(z) = Z; wi 1+ e—@i(Xi(zi)—73) ri(@).

PROCEDURE

Fork=1,...,K:

1. Mine a new rule (section 3.1)Mine a new rule;, from a resamy

pled dataset (drawing the learner’s attention to the most prohlem-

atic instances) using the apriori algorithm.
2. Localization (section 3.2):Determine the similarity functiot
and the adjustment parameters andr;, for the rulery.

3. Weight optimization (section 3.3):Find an optimal combination
., 7 Selected so far, i. e.

of weightsws, . . ., wy, for all rulesry, . .
solve the following optimization problem:

maximize
W1,.en, wi€[0,1],>° w;=1

AUC(h(Tl7W1aAIaal77'1)7~~7(7‘kvwka>\kvak¢7k))‘

Figure 2. Learning algorithm (high-level description).

3.1.1 Resampling the data set.
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if support of an item set is only known for either

pos. or negative samples (because it falls below support limit
in one class), just set the support to a low value (below
support limit)

Figure 3. Mining rules with the apriori algorithm.

item set§, with as low a support bound as computationally feasible.
The two families of item sets are then merged as shown in the fig-
ure, resulting in a list of item sets for which the support both on the
positive as well as on the negative samples is known.

The item sets are then turned into rules in the obvious way: if the
support on the positive samples is higher than on the negative sam-
ples, clasg is added as a consequent, otherwise clak$s added.

3.1.3 Scoring the rules.

Resampling from a data set is done_ by f'_rSt defining a probabilityy,, identify interesting rules, a scoring scheme for rules is needed.
measure on the data and _th_en drawing W'th replacemt_ent a ‘?'at‘?‘ S1?"ﬁuitively, a good rule is one for whictD{,(r) is large, while

of the zarr(lje S'Zbe as the o(;lglnal set, aﬁcc()jrdlng to the glvin dlstrI%uDi/ncon(r) is small. Consequently, the most obvious idea would be
tion. The distribution used in our method to determine the weig .

of a sample in resampling is the fraction of training samples fromtlo take the fraction | Dlor ()]
the other class than the sample that score higher (if it is a positive m
sample) respectively lower (if the sample is negative). If we denot
the positive samples bfp, and the negative samples B, this

quantity is given by

Setween the correctly and the incorrectly predicted samples as the
score for a rule-.
However, the scoring scheme should also take into account the

Yjep_ n@)>ni;) generality of a rule. Thus, for a rule that predicts class 1 (for rules

)P Y= 1 that predict class -1 replad@,; with D_ in the formula below) we
PET Zieny hepsnen define:
D4 | Y= : -
14 (e S"lpp’Dt/:orr " if « , >
In order to get a probability measure, tigare normalized in the or) = (+ suppyy, () Supppy . (1) if suppp, (r) > 7
usual way: i SUPP D (1) otherwise,
pi Supl;)’Di/ncorr(r)

pi ===
2jenPi where the supposuppp, (r) of a ruler on a data seb is defined as

the fraction of samples i® for which the preconditions are fulfilled.
Here,r anda are treated as fixed model parameters that determine
the trade-off between the generality of a rule andigrecy/ Dincorrect
Figure 3 shows how the apriori algorithm [1] is used to find poten-ratio.

tially m_tergs_tlng r_ules. First, the re.s.ampled data set, which we deno® We have used the apriori implementation provided by Christian Borgelt
by D', is divided intoDys the positive samples, arfte, the nega-  (hitp://fuzzy.cs.uni-magdeburg.de/"borgelt/doc/

tive samples. On each of these sets we apply apriori to mine frequentapriori/apriori.html ).

3.1.2 Mining rules with the apriori algorithm.




3.1.4 Generalizing the rules. section of this paper). Thus, if we denote byhe number of columns
in the alignment,

We say that aruléj; : ai,...,Jm : am = y) iSmore generathan

arule(is : b1,... 00 1 bp = y),if {j1:a1,.. ., Jm : am} C {i1: L

bi,...,in : by }. Aruler is more specifithan a rule’ iff r’ is more P(X =zlr(X)=Y) = H P(XY =29 (X)) =Y).
general than. Denote byG(r) the set of all rules which are more j=1

general tham, and byS(r) those that are more specific than

Our scoring scheme does not take into account the number of préthe probabilitiesp;; := P(XY) = a;)|r(X) = Y) can be esti-
conditions of a rule. Thus, it can happen that instead of the corregnated using a robust estimator, similarly as in the case of the naive
version of a rule, a more specific rule will attain a higher score.Bayes classifier, by
Therefore, to prevent overfitting, the rules that have been found us- )
ing the apriori algorithm should be generalized as much as possible  {i € Diu(r)|z?) = 2D }| +mp
without too much loss in score. pbij = | Deéore(r)| +m

Below, we define which rule should be considered as the appropri-
ate generalization of a ruleby the learner. Letrmax be the maximal Here,p is the prior estimate of the probability, amd is a constant
score among the rules i@i(r). Certainly, the score of the general- which determines how heavily the prior estimate should be weighted
ized rule should not be too far from the maximal score. Of all rules'elative to the observed data. In computational biology, the matrix
in G(r) that fulfill this criterion, we are interested in a shortest one (Pi;) is called asequence profiléor the family of sequences which
(i.e. one with a minimal number of preconditions). If there is more @re predicted correctly by the rule
than one such rule, the one with the highest score is selected. In sum-
mary, using|r| to denote the number of preconditionsrofwe can
define thepreferred generalizatioof » as the uniquely determined
ruler* € G(r) such that The optimization problem stated in formula 2 can be solved using
gradient descent, since the objective function is differentiable as a
function of « andr. Several restarts can be performed to avoid get-
ting trapped in local minima.

3.2.2 Estimatingy; and;

° 0'(7’*) > Omax — €,
e V' eG(r): || <|rf|=o(r') < omax— € and
e V' e G(r): |r'| = |r*| = o(r') < a(r").

3.1.5 Selecting the highest-scoring compatible rule. 3.3 Step 3: Optimizing the weights for all rules

dn the final step, the weights for all rules within the mixture model are
re-optimized simultaneously with the AUC as the objective function.
LAlthough there is no definitive answer yet, there are indications that

general or more specific than an already selected rule. Consequentijlder certain circumstances such as considerable class skew, or in
we require that a rule can only be added to the mixture model if it is ifficult classification problems, optimizing with respect to the AUC

compatibleto the already selected rules: Lt . . ., 7, be the rules might yield a more robust classifier than optimizing with respect to

already incorporated into the mixture model. The nule said to be (€ error rate [3].

compatibleto 71, .. . , r, iff none of ther, is more general or more Formally, the goal is to find weightsy, .. ., wi, such that the
specific tham, i.e.if Vi € {1,...,k} : 7 & G(r),andr; & S(r). In AUC of the mixture model, when parametrized with these weights

fs maximal among alls, ..., wi € [0, 1], for which Y w; = 1.
One approach towards optimizing this discontinuous function would
be to use combinatorial methods such as combinatorial simulated an-
. . . nealing or taboo search. However, we use a different strategy here,
3.2 Step 2: Estimating the relevance function of a which has also been investigated in [16]. This strategy is built on two

rule ideas: Firstly, it exploits the equivalence of the area under the ROC
When a new rule;; has been selected for integration into the model, CUTVe With the Wilcoxon-Mann-Whitney (WMW) statistic [5]. Sec-
the next task is to determine its relevance function. As described ifd!Y: it approximates the step functions of which the WMW statistic
section 2.2, this task consists of two parts. First, the similarity func/S €0mposed, by sigmoid functions. The resulting approximation of
tion \; is estimated. Next, the shift and slopex; of the sigmoid the AUC is differentiable with respect to the yvelghts, and therefore,
adjustment have to be computed. gradient descent can be used to find the optimal weights.

Before going into the details, a remark on notation. Denot®hy
respectivelyD_ the positive respectively negative training samples.

3.2.1 Estimating\; For a weight vectoty = (w, . . ., wx) we denote the mixture model
with these weights bj.,. Our task is to solve the optimization prob-

In the final part of the rule-mining step, the task is to select one of th
generalized rules for integration into the mixture model. Intuitively,
it is clear that it would make no sense to add a rule which is mor

particular, of all the generalized rules, the highest-scoring one whic
is compatible to the data set is chosen.

First, we show how to estimate the similarity functidan As moti-

vated in section 2.2.1); is intended to modeP(X = xz|r(X) = €M o

Y’), the probability of encountering instancavhen randomly draw- we[oql]gle:rylzi - AUC(hw).

ing a pair of an instance and a class for which the rule’s prediction is s

correct. It is easy to see [14] that the area under the curve is equal to the

Without some (conditional) independence assumptions, this probWMW test statistic:
ability cannot be estimated in practice. The simplest approach is to 1
assume independence among the columns in the alignment (alterna- ~ AUC(hw) = DLID-| Z Z Lh (@) >hu (2) -
tives to this rather strong assumption are discussed in the concluding =1 iep, jep_



Thus, 4.1 Data set

max AUC(hy) = max Z Z Ly (@) >haw (25) Our data set consists of 1110 sequences of the V3 region (769 R5,
i€Dy jED 210 X4, 131 R5X4) from 332 different patients. These were obtained

As to the the second idea mentioned above, namely the differentiabféom the HIV Sequence Database in Los Alafhass well as from

approximation of the step function, the observation is simply that thdh€ literature. Sequences were aligned to a V3 reference alignment
sequence of functions provided by the HIV Sequence Database.

1
gn P2 T e 4.2 Compared learning methods
converges pointwise to the step functibn.o, with n — oo. There-  We have compared the methods that have been proposed so far for the
fore, with 3 sufficiently large, prediction of HIV coreceptor usage, including the method described
1 in this paper. In the case of support vector machines, different ker-
max AUC(hw) ~ > > 1+ e Blhu(e)—hu(@;) " (4)  nels and instance representations have been tested: in the indicator
€Dy jED - representation, each position in the alignment was represented by 21
If we further define entries (20 amino acids and one gap symbol) in the instance vector,
1 one of which was set td, while all others were set to zero. The
Fii=m ———————ri(x), i=1,...,k physico-chemical representation was similar, except that the entries
14+ e—ai(X(@i)—7i) ’ T . . - . -
were not representing the amino acids themselves, but their physico-
and uset to denote the vectofi(, . . . , Zx), we can write chemical properties.
hu (@) = (w, 7). [ Method | Reference]
The right-hand side of (4) can then be written more conveniently as SVMwith linear kernel, indicator,  [12]
1 representation
— Decision tree [12]
w — - A/~ ~ apr
9(w) Z Z 14 e Plwdi—15) Artificial neural network [13]
The functiong is differentiable, and the partial derivatives are given gggrlgle rule [[171]]
by SVM with linear kernel, physico- [14]
dg Z Z o= Blw,di—#;) chemical representation
—(w) = B(Zs — 5) — i SVM with RBF kernel, indicator]  [14]
Ow, (14 e Plwdimi;n)2 representation
With these partial derivatives available, the AUC can be maxi- Mixtures of localized rules (14]

mized using gradient ascent.

4.3 Experiments

4 PREDICTION OF HIV-1 CORECEPTOR
USAGE Parameter optimization was performed using a grid search with the

area under the ROC curve as the objective function. Neural networks
We applied our method to the task of predicting HIV-1 coreceptoryere parameter optimized with respect to the weight decay parameter
usage from viral genetic information. Like all viruses, HIV is de- (the backpropagation algorithm was used for training). In the case of
pendent on a host cell to make copies of itself. In order to enter &y\s, the paramete§ (linear kernel) respectivelg’ and~y (RBF
cell, it successively attaches to two receptors on the cell surface. Th@srnel) were optimized.
first one, which is called thenain receptor is always the same for  cjassifier performance was measured using stratified 10 times 10-
each virus particle. However, there are two receptors, called CCRgy|( cross-validation. ROC curves were obtained for all the compared
and CXCR4, that can serve as the second receptoe¢epto). HIV.  ¢jassifiers without averaging, as well as using vertical and threshold
particles fall into three classes according to which of those two reaveraging, to get error bars as described in [5]. Results did not depend

ceptors they can use: some can only use CaRb\(irusep some o the particular averaging method (cf. [14] for details).
can only use CXCR4X4 viruse$, and some can use either of them

(R5X4 virusep One is interested in finding out about viral corecep-

tor usage, because a new class of anti-HIV drugs is being developei4 Results
that tries to prevent HIV from binding to one of the two coreceptors. _. o
There is particularly strong interest in predicting coreceptor usagg'gure 4 shows the ROC curves for all the compared classifiers. Error

based on sequence data alone because these approaches would A b(l stand_ar?herrcl)r)t were obttametd from Lhreshol_ttllha(;/_?fraglntgl.( As
require sequencing of the virus, which is a cheap and fast routine tagie | D€ S€€en in Ihe plol, support Vector machines with ditierent ker-
els and instance representations are superior over all other methods

as compared to the more expensive and time-consuming experimeﬂn the entire ran  fal itive rates. Position i i
tal assays for determining coreceptor usage. on he entire range ot false positive rates. Fosition-specilic scoring

In the application we report here, the task was to recognize Virugnatrlces have good performance on higher false positive rates. Our

that can use CXCR4. Therefore, we have X4 and R5X4 viruses itEOd has good pkerformanctetﬁt h'gh?_r fa}:se_ p05|tt|vetrate_s as W?tlrl]'
class 1, and R5 viruses as class -1. Prediction was based on tl it as some weaknesses at the practically important regions wi

third variable region (V3 region) of the HIV envelope protein gp120, small error rate.

which is known to be the strongest determinant of coreceptor usage nttp://www.hiv.lanl.gov/content/hiv-db/mainpage.
(reviewed in [2]). html
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Figure 4. ROC plot showing the performance of the compared methods

over the range of all possible cutoffs.

First, we compare the methods on a global range. The use of
the area under the ROC curve is a popular measure for this. This
geometric measure can also be given a probabilistic interpretation:
AUC(h) = P(h(X) > h(X")]Y = 1,Y’ = —1). This means, the

5 DISCUSSION

In this paper we have proposed a rule-based model class, whose ele-
ments are called mixtures of localized rules, along with an algorithm
to learn these models from data. One of the benefits of this model
class is that it combines the easy interpretability of rule sets with the
power of non-symbolic hypothesis spaces via the notion of relevance
surfaces defined for each rule over the instance space.

Indeed, this idea of localized rules (i.e. the assumption that the
relevance of a rule depends on the genetic background) is one of
the two distinguishing features of our approach, the other being the
combination of rank-based resampling and AUC optimization in the
learning algorithm. We shall now discuss some further aspects of
these two features.

5.1 Localization

As already mentioned in section 2.2, one can think of many alterna-
tives to our strategy towards the relevance problem. For example, it
could be beneficial to replace the strong assumption of independence
among the columns in the alignment with a slightly more realistic
sequence model. For example, one of these models is based on the
assumption that the probability that a given amino acigill oc-

cur at position; in the alignment is not independent from the other
positions, but conditionally independent, given the amino acid at the
position(j — 1):

P(X(j) _ m(j>|X(j*1) _ :L.(J'*l)’ o ,X(l) _ 17(1)) _
p(X(j) _ x(j)‘X(jfl) _ x(jfl)).

AUC is equal to the probability that the classifier will assign a higherWith this assumption, the appropriate probabilistic sequence model
score to a randomly drawn positive sample than to a randomly drawiould be a hidden Markov model rather than a sequence profile.

negative one.

Rank Method mean AUC
1. RBF SVM indicator 0.9121
2. Lin. SVM indicator 0.9046
3. PSSM 0.9018
4, Lin. SVM physico-chemical| 0.8986
5. LRM 0.8807
6. Neural network 0.8664
7. Decision tree 0.7474

The variance in the data is surprisingly high, as can be seen il
figure 5, where boxplots of the measured AUCs during the differ-
ent cross-validation runs are shown. Still, when testing the null hy-
pothesis of equal AUC against the alternative hypothesis that thi

As another alternative, one could abandon our two-step approach
towards localization, and instead take into account the correctly and
the incorrectly predicted training samples simultaneously, for ex-
ample using position-specific scoring matrices. However, this will
most likely give rise to robustness problems, given the small size of
'Dincorr(r)-

A third, and entirely different, approach towards the relevance
problem would consist in performing a pre-clustering of the training

o
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linear SVM has higher AUC, the differences in AUC between the
linear SVM with indicator representation and localized mixtures of
rules(p = 0.0009), neural networkgp = 9.1 - 107°), or PSSMs
(2.2 - 1071%) are highly significant (Wilcoxon-Mann-Whitney test).
In contrast, the differences in AUC to the other methods are not sig
nificant, in particular to the PSSM (p=0.19).

A global measure such as the AUC should not be the only criterior
when comparing classifiers. Itis also important to look in more detail
at the performance of classifiers at regions of practical relevance, i.¢
at small false positive rates. Figure 6 shows the details: The thre
versions of SVMs perform best, with a slight performance gap to the
PSSM (p = 0.0009 at 1%, = 3.2-10° at 5%, angp = 0.03 at7.5%

error rate). The method described by us here performs comparative

to decision trees and neural networks.
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Figure 5. High variance of the AUC.
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Figure 6. ROC plot: focusing on regions of practical interest.

samples. In this framework, the relevance region of a rule could be 42
cluster, or if a hierarchical clustering method is used, some function[3]
that varies according to the height in the dendrogram.

5.2 AUC boosting [4]

In the beginning of this paper we have argued that the combination5]
of rank-based resampling with AUC optimization which is used in
our learning algorithm can be seen as an adaptation of boosting !
the case when the AUC is used as an objective function.

To see why, let us first consider why the traditional notions of the [7]
margin of a sample are not appropriate for this situation. The reason
is that they all take into account the predicted scofe) directly.
Consider for example the exponential margin used by the AdaBoosTB]
algorithm [8]. In AdaBoost, the weight of a training samfie, v;)
in the resampling procedureds ¥:"(*:)_ Yet, in classifiers optimiz-
ing the area under the ROC curve, it could well be the case that all®]
training samples are scored below 0. The classifier could still per-lO]
form perfectly, since the cutoff can be chosen freely. However, sincé
the exponential margin implicitly assumes a cutoff at 0, in our case
(whereh(z) < 0for all z € D) this would result in a situation where
the positive training samples are considered more problematic thdhll
the negative ones, just because they are scored below 0.

Of course it is possible to adjust the exponential margin to other
cutoffs than 0. However, it would be more desirable to have a resanji2]
pling scheme that is entirely independent of the choice of a cutoff.
One example of such a scheme is the rank-based resampling p
formed by our method. The choice of ranks as resampling weights i
the context of AUC optimization also seems to be appropriate in the
light of the fact that the AUC is proportional to the sum of ranks of
the samples, relative to the samples of the other class [14]. [14]

Finally, future work will have to show whether rank-based resam-
pling in combination with AUC optimization could also be useful [15]
when other models, such as decision trees or neural networks, are
used as basis classifiers instead of rules.

{3

[16]
5.3 Conclusion

While our method performs significantly worse than support vec-
tor machines or PSSMs, it shows comparable performance to deci-

sion trees and neural networks at low false positive rates. At higher
false positive rates, it outperforms both methods. Since this is work
in progress, we still expect significant improvements of our method.
Certainly, evaluation on a wider range of data sets is needed to get a
more complete picture of its benefits and drawbacks. Approaches to
localize the influence of rules or the combination of rank-based re-
sampling with AUC maximization described in this paper might also
be beneficial in other contexts.
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