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Abstract.  The evaluation and use of classifiers is based on the 
idea that a classifier is defined as a complete function from 
instances to classes. Even when probabilistic classifiers are used, 
these are ultimately converted into categorical classifiers that 
must choose one class (with more or less confidence) from a set 
of classes. Evaluation metrics such as accuracy/error, global cost, 
precision, recall, f-score, specificity, sensitivity, effectiveness, 
macro-average, logloss, MSE or the Area Under the ROC Curve 
(AUC) are usually defined for “complete” classifiers. In this 
paper we pursue the usefulness and evaluation of “cautious” or 
“partial” classifiers. A cautious classifier adds an extra class 
“unknown” to the set of the original classes. This “unknown” 
class represents the cases where the prediction is uncertain or not 
reliable. Now, in a cost-insensitive context, accuracy and error 
will not be directly related but indirectly, through the coverage 
index. We develop new measures, efficacy and capacity, which 
find a compromise between reducing the number of misclassified 
data (error) and reducing the number of unclassified data 
(abstention). Inspired by ROC analysis we introduce several 
techniques to choose from a set of cautious classifiers. For 
probabilistic classifiers we define a discretisation method for 
converting them into cautious classifiers by using a “caution 
window”. We develop new response graphs to show the way in 
which different classifiers behave according to the size of the 
window and the class bias. In a cost-sensitive context, cost 
matrices and confusion matrices can be directly extended to 
account for this new class. Moreover, we extend ROC analysis 
and AUC evaluations to these classifiers, by considering the 
degree of abstention as an additional dimension. 

 
Keywords: Uncertainty in decision making, probabilistic 
classifiers, cost-sensitive learning, ROC analysis, model 
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1   INTRODUCTION 

Decision making can be supported by the predictions of a 
classifier. A wrong decision has usually negative consequences. 
Hence, we would like to use classifiers that rarely make a 
mistake. In a dualistic framework, this means the same to look for 
classifiers that are almost always correct. 

However, when we use human assistance for supporting 
decision making, there are some cases where the expert says “I 
don’t know” and asks for further assistance (to other experts) or 
just prefers to postpone the decision. Frequently, we say a person 
is an expert or a wise person when she prefers to be silent (and 
ask other experts) rather than to make a mistake. In this three-
valued framework, we consider someone an expert when she is 
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frequently correct, she is rarely wrong and sometimes she says “I 
don’t know”. 

There are some application areas where this definition of 
expert is imperative. Medical decision making, especially 
diagnosis, always prefers a cautious expert that sometimes says 
“I’m not sure of the diagnosis. More tests are needed” rather than 
a reckless expert that makes a wrong diagnosis. 

Although there are areas where the “unknown” prediction is 
excluded, such as law (in case of doubt the result should be not 
guilty), there are some situations where it would be convenient to 
work with a three-valued logic for decisions. Obviously, a three-
valued logic is not new in decision theory, but it has been 
relatively unexplored in other areas, the learning of classifiers in 
particular. 

Pursuing this idea, in this work we present the notion of 
“cautious classifier”. A cautious classifier will make predictions 
by selecting among the possible problem classes and an additional 
class “unknown”. This kind of classifiers open up a series of 
issues such as how to evaluate them taking into account the 
degree of errors vs. the degree of abstention, how to find optimal 
compromises, how cost-sensitive learning can be extended to 
consider this kind of classifiers, and many other concerns. 

A very important issue is the relationship between 
probabilistic classifiers (classifiers that assign probabilities of 
membership rather than assigning a single class) and cautious 
classifiers. In some way, it can be argued that it is always better to 
have a probabilistic classifier than a cautious classifier, because if 
we have the former we can derive the latter. In fact it is so, but 
usually we must end up with the latter, so it is worth considering 
how to convert from probabilistic classifiers to cautious 
classifiers. A great part of this work is devoted to the analysis of 
how to perform this conversion. 

Finally, there are sets of association rules that are indeed 
partial classifiers and can be considered as cautious classifiers, but 
they are rarely treated as such because this is deemed to be 
negative and are usually completed in some way. In the same 
way, separate-and-conquer algorithms [5] work with partial rules. 
Classifiers are frequently completed by the use of a default rule. 

The paper is organised as follows. The following section 
introduces the notion of cautious classifiers and two basic 
measures: efficacy and capacity. Section 3 discusses the 
comparison and evaluation of several cautious classifiers, using 
similar techniques as ROC analysis. Section 4 deals with 
probabilistic classifiers and how they can be converted into 
cautious classifiers. This can be done through the concept of 
confidence threshold (below which the classifier abstains), a 
stratified threshold or the use of a class bias and a window size. 
Section 5 introduces the notion of cautious cost matrix, where 
costs are also defined for abstentions. Section 6 loops the loop by 
discussing the use of ROC analysis and AUC measures for 
cautious classifiers. Section 7 presents some simple examples to 
better understand the applicability and behaviour of some of the 
presented measures. Section 8 closes the paper with an overall 
discussion of the presented ideas and the future work. 



2  DEFINITION AND EVALUATION OF 
SINGLE CAUTIOUS CLASSIFIERS 

Let us define I as the set of possible instances (unlabelled 
examples) of a given problem. Given a set of classes C, we define 
C’ = C ∪ {┴}. While a traditional classifier is defined as a 
function I → C, a cautious classifier is defined as a function I → 
C’. It is important to note that the element ┴ does not exist in the 
target function or the dataset. Both target function and datasets are 
defined as functions I → C. 

2.1   Extended Confusion Matrix. Measures 
Derived 
A Confusion Matrix of the predictions of a classifier is a very 
practical and intuitive way of seeing the distribution between 
actual classes and predictions. In our case, the confusion matrix is 
defined as a function C’ × C  → Nat. We use the notation M(i,j) 
for referring to the cardinality of elements with predicted class i 
and actual class j. 

 
Example 1: 
For instance, given 100 test examples and a classifier P, an 
example of a traditional Confusion Matrix for three classes {a, b, 
c} might be as follows: 

  Actual 
  a b c 

a 20 2 3 
b 0 30 3 Predicted 
c 0 2 40 

This matrix is understood as follows. From the hundred examples, 
20 were of class ‘a’ and all were correctly classified, 34 were of 
class ‘b’ from which 30 were correctly classified as ‘b’, 2 
misclassified as ‘a’ and 2 misclassified as ‘c’. Finally, 46 were of 
class ‘c’ from which 40 were correctly classified as ‘c’, 3 
misclassified as ‘a’ and 3 misclassified as ‘b’. 

However, a cautious classifier R gives a different portrait: 
  Actual 

  A b c 
a 19 1 2 
b 0 30 0 
c 0 1 38 

Predicted 

┴  1 2 6 

We use the symbol ┴ for abstention. The last row denoted by ┴ 
means that it has abstained for one example of class ‘a’, two of 
class ‘b’ and six of class ‘c’. This new row forces traditional 
measures to be rethought. From here we can re-define several 
measures: 

Card= ∑
∈∈ CjCi

jiM
,'

),(  

Coverage=
Card

jiM
CjCi

∑
∈∈ ,

),(
 

Abstention=
Card

jM
Cj

∑
∈

⊥ ),(
 

Accuracy=
∑
∑

∈∈

=∈∈

CjCi

jiCjCi

jiM

jiM

,

,,

),(

),(
 

Error=
Card

jiM
jiCjCi

∑
≠∈∈ ,,

),(
 

For example 1, we have Card=100, Coverage= 0.91, Abstention= 
0.09, Accuracy= 0.956, Error= 0.04. 

Of course, the way in which we have defined accuracy and 
error may seem arbitrary. Accuracy and coverage are similar to 
precision and recall in information retrieval. Note that accuracy 
(unlike error) is only computed wrt. the cases where the classifier 
does not predict ┴. Moreover, Accuracy is normalised wrt. the 
known values whereas Error is normalised wrt. all the values. 
Consequently, we have: 

Accuracy × Coverage  = Coverage – Error 
And we also have, logically, that: 

Coverage + Abstention = 1 
We must also take into account that Accuracy is undefined if 
Coverage = 0. 

Only in the case we have a traditional (non-cautious 
classifier), then we have the usual expression Accuracy = 1 – 
Error.  

2.2   Evaluation of a Single Cautious Classifier. 
Efficacy and Capacity. 
All the previous definitions seem fairly simple. Another 
straightforward consequence is that a good classifier will have to 
attain high accuracy with low abstention. 

We can represent Accuracy vs. Abstention in a bidimensional 
graph. For instance, the previous cautious classifier R has 
Abstention = 0.09 and Accuracy= 0.956 and can be represented as 
follows: 
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Fig. 1. Accuracy vs Abstention 

It may also seem arbitrary but quite practical to consider the area 
formed by the segments (0,0) and (1,1) with the point given by the 
classifier à la ROC analysis. We call this area Efficacy. It aims to 
suggest that greater abstentions will get closer to 1 accuracy 
(except in the limit). However, 0 abstention usually does not give 
0 accuracy, so the left bottom part of the graph is not realistic. 



However, the efficacy if a single point can be obtained very 
easily as: 

Efficacy=
2

1+− AbstentionAccuracy  

In this case, Efficacy = 0.933. It is straightforward that: 

Efficacy=
2

CoverageAccuracy +  

Consequently, Efficacy is just the arithmetic mean between 
Accuracy and Coverage. Logically, if Coverage=1, Efficacy goes 
from 0.5 to 1. 

It is also straightforward to see that if a cautious classifier P 
is equal to a cautious classifier Q except for an instance that is an 
error for P but an unknown for Q, then Q has less or equal 
efficacy than P (this is so because the denominator in Accuracy is 
always smaller than for Coverage). 

That means that, according to efficacy, it never makes sense 
to convert an error to an unknown, something that is 
counterintuitive. Nonetheless, the efficacy measure will be still 
useful for probabilistic classifiers, as we will see. 

An alternative could be to use some other score, such as the 
f-score, typical in information retrieval, which is the harmonic 
mean of precision and recall. In our case, we could compute: 

f-score= 
CoverageAccuracy
CoverageAccuracy

+
×2  

This measure gives lower values when higher accuracy is 
obtained by lowering coverage. 

A different alternative way (and simpler than f-score) to 
represent the quality of a classifier is to consider Error vs. 
Abstention. In this case we can consider that, given a cautious 
classifier Q, we can move some classified instances to 
unclassified instances and viceversa, by using random guesses, 
constructing a parametrised cautious classifier Qα, by using the 
following formula, where i represents an instance. 

 
Qα(i) :   

if α > Abstention then choose Qα(i) between ┴ and Q(i)  
with probability (α – Abstention) / (1 – Abstention). 

if α = Abstention then choose Qα(i) = Q(i). 
if α < Abstention then  

if Q(i) ≠ ┴ then Qα(i) = Q(i).  
if Q(i) = ┴ then choose between a random class and 
┴ with probability (Abstention – α) / Abstention. 

 

Note that with this procedure the confusion matrix of Qα(i) will be 
a function C’ × C  → Real instead of C’ × C  → Nat. 

The first condition represents when we augment the degree 
of abstention from the current abstention to a point where 
everything is abstention. The third condition has two cases. The 
first one, when the original classifier does not abstain, just uses 
the given prediction. The second case represents a random guess 
made when we want the classifier to have lower abstention. This 
random class can be chosen using a uniform distribution or the 
prior distribution. 

For instance, we can compute the confusion matrix for 
Q0.25(i) with respect to the previous example 1. Since α is greater 

than abstention (0.09) we apply the first rule, having the following 
probability:   

Prob = (0.25 – 0.09) / (1 – 0.09) = 0.1758 
and the following matrix: 

  Actual 
  a b c 

a 15.66 0.82 1.65 
b 0 24.73 0 
c 0 0.82 31.32 

Predicted 

┴  4.34 7.63 13.03 

Similarly, the confusion matrix for Q0.06(i) is computed by using 
the third rule with: 

Prob = (0.09 – 0.06) / (0.09) = 0.3333 
  Actual 

  a b c 
a 19.33 1.22 2.67 
b 0 30.22 0.67 
c 0 1.22 38.67 

Predicted 

┴  0.67 1.33 4 

Varying the parameter α we can represent a capacity graph for a 
single classifier: 
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Fig. 2. Capacity graph of a classifier 

The first part of the graph ([0.0, 0.09] abstention and [0.1, 0.04] 
error) begins at a full classifier. This full classifier is constructed 
by converting all the undefined values of the original cautious 
classifier into defined values by guessing (in this case with a 
uniform distribution) among the three classes. Since there are 9 
unknown cases (1 of actual class a, 2 of actual class b and 6 of 
actual class c), the error will be increased by ((|C| – 1) / |C|) × 
Abstention. In this case, 0.06. Since the error was originally 0.04 
then with α= 0 the error would be 0.1. Note that ((|C| – 1) / |C|) is 
the slope of the first part. The greater the number of classes the 
steeper this first part will be. Finally, the second part of the graph 
is much simpler and just ends up with no errors at Abstention = 1. 

The first part of the graph can be slightly improved if we 
know the original class distribution. For instance if we know that 
pa= 0.2, pb= 0.34 and pc= 0.46, we would have that the error at α 
= 0 would be increased by (1 – 0.2) × 1 + (1 – 0.34) × 2 + (1 – 
0.46) × 6 = 5.36 instances. Consequently the whole error at α = 0 
would be 0.0936 instead of 0.1. 



Once again, it seems natural to consider the area above the 
function formed by Error with varying α, as a measure of quality. 
This area is known as Capacity. 
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When Abstention = 0, Capacity = 1 – Error/2 = Efficacy. 

3  COMPARING AND EVALUATING SETS OF 
CAUTIOUS CLASSIFIERS 

Given a set of cautious classifiers, the first idea to evaluate them 
may be to compute the previous measures and choose the one 
with biggest efficacy or capacity. However, this choice could 
possibly rule out a classifier that could be useful in a context 
where it is preferable a greater coverage and greater error or vice 
versa. 

The rationale is quite similar to what is argued for ROC 
analysis, to which we come back later on in this work. 

Let us show several cautious classifiers in a capacity graph: 
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Fig. 3. Capacity graph of a set of classifiers 

In the previous picture D represents the “no information” 
classifier for a 3-class problem with uniform class distribution. 
Nothing should be worse than this and can be considered as a 
baseline. 

B and C are quite different classifiers. C attains a low error 
by sacrificing coverage. On the contrary, B has a greater error but 
a very high coverage. A is a classifier with an intermediate 
abstention degree but greater error. The rationale is similar to 
ROC analysis. The third classifier A can be ruled out safely, 
because it is above both classifiers. 

Even more, we can connect B and C representing a fictitious 
(but constructible) classifier that proportionally mixes the 
predictions and abstentions of both classifiers. 

Consequently, in this graph we would compute the convex 
hull of the existing classifiers (not only taking into account the 
points but the tails to the left of each classifier). 

All this makes sense if we originally have a set of cautious 
classifiers. It is clear that if we have a set of categorical classical 
classifiers, the one with the lowest error will be optimal for the 
whole graph. This fact changes when we consider probabilistic 
classifiers. 

4 FROM PROBABILISTIC CLASSIFIERS TO 
CAUTIOUS CLASSIFIERS 

While a traditional classifier is defined as a function I → C, a 
probabilistic classifier is defined as a function I → P|C| where P is 
the interval [0..1] of real numbers. Consequently, a probabilistic 
classifier assigns to each instance a set pi of |C| probabilities, each 
of them corresponding to the probability of predicting class i. For 
this reason, a probabilistic classifier is also called a class 
probability estimator.  

Usually, an additional condition is required or met by 
normalisation: Σpi = 1. Consequently, one of the probabilities can 
be obtained from the rest. In the special case of being just two 
classes, it is just necessary to tell one of them, and frequently it is 
much easier to establish thresholds for separating between both 
classes. Nonetheless, this is also possible for more than two 
classes, as we will see. 

 
Example 2 

Consider the following probability estimation tree (PET) 
with 7 leaves and the test results of each leaf with a test dataset. 

 

 Estimated Probs Test Cases 
#Leaf pa pb Class a Class b 

1 1 0 23 1 
2 0.75 0.25 10 0 
3 0.7 0.3 4 2 
4 0.6 0.4 0 9 
5 0.35 0.65 2 3 
6 0.2 0.8 1 15 
7 0.1 0.9 0 30 

Total : - - 40 60 
 

A probability estimator, such as this PET, can be converted into a 
categorical classifier by establishing a way of assigning the 
classes according to the probability. For instance, the easiest way 
to do such a conversion is to assign the class with the greatest 
probability. In this case, nodes 1, 2, 3 and 4 would predict class a 
and 5, 6 and 7 would predict class b. Consequently, we would 
have the following confusion matrix of the classifier obtained 
from the previous PET: 

  Actual 
  a b 

a 37 12 
Predicted 

b 3 48 

With Accuracy= 0.85, Error= 0.15, Coverage= 1, Efficacy= 
0.925, f-score= 0.919, Capacity= 0.925. 

But we could also use a different criterion and convert it into 
a cautious classifier using a confidence threshold. For instance, 
for 0.625 it would be: 

 

Confidence = max (pa, pb) 
If Confidence > 0.625 then class = argmaxi (pi) 
                                    else class =  ┴ 

According to this rule, we have a different confusion matrix: 



  Actual 
  a b 

a 37 3 
b 3 48 Predicted 
┴  0 9 

With Accuracy= 0.934, Error= 0.06, Coverage= 0.91, Efficacy= 
0.922, f-score= 0.916, Capacity= 0.9448. 

The previous conversion rule can be established by a means 
of a threshold τ. In general, we would have: 

 

Confidence = max (pi) 
If Confidence ≥ τ then class = argmaxi (pi) 
                             else class =  ┴ 

 

This solution, however, is not very suitable when there is an 
important difference, in general, between the probabilities of one 
class and the rest. For instance, a very imbalanced dataset would 
generally abstain more for one class than for others. In general, 
the minority class would have, proportionally, more abstentions 
than the majority class. 

A more general and flexible conversion rule would be to 
consider different thresholds τi for each class. In this case, we 
would have:  

 

Confidence = max (pi) 
c= argmaxi (pi) 
If Confidence ≥ τc then class = c 
                             else class =  ┴ 

 

With this rule, the prediction is always given by the class with 
greatest probability, but the abstention will depend on thresholds 
which are different for each class. 

This previous rule has still some problems, since for minority 
classes the probabilities are usually very low and, independently 
of how low the threshold is, it is usually not the maximum 
probability. A variant of the previous rule that allows the different 
thresholds to be more useful is: 

 

If ∃pi, pi ≥ τi  then class = argmaxi (pi / τi) 
                  Else class =  ┴ 

 

This rule allows thresholds to be really different (e.g. τa = 0.8 and 
τb = 0.4) and, for instance, an example with probabilities pa = 0.55 
and pb = 0.45 will be assigned class b, where for the previous rule 
it would be an abstention. 

However, the previous rules mix up two different aspects of 
a threshold: the relevance given to each class (defined by the 
difference between the class thresholds) and the degree of 
abstention (defined by the high or low values of the threshold). In 
other words, if we want to increase the abstention degree we have 
to decrease all the thresholds, in a proportional way. 

To tackle this problem, we generalise the previous decision 
rule by using a class bias for the probabilities and a caution 
window. 

Let us define a Class Bias K= { ki } i = 1..|C|, where Σi ki= 1 
and a window size w, 0 ≤ w ≤ 1. With this, we define the decision 
rule as: 

 

DECISION RULE: (given K and w) 
For each i = 1..|C|,  τi = (1 − ki ) · w + ki  
If ∃pi, pi ≥ τi  then class = argmaxi (pi / τi) 

                    else class =  ┴ 
 

It is easy to see that, since Σi ki= 1 and Σi pi= 1, if we have w=0 
then Abstention = 0. In a similar way, if we have w=1 then 
Abstention will be closer to 1 (not always 1 since there will be 
cases for which pi = τi). 

This new decision rule just separates in a proper way two 
issues: with K we define the class bias and with w we define the 
abstention degree. 

The previous definitions may seem too complex for two-
class problems since one of the components of K depends on the 
other. However, the idea was to give a decision rule applicable to 
any classifier (binary or multiclass). 

For instance, for the previous example if we define the class 
bias K = { 0.55, 0.45 } and the window w= 0.15 we would have 
the following confusion matrix: 

  Actual 
  a b 

a 37 3 
b 3 48 Predicted 
┴  0 9 

With a fixed window we just see one “snapshot” of the situation. 
An interesting thing is to establish a class bias K and show the 
accuracy with respect to a variable window size. A refinement of 
this idea is to make the graph with respect to abstention, because 
increasing window sizes give increasing abstention. Additionally, 
this relationship is neither continuous nor linear and it is 
sometimes difficult for comparing several classifiers or different 
class biases for the same classifier. Consequently, it is better to 
use the abstention degree as a reference. 

For instance, the following graph shows the evolution for 
increasing window size for three different class biases. As said 
before, we use abstention instead of window size for making the 
comparison easier. 
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Fig. 6. Accuracy Response Graph 

The measure is not shown for abstention 1 because accuracy is 
undefined. If we calculate the area of any of these curves (using 
i.e. the value 1 for abstention 1), we have a “probabilistic 



capacity” measure, which can be used to evaluate several class 
biases on the same classifier or several classifiers. In a similar 
way as other graphs, we can use the curves to discard some class 
biases that are clearly superseded by other class biases for any 
window size (for instance, in the previous case, the class bias K= 
{0.55, 0.45}, can be discarded, since it is always equal or worse 
than the class bias K= {0.5, 0.5}. 

A similar graph can be made with the graph error vs. 
abstention. 
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Fig. 7. Error Response Graph 

Once again, the areas formed by each curve in the capacity 
response graph are called “probabilistic capacities”, and can be 
considered as a measure of the optimality of each class bias. In 
the same way, several probabilistic classifiers can be compared by 
using this graph. 

5  COST-SENSITIVE CAUTIOUS CLASSIFIERS 

Up to now, we have considered a cost-insensitive context. Cost 
matrices can be extended for cautious classifiers in a very easy 
way. 

Now, a Cost Matrix (also known as Loss Matrix), not only 
indicates the costs for correct and incorrect classifications, but 
also the cost for abstention, which can be different for each class. 
An example of a Cost Matrix for three classes {a, b, c} and the 
unknown class might be as follows: 

  Actual 
  a b c 

a -2.5 4 2 
b 2.1 -3.5 0 
c 1.2 1.3 -4 

Predicted 

┴ 0 0 0 

This example shows a quite reasonable portrait, the diagonal of 
the matrix shows the costs for correct classification (-2.5, -3.5, -
4). These values are usually negative, because a correct 
classification has benefits instead of costs. The other values 
represent different cases of misclassification. For instance, the 
value 2.1 in cell (b,a) means that classifying incorrectly an ‘a’ 
instance as a ‘b’ instance has a cost of 2.1. In this case, abstention 
has zero cost. Obviously, other possibilities are reasonable, 
provided abstention is somehow in the middle between hits and 
mistakes. 

We use the notation L for this matrix where L(i,j) refers to 
the element of predicted class i and actual class j. 

From this matrix and the confusion matrix it is very easy to 
compute the cost of a classifier for a given dataset, just as the 1 by 
1 matrix product, given a Resulting Matrix: 

R(i,j) = M(i,j) × L(i,j),  i∈C’, j∈C 
In the same way as before, if we have a cost matrix we can draw a 
cost response graph for a probabilistic classifier with different 
class biases, varying the window size.. 

6  ROC ANALYSIS OF CAUTIOUS 
CLASSIFIERS 

ROC analysis [8][11] has been proven very useful for evaluating 
classifiers, especially when the cost matrix is not known a priori. 

The first question that arises is how to represent a a cautious 
classifier in the ROC space. More precisely, we would like to 
obtain TPR and FPR from a 3×2 matrix. 

For instance, for the previous example and the class bias K = 
{ 0.55, 0.45 } and the window w= 0.4 we would have the 
following classifier: 

 

  Actual 
  a b 

a 33 1 
b 1 45 Predicted 
┴  6 14 

We have several alternatives to obtain the TPR and the FPR: 
1. Ignoring the values for ┴ 

  Actual 
  a b 

a 0.971 0.0217 
b 0.029 0.978 Predicted 
┴  - - 

This makes TPR= 0.971, FPR= 0.0177. 
2. Ignoring the value for ┴ but just for the TPR 

  Actual 
  a b 

a 0.971 0.0167 
b 0.029 0.75 Predicted 
┴  - 0.233 

This makes TPR= 0.971, FPR= 0.0167. 
3. Ignoring the value for ┴ but just for the FPR 

  Actual 
  a b 

a 0.825 0.0217 
b 0.025 0.978 Predicted 
┴  0.15 - 

This makes TPR= 0.825, FPR= 0.0217. 
4. Not Ignoring the value for ┴. 

  Actual 
  a b 

a 0.825 0.0167 
b 0.025 0.75 Predicted 
┴  0.15 0.233 

This makes TPR= 0.825, FPR= 0.0167. 



Obviously, option 2 is the most optimistic and option 3 the most 
pessimistic. Wrt. increasing window, option 1, 2 and 3 will end 
with an undetermined point in the ROC space for w=1, and option 
4 will end at point (0, 0). 

If we draw the ROC curve just ignoring the unknown cases 
(option 1), we would have a ROC curve that could be better for 
some degrees of abstention. Below we will show how this 
abstention (now ignored) can be taken into account in an 
evaluation metric. 

We can show graphically the effect on the originally ROC 
curve when removing some decision instances. They are usually 
on the central part of the curve and the effect of the unknown 
window is like a secant that cuts part of the ROC curve and push 
it up towards the rectangle triangle that allows both remainder 
parts of the ROC curve to re-connect. 

This is shown in the following figure: 
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Fig. 8. ROC curve 

The new ROC curve is usually more abrupt but has greater area 
(sacrificing coverage, logically). 

Finally, we can take a probabilistic classifier with a class bias 
and draw the ROC curve for varying window size (TPR × FPR × 
Abstention). The picture would be something similar to this: 
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Fig. 9. ROC Response Graph 

We could compute the volume of this entire surface as a measure 
of quality of the probabilistic classifier with a class bias, which 
has a clear understanding. The greater this volume the greater the 
AUC is for different levels of abstention. 

Instead of representing the ROC curve, we can just show the 
AUC. In this graph, we can see that two different class biases give 
better regions depending on the abstention degree. This picture is 
similar to a ROC graph where we can compare several curves. In 
fact, we can include the results of several models with several 
class biases and compute the convex hull to determine the models 
and class biases that can be discarded surely. 
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Fig. 10. AUC Response Graph 

As expected, the area of each of this AUC vs Abstention graphs 
corresponds to the volume of the previous graphs TPR x FPR x 
abstention. The advantage of this latter graph is that we can use 
approximations of the AUC for more than two classes, such as 
Hand and Till’s M function [7]. 

7  EXAMPLES AND DISCUSSION 

In order to show how some of the previous measures can be 
useful, let us show two simple examples for which we compute 
some of the previous measures for probabilistic classifiers. 

We consider two datasets from the UCI repository [1]: spam 
and tic-tac. For the experiments, we use the J4.8 implementation 
in WEKA [12] without pruning and with Laplace correction in 
order to obtain better probability estimation. Results are given for 
20×5-fold cross validation. 

For the spam dataset we can show its ROC curve: 
 

 
Fig. 11. ROC Curve of J4.8 model for the spam dataset 

The ROC Curve shows how TPR and FPR evolve depending on 
the threshold chosen. The left-upper corner is very abrupt 
suggesting that in this case a cautious classifier is not going to 
increase accuracy extraordinarily for increasing degrees of 
abstention, since an important part of the AUC can be lost if we 
abstain. This is also so because, initially, the complete classifier 
(non-cautious) has high accuracy (0.92 for the complete 
classifier). 

If we draw the evolution of accuracy with respect to the 
degree of abstention (class bias centred on 0.5), we have in the 
below picture, as expected, a growing “curve” which reaches 1 



usually before 100% abstention (note that points are not exactly 
drawn each 10%, since there can be examples predicted with the 
same confidence). As we can see in the picture below, accuracy 
increases quicker for small degrees of abstention, suggesting that 
good results can be obtained with abstention degrees between 
30% and 40%. 
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Fig. 12. Accuracy response graph of J4.8 model for the spam dataset 

Similarly, the evolution of the AUC (computed as we discussed in 
section 6) is slightly different, as we can see in the figure below. 
From 0% to 10% of abstention it goes from 0.967 to 0.974, which 
is a significant increment and it increases slower in the middle, to 
reach the maximum more quickly towards the end. 
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Fig. 13. Accuracy response graph of J4.8 model for the spam dataset 

In order to see a context for which it is beneficial to abstain, let us 
consider the following cost matrix: 

  Actual 
  pos neg 

pos 0 100 
neg 20 0 Predicted 
┴ 2 3 

This matrix has much greater cost for errors than for abstentions. 
The picture below shows the evolution of the cost (mean cost of 
each fold of cross-validation) regarding this matrix. There is a 
region, between 30% and 60% of abstention, for which the cost is 
minimal. Even in this case where the cost of errors is much 
greater than abstentions, we have that the final part of the graph is 
increasing, showing that very high degrees of abstention are not 
beneficial in general, as expected. Of course, there can be cost 
matrices where the minimum can be reached at 0% or 100% of 
abstention, but the analysis of cautious classifiers is useful in the 
cases for which there are minimums for different degrees of 
abstention. 
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Fig. 14. Cost response graph of J4.8 model for the spam dataset 

Let us now take a look to the other dataset, the tic-tac dataset. As 
the below figure shows, this dataset has much lower accuracy and 
AUC than the previous one, but, interestingly, AUC is relatively 
greater than accuracy is (0.8 accuracy and 0.87 AUC for the total 
classifier). Additionally, the ROC curve is much less abrupt in its 
left-upper corner, suggesting that here the benefits of a cautious 
classifier can be more significant. 

 

 
Fig. 15. ROC Curve of J4.8 model for the tic-tac dataset 

As we did in the previous dataset, we also show the evolution of 
accuracy wrt. the abstention degree (class bias centred on 0.5): 
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Fig. 16 Accuracy response graph of J4.8 model for the tic-tac dataset 

In this case, the increase is constant and more regular from 0% to 
65%. This broad region is given by the smooth left-upper corner 
of the ROC curve, which allows that the AUC steadily goes from 
0.87 at 0% abstention to 0.89 at 11%, to 0.918 at 24%, to 0.941 at 
36%, to 0.956 at 46% and much slower from that point (0.98 at 
82%), as we can see in the following AUC response graph. 
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Fig. 17 AUC response graph of J4.8 model for the tic-tac dataset 

Finally, let us show the cost response curve for the tic-tac problem 
(using the same cost matrix as before). 
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 Fig. 18. Cost response graph of J4.8 model for the tic-tac dataset 
In this case, the lowest cost is obtained between 65% and 75% 
abstention degree, showing that, for this dataset, greater levels of 
abstention can have more sense than in the previous dataset. 

Finally, for the tic-tac dataset we compare the accuracy 
response graph for three different learning methods: J4.8, Naïve 
Bayes and Logistic Regression: 
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Fig. 19. Accuracy response graph for several models for the tic-tac 

dataset 

The picture above shows very different behaviours of the three 
models. It is especially interesting the final part of NB and 
Logistic, because Logistic is better than NB for low and mid 
abstention degrees but NB seems better than Logistic for high 
abstention degrees. The modus operandi is similar to how ROC 
analysis is used to compare probabilistic classifiers: we can 
decide in which regions one classifier is better than the rest. 

It is interesting to see the ROC curves for NB and Logistic.  

 
Fig. 20. ROC Curve of NB model for the tic-tac dataset 

 

 
Fig. 21. ROC Curve of Logistic model for the tic-tac dataset 

We can see that the start of the ROC curve of the logistic model is 
highly irregular, which may justify the irregular behaviour in the 
accuracy response graph of this classifier. Nonetheless, it is much 
more difficult to see this from the ROC curves than from the 
accuracy response graphs. 

In a similar way, the picture below shows the accuracy 
response graph of J4.8 without and with pruning: 
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 Fig. 22. Accuracy response graph for J4.8 for the tic-tac dataset 
It is highly interesting to see how the same technique can 
construct models that behave quite differently with increasing 
degrees of abstention. J4.8 with pruning has initially better 
accuracy (0.804 vs. 0.796) but much worse AUC (0.844 vs. 
0.873), as has been shown to be the case in general (see e.g. 
[2][3][8][9]). Since AUC is a good metric for probability 
estimators, we see that the unpruned decision tree does a better 
job selecting the examples that must be abstained, because its 
probability estimations are better. 

This highlights the situations where good cautious classifiers 
can be obtained from probabilistic classifiers: the probabilistic 
classifier is a good probability estimator. 



Summing up, from the previous sections and these simple 
examples, we can suggest that capacity and efficacy are useful for 
comparing cautious classifiers, not for comparing probabilistic 
classifiers or for analysing how to convert them into cautious 
classifiers. In fact, capacity and efficacy response curves are 
always decreasing, so their goal is not to show which abstention 
degree can improve their values, because there are not. Their 
purpose is just to compare static (i.e. categorical) classifiers. 

Accuracy, error and AUC response graphs are useful for 
choosing the optimal degree of abstention and a good class bias, 
especially when class distribution is not balanced. From the 
previous examples, we have also seen that the form of the original 
ROC curve of a probabilistic classifier also gives important 
information about how its derived cautious classifiers can 
perform. 

8  CONCLUSIONS 

In the introduction, we have argued that there are many situations 
where a classifier can abstain, instead of predicting a class for 
cases where the classifier is quite uncertain. We need, however, to 
assess with new metrics how to perform this abstention in order to 
find trade-offs between abstention and accuracy/error. In this 
work, we have presented some new techniques for evaluating, 
transforming and representing cautious classifiers. Some of them 
are useful for comparing between original cautious classifiers, 
such as efficacy and capacity, others can be useful for 
transforming and evaluating probabilistic classifiers, such as the 
accuracy / AUC response curves. 

This paper, nonetheless, leaves many open questions about 
statistical and formal interpretation of the introduced measures, 
which would be useful to give a better understanding of what they 
mean and to what they correspond. In this sense it would be 
interesting to analyse and define the degrees of freedom in a 
cautious cost matrix in order to obtain parametrised cost functions 
for probabilistic classifiers, depending on the class bias (which 
roughly corresponds to the “skew”) and the abstention degree.  

An open question is how to act when the original problem 
has an “unknown” class. In this case, there is no need to create a 
new class, but this “unknown” class should be treated in a 
different way than the other classes, in order to apply or modify 
the measures and techniques presented in this work. 

Another interesting thing to be studied would be how to 
perform the combination of classifiers where we want the 
resulting classifier to be a cautious classifier. Several new 
situations appear, that can be handled with classical approaches 
used in ensemble methods and some of the techniques presented 
here. For instance, we could consider the situation of combining n 
probabilistic classifiers into one cautious classifier. In this 
situation, the variance of the predictions of the ensemble could be 
relevant to tell between a given class or the unknown class. Other 
situation can be presented when we want to combine n cautious 
classifiers into one cautious classifier. The proportion of 
“unknowns” among the n classifiers should be also taken into 
account. 

The idea of cautious classifier has been used to implement a 
new multiclassifier scheme known as “delegating classifier” [4], 
where the first classifier abstains for a part of the examples and 
delegates them to a second classifier. 

Finally, an interesting connection can be established between 
cautious classifiers and classifiers that take test cost into account. 

For instance, in medical diagnosis, it may be interesting to 
construct a classifier with a high abstention that performs few and 
very cheap tests (uses the cheapest attributes). For the cases where 
this classifier gives a certain result, the use of a classifier with 
more coverage (but further tests) is avoided. For the cases where 
the classifier gives an unknown result, almost nothing is lost. This 
can be taken forward to by considering classifiers that are able to 
find trade-offs (in application time) between test cost and 
coverage. 

There are of course many relations to other approaches 
which consider classifiers in a non-categorical way, considering 
class probability estimators, fuzzy classifiers, etc. 
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